首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eleven whole rock Rb/Sr age determinations from the Chilean metamorphic basement — formerly considered as Precambrian — define two limiting reference isochrons of 342 and 273 my. Analized rocks are phyllites and schists of sedimentary origin with mineralogical assemblages mainly corresponding to the greenschist facies.Two metamorphic series characterize the Chilean metamorphic basement: an eastern low P/T series, and a western high P/T series. Four of the analyzed samples belong to the former and seven to the latter.The obtained age is interpreted as the age of a main metamorphic episode of the basement. This episode would have taken place in the Upper Paleozoic.  相似文献   

2.
The Caledonian Jotun nappe in the Tyin area of southern Norway has been investigated using U-Pb analysis of zircon and sphene and Rb-Sr measurements of minerals and whole rocks, with special reference to the reaction of the isotope systems to various kinds of metamorphic event. The nappe consists of Precambrian basement rocks and their cover, inversely thrust over the Baltic shield and its parautochthonous, presumably lower Paleozoic sediments during the Caledonian orogeny. While the nappe basement retained its pre-Caledonian structures, the nappe cover was penetratively deformed and metamorphosed to lower greenschist facies conditions.U-Pb analyses of zircon and sphene ofnappe basement rocks point to the crystallization of a syenitic to monzonitic magma at 1694± 20m.y., the intrusion of gabbros into the syenites and monzonites at 1252?25+28 m.y., and the metamorphism (upper greenschist-lower amphibolite facies) and deformation (gneissification and mylonitization) of the whole complex at 909± 16m.y. Although this latest event caused strong lead loss in all zircon populations, it had no influence on the Rb-Sr system on a whole rock scale. The Caledonian movements did not disturb the U-Pb system of zircon and sphene but strongly influenced the Rb-Sr system in certain minerals and zircon and/or its inclusions (K-feldspar and brown biotite partially, green biotite completely reset).In contrast to the nappe basement, zircons from thecover rocks show pronounced lead loss during the Caledonian metamorphism/deformation — U-Pb analysis give discordia lower intercept ages of 415± 21 m.y. and 395± 6m.y. Again, however, the Rb-Sr whole-rock system has not been reset in Caledonian time. Minerals from the same rocks which provided the zircons give Rb-Sr isochron ages of 390± 11m.y. and 386 ± 20 m.y.Comparison of U-Pb and Rb-Sr results from the nappe basement demonstrates that only the analysis of U-Pb systematics in zircon and especially sphene resolved the 900-m.y. event. Rb-Sr mineral data alone yield ambiguous results.The results from the nappe cover confirm that U-Pb analyses from penetratively deformed sediments are very useful in dating a metamorphic/tectonic event in lower greenschist facies conditions.From the measured cell dimensions of the zircon populations it is concluded that lead can be completely retained in zircon during recrystallization.  相似文献   

3.
40Ar/39Ar age determinations have been carried out on eight samples of melt rocks and one of the maskelynite from Mistastin Lake impact crater, Labrador. The observed40Ar* evolution spectra of the impact melts fall into distinct groups which correlate with petrographic variations. The release patterns of six of the melt rock samples define an age plateau in the range 34–41 m.y.; the other two have complex spectra which indicate incomplete equilibration of inclusions. Four of the samples with well-defined plateaux exhibit a high-temperature sag in their40Ar/39Ar ratio similar to that observed in some lunar samples. Maskelynite gives a partially overprinted spectrum which rises monotonically to a final age near 700 m.y., approximately half the age of the country rocks. The data from the melt samples are interpreted as indicating an age of 38 ± 4 m.y. for the Mistastin Lake impact event. Previously, it had been considered that this crater was 202 ± 25 m.y. old.  相似文献   

4.
Whole rock and chondrules of the Dhajala chondrite were analyzed for Ne, Ar, Kr and Xe by total melting as well as by stepwise heating techniques. The cosmic ray exposure ages for the whole rock and the chondrules are6.2 ± 0.8 and6.3 ± 1.0m.y. as determined by the21Ne method and4.8 ± 1.5 and4.2 ± 2.0m.y. by the38Ar method, respectively. The K-Ar age of the whole rock is4.2 ± 0.4b.y. The elemental composition of the trapped gas in this chondrite is of “planetary” type. The radiogenic129Xe contents in the whole rock and chondrules are similar and this component is very retentively sited in the chondrules.  相似文献   

5.
The Cordillera Darwin, a structural culmination in the Andes of Tierra del Fuego, exposes an orogenic core zone that has undergone polyphase deformation and metamorphism. Some of the classic problems of orogenic zones have remained unanswered in the Cordillera Darwin: the age of deformed plutonic rocks, the distinction of structurally reactivated basement and metamorphosed cover rocks, and the timing of orogenic events. This study addresses and partially answers these questions.A well-constrained Rb-Sr isochron age of157±8m.y. and an initial87Sr/86Sr ratio of 0.7087 obtained from a pre-tectonic granitic suite suggest a genetic relation between this suite and Upper Jurassic silicic volcanic rocks in the cover sequence (Tobifera Formation), and also suggest involvement of continental crust in formation of these magmas. A poorly constrained Rb-Sr isochron age of240±40m.y. obtained from supposed basement schists is consistent with field relations in the area which suggest a late Paleozoic/early Mesozoic metamorphism for these pre-Late Jurassic rocks. However, because of scatter in the data and the uncertainties involved in dating metasedimentary rocks, the significance of the isotopic age is dubious. Compilation of previously published ages in the area [9] with new mineral ages reported here indicate that “early Andean” orogenic events occurred between 100 and 84 m.y. ago, and that subduction-related magmatism has contributed, probably discontinuously, to the crustal evolution of the region throughout the Mesozoic.  相似文献   

6.
Abstract   Ophiolites and high-pressure (HP) metamorphic rocks are studied to test continuation of Paleozoic and early Mesozoic geological units from Japan to Primorye over the Japan Sea. The early Paleozoic ophiolites are present on both sides, and the late Paleozoic ophiolite of south-western Japan may also have its counterpart in Primorye. The Shaiginskiy HP schist and the associated Avdakimov gneiss in Primorye, both tectonically underlying the early Paleozoic ophiolitic complex, yield a 250-Ma phengite and hornblende K–Ar age, which is intermediate between those of the Renge (280–330 Ma) and Suo (170–220 Ma) blueschists in south-western Japan. This age also coincides with that of the coesite-bearing eclogites in the Sulu–Dabie suture in China and several medium-pressure metamorphic rocks in East Asia. On the basis of these results and other geological data, the authors propose the 'Yaeyama promontory' model for an eastward extension of the Sulu–Dabie suture. The collision suture warps southward into the Yellow Sea and detours around Korea, turns to the north at Ishigaki Island in the Yaeyama Archipelago of Ryukyu, where it changes into a subduction zone and further continues toward south-western Japan and Primorye. Most ophiolites from this area represent crust–mantle fragments of an island arc–back-arc basin system, and the repeated formation of ophiolite–blueschist associations may be due to the repetition of the Mariana-type non-accreting subduction and Nankai-type accreting subduction.  相似文献   

7.
More than fifty new K-Ar age determinations are reported for mineral separates and whole-rock samples from igneous and metamorphic basement rocks of northwestern Argentina and contiguous Chile between 25° and 30°S. The age data define three thermal events, occurring in the late Ordovician-Silurian (400–450 m.y.), mid-Carboniferous (310–340 m.y.) and Permian (225–270 m.y.), and confirm deductions of previous workers that the crystalline basement rocks of the Pampean Ranges of northwestern Argentina are not of Precambrian age, but rather evolved predominantly during the Palaeozoic. The proposed radiometric age provinces and the inferred orogenic history of the area are compared with those for the rest of South America, and it is confirmed that, by the late Ordovician, the focus of major orogenic activity in South America was located along the present western and southern margins of the craton, and tended to migrate westwards during the Palaeozoic.  相似文献   

8.
Rb-Sr whole-rock isochron ages of gneisses from the Fiskenaesset area are considerably lower (2600–2800 m.y.) than U-Pb zircon ages for the same rocks (2880–2950 m.y.). There is a significant correlation between the isochron ages and the range in Rb/Sr ratios of the samples involved. Higher ages (and lower initial87Sr/86Sr ratios) are obtained for sample collections with a wide range in Rb/Sr ratios. Lower ages (and higher initial ratios) are obtained for sample collections with a narrow range in Rb/Sr ratios. This relationship is explained by a model of local metamorphic Sr isotope homogenisation in restricted rock volumes. This model implies that the individual isochron ages do not date specific geological events. There is a significant inverse correlation between the isochron ages and the corresponding initial ratios. It is probable that the igneous precursors of the gneisses intruded with initial87Sr/86Sr ratios well below 0.701.  相似文献   

9.
40Ar/39Ar analyses have been made on phlogopite-bearing peridotite nodules from Bultfontein and phlogopite nodules from Du Toitspan, Kimberley area, South Africa. Neither definite plateau nor isochron age could be obtained due to the occurrence of an excess40Ar in phlogopite. However, the extrusion age of a phlogopite nodule from Du Toitspan has been estimated to be about 86 m.y. from the combination of the youngest40Ar/39Ar age in the intermediate temperature fraction with Rb/Sr age data reported for this area.Excess40Ar correlates with K-derived39Ar in some phlogopites suggesting that it is trapped in K- or K-similar sites and has been incorporated during phlogopite formation.The occurrence of large amounts of excess40Ar in phlogopite suggests that it was not formed at a shallow depth.  相似文献   

10.
The Kirin meteorite, a large (2800kg) H5 chondrite, fell in Kirin Province, China in 1976. A sample from each of the two largest fragments (K-1, K-2) yield40Ar/39Ar total fusion ages of 3.63 ± 0.02b.y. and 2.78 ± 0.02b.y. respectively.40Ar/39Ar age spectra show typical diffusional argon loss profiles. Maximum apparent ages of 4.36 b.y. (K-1) and ~4.0 b.y. (K-2) are interpreted as possible minimum estimates for the age of crystallization of the parent body.The40Ar/39Ar ages found for gas released at low temperature are about 2.2 b.y. for K-1 and about 0.5 b.y. for K-2, suggesting that this meteorite may have suffered two discrete collisional events that caused degassing of radiogenic argon. Modelling of possible thermal events in the parent body indicates that samples K-1 and K-2 were at a depth of less than 3 m from the base of an impact melt of a thickness less than 7 m and separated by no more than ~2 m from one another at the time of the heating event about 0.5 b.y. ago. Further, the duration of heating was probably less than a few years.Calculations from38Ar data yield exposure ages for samples K-1 and K-2 of about 5 m.y., similar to that found for many other H chondrites.  相似文献   

11.
39Ar-40Ar ages and37Ar-38Ar exposure ages of samples representing four different lithologies of the Apollo 17 station 7 boulder were measured. The age of the dark veinlet material77015of3.98 ± 0.04AE is interpreted as representing the time of intrusion of this veinlet into the 77215 clast. The data obtained so far indicate that the vesicular basalt 77135 formed 100–200 m.y. later. However, this has to be confirmed by39Ar-40Ar investigations on separated mineral and/or grain-size fractions. A small clast enclosed in the 77135 basalt gives a well-defined high temperature age of3.99 ± 0.02AE. A sample of the noritic clast 77215 gave4.04 ± 0.03AE, the highest age found so far in this boulder. The39Ar-40Ar ages obtained are in agreement with the age relationships deduced from the stratigraphic evidence.Taking into account the shielding by the boulder itself, an average37Ar-38Ar exposure age of(27.5 ± 2.5)m.y. is obtained for the samples collected from the boulder.  相似文献   

12.
K-Ar ages have been determined for sulfide minerals for the first time. The occurrence of adequate amounts of potassium-bearing sulfides with ideal compositions K3Fe10S14 (~10 wt.% K) and KFe2S3 (~16 wt.% K) in samples from a mafic alkalic diatreme at Coyote Peak, California, prompted an attempt to date these materials. K3Fe10S14, a massive mineral with conchoidal fracture, gives an age of 29.4 ± 0.5m.y.(40Ar/39Ar), indistinguishable from the 28.3 ± 0.4m.y.(40Ar/39Ar) and 30.2 ± 1.0m.y.8 (conventional K-Ar) ages obtained for associated phlogopite (8.7 wt.% K). KFe2S3, a bladed, fibrous sulfide, gives a younger age, 26.5 ± 0.5m.y.(40Ar/39Ar), presumably owing to Ar loss.  相似文献   

13.
Mesozoic doming extensional tectonics of Wugongshan, South China   总被引:4,自引:0,他引:4  
Wugongshan in Jiangxi Province, China was a Mesozoic granitic dome-type extensional tectonics that is composed of metamorphic core complexes, ductile and brittle shear-deformed zones distributed around Mesozoic granites. Within it, the foliation defines an E-W elliptical shape and bears S-N stretching lineations. The axial part is located in Hongjiang-Wanlongshan area and occupied by oriented granites with coaxial symmetric shear fabrics. The southem and northern flanks, including rocks in the Anfu Basin to the south and the Pingxiang Basin to the north, display top-to-south and top-to-north motions, respectively. The ductile and brittle structures indicate a geometric and kinematic consistency. The extensional tectonics is developed on a Caledonian metamorphic basement and is unconformably covered by Late Cretaceous red beds. Isotopic ages on muscovite, biotite and whole rock by40Ar-39Ar, K-Ar and Rb-Sr suggest that the Wugongshan extensional doming began from the Triassic and ended in the Late Cretaceous. A geodynamic model is discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 49632080, 49572141)  相似文献   

14.
The survey of radiometric and paleomagnetic work on the mafic rocks of South Carolina is consistent with, and amplifies the studies on the acidic rocks of the southeast by Ellwood (1982). The westerly post-early Mesozoic tilt of the southeastern Appalachians proposed by Dooley and Smith (1982) over most of the Piedmont balances out the post-late Paleozoic southeastern tilt of Ellwood (1982). Only in the Elberton-Sparta block is the tilting important and here the interpretation proposed is of a greater initial tilt (approximately 25–30°) reduced by the post-early Mesozoic tilt.There is no evidence of displaced terrains as far as the King's Mountain, Charlotte, and Slate belts are concerned at least since 300 m.y. ago and perhaps as early as 350 m.y. ago. The anomalous paleomagnetic data from the Kiokee belt is best interpreted as due to tectonic displacements associated with the late Paleozoic event described by Secor and Snoke (1978) and Snokeet al. (1980).The paleopoles of the mafic rocks are in agreement with paleopoles on the North American apparent polar wander path (APWP) at about 300 m.y. The resolution of K–Ar apparent ages of 350 m.y. or older will require40Ar/39Ar studies and such age relationships are critical to the reasonable application of tilt corrections in the southern Appalachians.  相似文献   

15.
REE and Ba, Th, U, Au, Hf, Sb, Sc and Cs were determined by neutron activation techniques on samples belonging to an acidic high-K charnockitic formation outcropping along the coast of Sa?o Paulo State, Brazil. This formation was dated by the Rb-Sr method and gave whole-rock isochron ages of 546–558 m.y. and initial87Sr/86Sr ratios of 0.7098–0.7117. A mineral isochron gave an age of 479 m.y. Isotopic and geochemical data support the hypothesis that these rocks derive from the intrusion of a granitic magma produced by crustal anatexis. The source rocks were probably differentiated from the mantle 300–700 m.y. before the solidification of the charnockite. Th/U, K/Cs and Rb/Cs ratios and Au concentrations indicate that the source rock probably was of high metamorphic grade.  相似文献   

16.
Fourteen whole-rock samples from three traverses through the contact aureole of the Stillwater Complex were analyzed for Rb, Sr and87Sr/86Sr. Twelve of these samples yielded an age of 2750 ± 45m.y.; (87Sr/86Sr)0 = 0.705 ± 0.003 (2σ). In addition one whole rock and a biotite separate derived from it gave an age of 2544 m.y.; (87Sr/86Sr)0 = 0.714. These data support a minimum age of 2750 m.y. for the intrusion of the complex.  相似文献   

17.
Abstract Gneiss samples were collected from the Shandong Peninsula, eastern China, in order to carry out Rb-Sr dating using whole rock powder and biotite mineral separates. Middle Proterozoic whole rock age (1808 ± 71 Ma) and Middle to Late Proterozoic biotite ages (1312 and 729 Ma) were obtained for country gneisses in the northwestern part of the peninsula. Late Proterozoic whole rock age (707 ± 61 Ma) and Mesozoic biotite ages (172 and 222 Ma) were obtained for orthogneisses in the southeastern part of the peninsula. These new age data, as well as recent petrological results and published radiometric data, support the subdivision of the Shandong Peninsula into two geological districts: (i) a northwestern area of Proterozoic age represented by a low- and middle-pressure metamorphic sequence belonging to the Sino-Korean craton; and (ii) a southeastern area of Late Proterozoic and Mesozoic age accompanied by ultra-high pressure eclogite.  相似文献   

18.
40Ar/39Ar age data on alkalic and tholeiitic basalts from Diakakuji and Kinmei Seamounts in the vicinity of the Hawaiian-Emperor bend indicate that these volcanoes are about 41 and 39 m.y. old, respectively. Combined with previously published age data on Yuryaku and Ko¯ko Seamounts, the new data indicate that the best age for the bend is 42.0 ± 1.4 m.y.Petrochemical data indicate that the volcanic rocks recovered from bend seamounts are indistinguishable from Hawaiian volcanic rocks, strengthening the hypothesis that the Hawaiian-Emperor bend is part of the Hawaiian volcanic chain.40Ar/39Ar total fusion ages on altered whole-rock basalt samples are consistent with feldspar ages and with40Ar/39Ar incremental heating data and appear to reflect the crystallization ages of the samples even though conventional K-Ar ages are significantly younger. The cause of this effect is not known but it may be due to low-temperature loss of39Ar from nonretentive montmorillonite clays that have also lost40Ar.  相似文献   

19.
Ten whole-rock samples from the Tudor Gabbro, Grenville Province, Ontario, Canada have been dated by the KAr method. The ages calculated by the conventional method range from 900 m.y. to 2040 m.y. On an isochron plot, three samples from a sampling site near the northern border of the gabbro lie along a 670-m.y. isochron with an initial40Ar/36Ar ratio of about 17,300 whereas all other samples lie along another 670-m.y. isochron with an initial ratio of about 5000. Although it is not certain yet as to what geological event the isochron age represents, the results clearly demonstrate that the effect of initial argon can be significant even on old samples such as these.  相似文献   

20.
A biotite dacite that intrudes metamorphic rocks on Okinawa in the Ryukyu island arc has been dated at 12 m.y. by the40Ar/39Ar method. The details of this age measurement and a compilation of radiometric ages for the Ryukyu island arc and adjacent regions are presented. These data suggest that from 65 to 12 m.y. ago the magmatic axis of the Ryukyu arc was confined to a very narrow zone along the arc. In Kyushu and Shikoku, the southern Japanese islands, intrusive and volcanic igneous rocks dated as 21?12 m.y. occur over a much wider zone than in the Ryukyu arc. The apparent difference in width of the magmatic zones may be due to different absolute motions of the overthrust plates of those two regions of subduction. The dissimilarity of available radiometric ages for the Ryukyu arc and for Taiwan suggest different histories for the development of these two features. The occurrence of active volcanoes in association with the Okinawa Trough, northwest of the Ryukyu island arc, may indicate that the trough itself developed in the last 12 m.y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号