首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty samples of hornblendes from rocks of 14 plutonic unitsin the central Sierra Nevada and Inyo Mountains, California,have been studied in detail. Optical, density, single-crystaland powder X-ray diffraction, and major and minor element chemicaldata are reported. The compositions of the hornblendes show only limited correlationwith the chemistry of the rocks in which they occurred. Hornblendesfrom granitic rocks of the eastern Sierra Nevada and Inyo Mountainshave a wide range of tetrahedral aluminum content which is oftenas low as three-quarters of an atom per formula unit, whereashornblendes from younger granitic rocks elsewhere in the SierraNevada batholith contain more than one atom of tetrahedral aluminumper formula unit. Because an increase of aluminum in tetrahedralco-ordination is considered indicative of higher temperaturesof crystallization, the observed differences in the hornblendessuggest that older plutonic rocks of the batholith may havebeen metamorphosed regionally or may have been affected by widespreadhydrothermal action prior to consolidation of later graniticrocks.  相似文献   

2.
Two types of mafic enclaves occur in the Dinkey Creek pluton:ubiquitous microgranular enclaves, and rare gabbroic enclaves.Common petrographic features of the microgranular enclaves are:(1) fine grain-size, (2) abundant acicular apatite, and (3)plagioclase zoned from bytownitic cores to andesine-labradoriterims, with sharp boundaries between these main zones. Subordinateoscillatory variations are commonly superimposed on both coresand rims. It has been found by secondary ion mass spectrometrythat the rims are identical in major and trace element compositionto plagioclase in the tonalite, which suggests crystallizationfrom the same or similar magmas. The gabbroic enclaves are composedpredominantly of hornblende (50–85%) and appear to bemagmatic segregations. The microgranular enclaves and host rocks display two convergingtrends on silica variation diagrams for Fe2O3, TiO2, Al2O3,Zn, and Zr. The dominant trend is defined by small microgranularenclaves, by samples from a large (20 m?30 m) microgranularenclave, and by the Dinkey Creek tonalites and granodiorites.The subordinate trend covers tholeiltic dikes and tonalitich and converges with the Dinkey Creek host rocks at 61 wt.%SiO2 Alkali and alkaline earth elements exhibit greater variabilitythan the above constituents and appear to be either enrichedor depleted as required for equilibrium with the host rocks.Low CaO and Sr concentrations in small enclaves (<30 cm)apparently reflect a lower modal abundance of calcic plagioclaseand more sericitization of this feldspar as compared with theplagioclase of the large microgranular enclave. The large enclaveis also richer in MgO than the small enclaves. With the exceptionof the alkali elements, the major element compositions of themicrogranular enclaves approach high-Al basaltic to andesiticcom positions. In one analyzed microgranular enclave, low La/Cerelative to chondrites and more abundant HREE than in othermicrogranular samples suggest that it may also contain minorcumulus hornblende. The petrographic and whole-rock geochemical relations, and theplagioclase compositions in the microgranular enclaves and theirhost rocks, indicate that the microgranular enclaves representmixtures of quenched basalts and Dinkey Creek tonalites. Itappears that dikes of high-alumina basalt were intruded intothe lower, tonalitic portions of the Dinkey Creek pluton, wherethey were partially quenched along an interface with overlyingtonalitic magma. Large portions of residual liquid in the partiallyquenched basalts permitted mixing with the overlying magma toform a hybrid zone. This zone was then disaggregated, yieldingthe enclaves, and they were dispersed throughout the upper partof the Dinkey Creek magma chamber. Subsequent crystallizationof tonalitic melt within the enclaves produced the zoned plagioclaseand re-equilibrated hornblende and biotite in the enclaves tothe Dinkey Creek magmatic conditions. Scouring disrupted hornblende-richmagmatic segregations and produced the gabbroic enclaves.  相似文献   

3.
Within the western Sierra Nevada metamorphic belt, linear bodiesof alpine-type ultramafic rock, now composed largely of serpentineminerals, parallel the regional strike and commonly coincidewith major fault zones. Within this metamorphic belt, east ofSacramento, California, ultramafic rocks near a large maficintrusion, the Pine Hill Intrusive Complex, have been emplacedduring at least two separate episodes. Those ultramafic rocks,evidently unaffected by the Pine Hill Intrusive Complex andcomposed largely of serpentine minerals, were emplaced alonga major fault zone after emplacement of the Pine Hill IntrusiveComplex. Those ultramafic rocks, contact metamorphosed by thePine Hill Intrusive Complex, show a zonation of mineral assemblagesas the igneous contact is approached: olivine+antigorite+chlorite+tremolite+Fe-Cr spinel olivine+talc+chlorite+tremolite+Fe-Crspinel olivine+anthophyllite+chlorite+tremolite+Fe-Cr spinel olivine+orthopyroxene+aluminous spinel+hornblende+Fe-Cr spinel.Superimposed on these mineral assemblages are abundant secondaryminerals (serpentine minerals, talc, chlorite, magnetite) whichformed after contact metamorphism. Correlation of observed mineralassemblages with the experimental systems, MgO-SiO2-H2O andMgO-Al2O3-SiO2-H2O suggests an initial contact temperature of775±25 °C for the Pine Hill Intrusive Complex assumingPtotal Pfluid PH2O. The pressure acting on the metamorphic rockduring emplacement of the intrusion is estimated to be a minimumof 1.5 kb.  相似文献   

4.
Two roof pendants in the Hope Valley area, Alpine County, containabundant calc-silicate assemblages which can be related to univariantor invariant equilibria in the CaO-Al3O3-SiO2-H2O-CO2 system.Such assemblages are considered to represent components of reactionsthat buffered the chemistry of the pore fluid. Through dataobtained from microprobe analysis it is concluded that solidsolution in plagioclase, garnet, and clinozoisite are importantvariables such that on a TXco2 projection each sample had aunique path during metamorphism. Differences in the plagioclasecomposition of nearby samples with assemblages related by thereaction: grossularite(s.s)+quartz = anorthite(s.s.)+wollastonite, suggest unique equilibration temperatures for assemblages inlocal domains. In the Twin Lakes pendant in Fresno County, thereaction: clinohumite+calcite+CO2= 4forsterite+dolomite+H2O, is importantin magnesian marbles. Contrasting parageneses, which are relatedby this equilibrium, are considered to reflect variations influid composition. Constrasting assemblages in calc-silicaterocks, which are linked by the reactions: calcite+quartz= wollastonite+CO2, tremolite+calcite= dolomite+diopside+CO2+H2O, exist down to the scale of a thin section. Variation in Ti contentof idocrase may be an important factor in assemblages linkedby reactions involving this phase. This study suggests that during contact metamorphism of calcareousrocks in the Sierra Nevada, H2O and CO2 behaved as ‘initialvalue components’ (Zen, 1963) whose activities were controlledby reactions withion local systems.  相似文献   

5.
Geochemical analyses and geobarometric determinations have been combined to create a depth vs. radiogenic heat production database for the Sierra Nevada batholith, California. This database shows that mean heat production values first increase, then decrease, with increasing depth. Heat production is 2 μW/m3 within the 3-km-thick volcanic pile at the top of the batholith, below which it increases to an average value of 3.5 μW/m3 at 5.5 km depth, then decreases to 0.5–1 μW/m3 at 15 km depth and remains at these values through the entire crust below 15 km. Below the crust, from depths of 40–125 km, the batholith's root and mantle wedge that coevolved beneath the batholith appears to have an average radiogenic heat production rate of 0.14 μW/m3. This is higher than the rates from most published xenolith studies, but reasonable given the presence of crustal components in the arc root assemblages. The pattern of radiogenic heat production interpreted from the depth vs. heat production database is not consistent with the downward-decreasing exponential distribution predicted from modeling of surface heat flow data. The interpreted distribution predicts a reasonable range of geothermal gradients and shows that essentially all of the present day surface heat flow from the Sierra Nevada could be generated within the 35 km thick crust. This requires a very low heat flux from the mantle, which is consistent with a model of cessation of Sierran magmatism during Laramide flat-slab subduction, followed by conductive cooling of the upper mantle for 70 m.y. The heat production variation with depth is principally due to large variations in uranium and thorium concentration; potassium is less variable in concentration within the Sierran crust, and produces relatively little of the heat in high heat production rocks. Because silica content is relatively constant through the upper 30 km of the Sierran batholith, while U, Th, and K concentrations are highly variable, radiogenic heat production does not vary directly with silica content.  相似文献   

6.
Sediment cores from two bedrock-dammed lakes in North Fork Big Pine Creek, Sierra Nevada, California, preserve the most detailed and complete record of Holocene glaciation yet recovered in the region. The lakes are fed by outwash from the Palisade Glacier, the largest (~1.3 km2) and presumably longest-lived glacier in the range, and capture essentially all of the rock flour it produces. Distinct late-Holocene (Matthes) and late-Pleistocene (Recess Peak) moraines lie between the modern glacier and the lakes. The lakes have therefore received continuous sedimentation from the basin since the retreat of the Tioga glacier (Last Glacial Maximum) and capture rock flour related to all post-LGM advances. A total of eight long cores (up to 5.5 m sediment depth) and one short surface sediment short core preserve a coherent record of fluctuating rock flour flux to the lakes through the Holocene. Age constraints on rock flour spikes in First and Second lakes based on 31 14C-dated macrofossils indicate Holocene glaciation began ~3200 cal yr B P, followed by a possible glacier maximum at ~2800 cal yr B P and four distinct glacier maxima at ~2200, ~1600, ~700 and ~250-170 cal yr. B.P., the most recent maximum being the largest.Reconstruction of the equilibrium-line altitudes (ELA) associated with each distinct advance recorded in the moraines (Recess Peak, Matthes, and modern) indicates ELA depressions (relative to modern) of ~250 m and 90 m for Recess Peak and Matthes advances, respectively. These differences represent decreases in summer temperatures of 1.7–2.8 °C (Recess Peak) and 0.2–2° (Matthes), and increases in winter precipitation of 22-34 cm snow water equivalent (s.w.e.) (Recess Peak) and 3-26 cm s.w.e. (Matthes) compared to modern conditions. Although small, these changes are significant and similar to those noted in the Cascade Range to the north, and represent a significant departure from historical climate trends in the region.  相似文献   

7.
Co-existing plagioclase and alkali feldspars of the Sierra Nevada granites and plagioclases of the mafic inclusions have been analysed using an ARL EMX electron microprobe analyser. Each Sierran rock type contains co-existing feldspar pairs within specific compositional ranges. Core plagioclase compositions of the mafic inclusions are only slightly higher or lower in anorthite than the host rock plagioclases and cluster between An30 and An40. The chemical inhomogeneity of the Sierran potash feldspars and this effect on the Barth k value prohibits the use of the feldspars as geothermometers for these particular rocks. Results of the electron microprobe, x-ray, and petrographic study and the experimental hydrothermal investigation of the granites suggest but do not prove that both the plagioclase composition and the mafic inclusion mineralogy can be explained in terms of a model which considers the inclusions to be the refractory residue left over from the partial melting of crustal material.Submitted to the Faculty of the Department of the Geophysical Sciences, The University of Chicago, in partial fulfillment for the degree of Doctor of Philosophy.  相似文献   

8.
Pleistocene fluvial landforms and riparian ecosystems in central California responded to climate changes in the Sierra Nevada, yet the glacial history of the western Sierra remains largely unknown. Three glacial stages in the northwestern Sierra Nevada are documented by field mapping and cosmogenic radionuclide surface-exposure (CRSE) ages. Two CRSE ages of erratic boulders on an isolated till above Bear Valley provide a limiting minimum age of 76,400±3800 10Be yr. Another boulder age provides a limiting minimum age of 48,800±3200 10Be yr for a broad-crested moraine ridge within Bear Valley. Three CRSE ages producing an average age of 18,600±1180 yr were drawn from two boulders near a sharp-crested bouldery lateral moraine that represents an extensive Tioga glaciation in Bear Valley. Nine CRSE ages from striated bedrock along a steep valley transect average 14,100±1500 yr and suggest rapid late-glacial ice retreat from lower Fordyce Canyon with no subsequent extensive glaciations. These ages are generally consistent with glacial and pluvial records in east-central California and Nevada.  相似文献   

9.
Geobarometric studies have documented that most of the metasedimentary wall rocks and plutons presently exposed in the southernmost Sierra Nevada batholith south of the Lake Isabella area were metamorphosed and emplaced at crustal levels significantly deeper (~15 to 30 km) than the batholithic rocks exposed to the north (depths of ~3 to 15 km). Field and geophysical studies have suggested that much of the southernmost part of the batholith is underlain along low-angle faults by the Rand Schist. The schist is composed mostly of metagraywacke that has been metamorphosed at relatively high pressures and moderate temperatures. NNW-trending compositional, age, and isotopic boundaries in the plutonic rocks of the central Sierra Nevada appear to be deflected westward in the southernmost part of the batholith. Based on these observations, in conjunction with the implicit assumption that the Sierra Nevada batholith formerly continued unbroken south of the Garlock fault, previous studies have inferred that the batholith was tectonically disrupted following its emplacement during the Cretaceous. Hypotheses to account for this disruption include intraplate oroctinal bending, W-vergent overthrusting, and gravitational collapse of overthickened crust. In this paper, new geologic data from the eastern Tehachapi Mountains, located adjacent to and north of the Garlock fault in the southernmost Sierra Nevada, are integrated with data from previous geologic studies in the region into a new view of the Late Cretaceous-Paleocene tectonic evolution of the region. The thesis of this paper is that part of the southernmost Sierra Nevada batholith was unroofed by extensional faulting in Late Cretaceous-Paleocene time. Unroofing occurred along a regional system of low-angle detachment faults. Remnants of the upper-plate rocks today are scattered across the southern Sierra Nevada region, from the Rand Mountains west to the San Emigdio Mountains, and across the San Andreas fault to the northern Salinian block.

Batholithic rocks in the upper plates of the Blackburn Canyon fault of the eastern Tehachapi Mountains, low-angle faults in the Rand Mountains and southeastern Sierra Nevada, and the Pastoria fault of the western Tehachapi Mountains are inferred to have been removed from a position structurally above rocks exposed in the southeastern Sierra Nevada and transported to their present locations along low-angle detachment faults. Some of the granitic and metamorphic rocks in the northern part of the Salinian block are suggested to have originated from a position structurally above deep-level rocks of the southwestern Sierra Nevada. The Paleocene-lower Eocene Goler Formation of the El Paso Mountains and the post-Late Cretaceous to pre-lower Miocene Witnet Formation in the southernmost Sierra Nevada are hypothesized to have been deposited in supradetachment basins that formed adjacent to some of the detachment faults.

Regional age constraints for this inferred tectonic unroofing and disaggregation of the southern Sierra Nevada batholith suggest that it occurred between ~90 to 85 Ma and ~55 to 50 Ma. Upper-plate rocks of the detachment system appear to have been rotated clockwise by as much as 90° based on differences in the orientation of foliation and contacts between inferred correlative hanging-wall and footwall rocks. Transport of the upper-plate rocks is proposed to have occurred in two stages. First, the upper crust in the southern Sierra Nevada extended in a south to southeast direction, and second, the allochthonous rocks were carried westward at the latitude of the Mojave Desert by a mechanism that may include W-vergent faulting and/or oroclinal bending. The Late Cretaceous NNW extension of the upper crust in the southernmost Sierra Nevada postulated in this study is similar to Late Cretaceous, generally NW-directed, crustal extension that has been recognized to the northeast in the Funeral, Panamint, and Inyo mountains by others. Extensional collapse of the upper crust in the southern Sierra Nevada batholith may be closely linked to the emplacement of Rand Schist beneath the batholith during Late Cretaceous time, as has been suggested in previous studies.  相似文献   

10.
湘桂边界越城岭岩基北部印支期花岗岩时空分布和岩石成因目前还不明确.以该时期花岗岩为研究对象,进行了岩石学、锆石U-Pb年代学、地球化学和Nd-Hf同位素组成研究.研究结果显示,印支期花岗岩主要分布在湘桂边界以北区域,形成时代236~222 Ma.岩性以含电气石的二长花岗岩为主,副矿物组合为锆石、(斜)黝帘石、磷灰石、石榴石,并具有高硅、富碱,贫钙、镁和磷,弱-强过铝质的地球化学特征.早阶段花岗岩源岩主要为变质杂砂岩,可能混入了少许新生地壳组分;晚阶段花岗岩源岩由不同比例的变质泥质岩石和变质杂砂岩组成.花岗岩具有负且稳定的锆石εNd(t)值(-9.3~-10.6)和εHf(t)值(-5.4~-11.9),反映源区平均地壳存留年龄为1.8 Ga左右.花岗质岩浆的形成受控于华南印支期后造山加厚地壳背景下变沉积岩中云母类矿物的脱水熔融过程,其运移和就位与岩基旁侧深大断裂的松弛调整密切相关.   相似文献   

11.
The Genesis of Zoned Skarns in the Sierra Nevada, California   总被引:1,自引:0,他引:1  
Zoned skarns occur at plutonic-metamorphic contacts, in veinscutting marble, and at contacts between marble and interlayeredamphibolite and biotite-rich rocks. For P = 2 kb, fluid inclusionsand P-T-XCO2 stability relations of calc-silicate assemblagessuggest T< 650 °C and a H2O-rich fluid (XCO2 < 0.1).Small-scale, Ca-rich endoskarns are common near exoskarns. Massbalance calculations suggest that: (a) the formation of exoskarnrequires the influx of solute in an aqueous solution from uncontaminatedmagma in addition to material derived from the endoskarn, (b)some ‘limestone assimilation’ is required to formendoskarns, and (c) skarn formation was essentially a constant-volumeprocess. Applying chromatographic theory, compositional profilesof garnet and pyroxene across zoned skarns suggest that infiltrationmetasomatism was an important process, although diffusion metasomatismappears to have produced local compositional gradients at theinfiltration ‘fronts’. Fluid flow calculations showthat thick exoskarns could readily form by intergranular infiltration of aqueous solutions. Reciprocal diffusional exchangeis suggested as a dominant mechanism in the formation of zonedskarns formed at contacts between interlayered metamorphic lithologies.  相似文献   

12.
Seven packrat midden samples make possible a comparison between the modern and late Pleistocene vegetation in Kings Canyon on the western side of the southern Sierra Nevada. One modern sample contains macrofossils and pollen derived from the present-day oak-chaparral vegetation. Macrofossils from the six late Pleistocene samples record a mixed coniferous forest dominated by the xerophytic conifers Juniperus occidentalis, Pinus cf. ponderosa, and P. monophylla. The pollen spectra of these Pleistocene middens are dominated by Pinus sp., Taxodiaceae-Cupressaceae-Taxaceae (TCT), and Artemisia sp. Mesophytic conifers are represented by low macrofossil concentrations. Sequoiadendron giganteum is represented by a few pollen grains in the full glacial. Edaphic control and snow dispersal are the most likely causes of these mixed assemblages.The dominant macrofossils record a more xeric plant community than those that now occur on similar substrates at higher elevations or latitudes in the Sierra Nevada. These assemblages suggest that late Wisconsin climates were cold with mean annual precipitation not necessarily greater than modern values. This conclusion supports a model of low summer ablation allowing for the persistence of the glaciers at higher elevations during the late Wisconsin. The records in these middens also suggest that S. giganteum grew at lower elevations along the western side of the range and that P. monophylla was more widely distributed in cismontane California during the Pleistocene.  相似文献   

13.
We use 10Be surface exposure dating to construct a high-resolution chronology of glacial fluctuations in the Sierra Nevada, California. Most previous studies focused on individual glaciated valleys, whereas our study compares chronologies developed throughout the range to identify regional patterns in the timing of glacier response to major climate changes. Sites throughout the range indicate Last Glacial Maximum retreat at 18.8 ± 1.9 ka (2σ) that suggests rather consistent changes in atmospheric variables, e.g., temperature and precipitation, throughout the range. The penultimate glacial retreat occurred at ca 145 ka. Our data suggest that the Sierra Nevada landscape is dominated by glacial features deposited during marine isotope stage (MIS) 2 and MIS 6. Deposits of previously recognized glaciations between circa 25 and 140 ka, e.g., MIS 4, Tenaya, early Tahoe, cannot be unequivocally identified. The timing of Sierra Nevada glacial retreat correlates well with other regional paleoclimate proxies in the Sierra Nevada, but differs significantly from paleoclimate proxies in other regions. Our dating results indicate that the onset of LGM retreat occurred several thousand years earlier in the Sierra Nevada than some glacial records in the western US.  相似文献   

14.
Compositionally zoned plutons are an important feature of theSierra Nevada batholith, California. Two such plutons have beenexamined to determine the mechanism by which crystals separatefrom a magma. The Tinemaha pluton shows continuous compositionalvariation from 58 to 67% SiO2, whereas the McMurry Meadows plutonis bimodal, with an outer margin of mafic granodiorite (59–60%SiO2) and an inner core of granite (66–69% SiO2). Extremedifferentiates also occur as small isolated masses within thesuite and may contain up to 76% SiO2. Both plutons are uniformin strontium isotopic composition but are different from eachother, with initial 87Sr/86Sr values of 0?70719 and 0?70651respectively. The Tinemaha pluton is both horizontally and vertically( 1000 m) zoned, with fractionation occurring both inward fromthe contacts and upward. The vertical trends in relative mineralproportions are not consistent with crystal settling. Both thevertical and horizontal variations in the chemical compositionof 50 elements, in mineralogy, and in accessory mineral lightrare-earth element zoning, are all directly relatable to side-wallcrystallization which created a less-dense melt that buoyantlymoved upward along the wall towards the top of the magma chamber.The different rates for diffusive heat exchange and compositionaldiffusion within the magma initiated the double-diffusive gradientin the magma chamber. Compositional variations in the side-wallcrystal accumulation zone occur as boundary layer melts evolve,reflecting changes in the bulk convecting magma. The compositionalgap in the McMurry Meadows pluton is the result of a similarbut more efficient side-wall fractionation process, relatedto a higher proportion of melt to crystals in the initial magmaand a slower rate of side-wall solidification as a result ofthe thermal blanket created by the enclosing Tinemaha pluton.  相似文献   

15.
Granitoid rocks of the compositionally zoned Late Cretaceous Toulumne Intrusive Suite in the central Sierra Nevada, California, have initial87Sr/86Sr values (Sri) and143Nd/144Nd values (Ndi) that vary from 0.7057 to 0.7067 and from 0.51239 to 0.51211 respectively. The observed variation of both Sri and Ndi and of chemical composition in rocks of the suite cannot be due to crystal fractionation of magma solely under closed system conditons. The largest variation in chemistry, Ndi, and Sri is present in the outer-most equigranular units of the Tuolumne Intrusive Suite. Sri varies positively with SiO2, Na2O, K2O, and Rb concentrations, and negatively with Ndi, Al2O3, Fe2O3, MgO, FeO, CaO, MnO, P2O5, TiO2, and Sr concentrations. This covariation of Sri, Ndi and chemistry can be modeled by a process of simple mixing of basaltic and granitic magmas having weight percent SiO2 of 48.0 and 73.3 respectively. Isotopic characteristic of the mafic magma are Sri=0.7047, Ndi=0.51269 and 18O=6.0, and of the felsic magma are Sri=0.7068, Ndi=0.51212 and 18O=8.9. The rocks sampled contain from 50 to 80% of the felsic component. An aplite in the outer equigranular unit of the Tuolumne Intrusive Suite apparently was derived by fractional crystallization of plagioclase and hornblende from magma with granudiorite composition that was a product of mixing of the magmas described above. Siliceous magmas derived from the lower crust, having a maximum of 15 percent mantle-derived mafic component, are represented by the inner prophyritic units of the Tuolumne Intrusive Suite.  相似文献   

16.
The Cascade Lake shear zone occurs on the eastern margin of the Tuolumne Intrusive Suite, Sierra Nevada Batholith, California. Foliation in the zone is NNW trending and subvertical, and lineation is moderately south plunging. Deformation is syn-tectonic with emplacement of the Cathedral Peak granodiorite. A deformation gradient exists toward the NE margin of this pluton, with higher strains and lower temperatures of deformation found near the contact. We compare fabric data collected very densely in this shear zone using several techniques: field fabrics, 3D orientation of K-feldspar megacrysts, and AMS (anisotropy of magnetic susceptibility) analysis. In general, the results from the three different methods are in agreement. Deformation in this shear zone is part of a larger pattern of deformation within the Cathedral Peak granodiorite, as recorded by AMS analysis, and dextral shearing associated within the last stage of plutonism within the Sierra Nevada magmatic arc.  相似文献   

17.
Microgranitoid enclaves are common in granitic plutons worldwide, occurring individually and in homogeneous or heterogeneous swarms. Three plutons in the central Sierra Nevada batholith contain swarms with mostly heterogeneous suites of enclaves in the intermediate composition range, and occur in a number of two-dimensional shapes, specifically as dikes, small rafts, lenses, pipe/vortices and large massive shapes. Swarms are characterized by various features, including the nature of their boundary with the host, their planar or non-planar character, internal geometry, density of enclave packing, presence or absence of schlieren and crystal aggregates, and axial ratios and degree of preferred alignment of enclaves. We propose that heterogeneous enclave swarms form by one, or some combination of, the following mechanisms: (1) velocity-gradient sorting parallel or normal to the flow, (2) gravitational sorting or (3) break-up of heterogeneous dikes. Common sites where enclave swarms form include pluton margins or internal viscosity walls, within fractures, and near the pluton roof.  相似文献   

18.
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas.  相似文献   

19.
Sediments of Balsam Meadow have produced a 11,000-yr pollen record from the southern Sierra Nevada of California. The Balsam Meadow diagram is divided into three zones. (1) The Artemisia zone (11,000–7000 yr B.P.) is characterized by percentages of sagebrush (Artemisia) and other nonarboreal pollen higher than can be found in the modern local vegetation. Vegetation during this interval was probably similar to the modern vegetation on the east slope of the Sierra Nevada and the climate was drier than that of today. (2) Pinus pollen exceeded 80% from 7000 to 3000 yr B.P. in the Pinus zone. The climate was moister than during the Artemisia zone. (3) Fir (Abies, Cupressaceae, and oak (Quercus) percentages increased after 3000 yr B.P. in the Abies zone as the modern vegetation at the site developed and the present cool-moist climatic regime was established. Decreased fire frequency after 1200 yr B.P. is reflected in decreased abundance of macroscopic charcoal and increased concentration of Abies magnifica and Pinus murrayana needles.  相似文献   

20.
The nature of PGE-Re (PGE = Pt, Pd, Os, Ir, Ru) behavior in subcontinental lithospheric mantle was investigated using new, high precision PGE-Re abundance measurements and previously published Re-Os isotopic analyses of peridotite xenoliths from the Sierra Nevada and Mojave Province, California. Ru/Ir ratios and Ir concentrations are constant over a wide range in S content and major-element fertility indices (e.g., Mg/(Mg+Fe)), indicating that Ru and Ir are not only compatible during partial melting, but also that their partitioning behaviors may not be controlled entirely by sulfide. Pt/Ir, Pd/Ir, Os/Ir, and Re/Ir ratios range from slightly superchondritic to distinctly subchondritic for all xenoliths except for one anomalous sample (1026V), which is characterized by radiogenic 187Os/188Os, low Re/Os ratio, and large enrichments in Cu, Os, Pt, Pd, and S relative to Ir (COPPS metasomatism). Assuming chondritic initial relative abundances, the magnitudes of some of the depletions in Pt, Pd, Os, and Re relative to Ir and Ru require incompatible behavior or substantial secondary loss. In detail, some samples, which are otherwise characterized by fertile major-element indices, exhibit low S contents and subchondritic Os/Ir and Pd/Ir ratios, indicating that depletions in Pd and Os relative to Ir are not simple functions of the degree of melting as inferred from major elements. Possible mechanisms for depleting Pt, Pd, Os, and Re relative to Ir and Ru include partitioning into chromian spinels and alloys, partitioning between sulfide and sulfide liquids, mobilization by aqueous fluids, or secondary loss associated with late-stage sulfide breakdown. However, it is not possible to explain all of the depletions in Pt, Pd, Os, and Re by any single mechanism.The preferential enrichment in Os over Re and Ir in sample 1026V is somewhat paradoxical because this sample’s radiogenic 187Os/188Os requires a metasomatic agent, originating from a source with a high time-integrated Re/Os ratio. The abundant garnet websterite xenoliths may be a suitable source because they have high Re/Os ratios, radiogenic Os, and abundant garnet, which may sequester Re over Os during partial melting. However, their extremely low Os contents require the processing of large amounts of garnet websterite to concentrate enough Os into the metasomatic sulfides needed to enrich sample 1026V in Os. The homogeneity in 187Os/188Os ratio in the remaining xenoliths suggest that their Os isotopic compositions were not significantly affected by PGE metasomatism. The singular nature of 1026V’s composition emphasizes the rarity of COPPS metasomatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号