首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Measurements of the crest of the spreading ridge in the young ocean basins of the Afar region and Gulf of Aden and in the mature Indian, Atlantic, and Pacific Oceans show that the depth of the ridge crest is correlated (r = 0.99) with the logarithm of the age of the ocean basin. Ridge crests in a very young basin (Afar) are at sea level, at about 1.5 km in young basins (Gulf of Aden), and at about 2.6 km in mature basins (Indian, Atlantic, Pacific). A new curve that relates crestal depth and age of the ocean basin is coupled with the existing depth/age curve for oceanic crust in a comprehensive scheme which can be used for relating depth and age of oceanic crust.  相似文献   

2.
In a general lithospheric model of a simple divergent ocean and continental margin that satisfies the constraints of isostasy and gravity anomalies, the free-air gravity anomaly at the margin is modelled by an oceanic crust that thickens exponentially toward the margin from its common value of 6.4 km about 600 km from the margin to 17.7 km at the margin; this postulated thickening is supported empirically by seismic refraction measurements made near continental margins. The thickness of the oceanic crust matches that of the continental lithosphere at breakup, as observed today in Afar and East Africa, and is interpreted as the initial oceanic surface layer chilled against the continental lithosphere. With continued plate accretion, the chilled oceanic crust thins exponentially to a steadystate thickness, which is achieved about 40 m.y. after breakup. These findings contrast with the generally held view that the oceanic crust has a uniform thickness.During the first 40 m.y. of spreading, the thicker oceanic crust, of density 2.86 g/cm3, displaces the denser (3.32 g/cm3) subjacent material; by isostasy, the spreading ridge and the rest of the seafloor thus stand higher in younger( <40m.y.) oceans than they do in older(>40m.y.) oceans. This is postulated to be the cause of the empirical relationship between the crestal depth of spreading ridges and the age (or half-width) of ocean basins.  相似文献   

3.
All active midocean ridges show a uniform relationship between depth and age of the oceanic crust. Recently, it has been shown by numerical methods that convective flow in a Newtonian fluid will have a positive gravity anomaly and an upward surface deformation associated with an ascending limb. If there is thermal convection in the upper mantle, these calculations predict that there may be a correlation between free air gravity anomalies and differences from the uniform relationship between oceanic depth and age. To investigate such a correlation, we considered the crestal elevation and free air gravity anomaly over the crest of the midocean ridges. It has been suggested that the differences from the depth versus age relationship are related to spreading rate. Thus, we also considered a correlation between crestal elevation and changes in rate along the ridge axis.We found a positive correlation between free air gravity and differences in crestal depth of the midocean ridge system. We found no correlation between spreading rate and gravity and no uniform relationship which holds in all the oceans between spreading rate and observed crestal depths.The long wavelength gravity anomalies which are correlated with the differences in crestal depth cannot be supported by an 80 km thick lithosphere. Thus, they are considered evidence of flow within the aesthenosphere. Further, the correlation between gravity anomaly and differences in crestal depth has the same sign and gradient as predicted by the investigations of convection in a Newtonian fluid.  相似文献   

4.
For a lherzolite mantle with about 0.1 wt.-percent CO2 or less, and a CO2/H2O mole ratio greater than about one, the mantle solidus curve in P-T space will have two important low-temperature regions, one centered at about 9 kbar (30 km depth) and another beginning at about 28 kbar (90 km depth). It is argued that the depth of generation of primary tholeiitic magmas beneath ridge crests is about 9 kbar, and that the geotherm changes from an adiabatic gradient at greater pressures to a strongly superadiabatic gradient at lesser pressures. Such a ridge geotherm would intersect the solidus at two separate depth intervals corresponding to the two low-temperature regions on the solidus. With increasing age and cooling of the lithosphere, the shallow partial melt zone would pinch out and the thickness of the deep partial melt zone would decrease. With increasing depth in a mature oceanic lithosphere, the rock types would consist of depleted harzburgite from directly beneath the crust to about 30 km depth, fertile spinel lherzolite from about 30 km to 50–60 km, and fertile garnet lherzolite from about 50–60 km to the top of the deep partial melt zone at about 90 km.  相似文献   

5.
The lithosphere is interpreted as a thermal boundary layer. Approximate solutions of the boundary layer cooling problem are developed which include mantle radioactivity, partial melt in the asthenosphere, a temperature gradient in the asthenosphere, and a non-zero lithospheric thickness at the ridge crests. The cooling history of oceanic lithosphere is found to be remarkably insensitive to assumptions about the amount of radioactivity in the upper mantle and the extent of melting in the asthenosphere. Determinations of the thickness of oceanic lithosphere and the depths of oceans as a function of age are in excellent agreement with boundary layer predictions which include a heat flux from the asthenosphere. However, the determinations do not resolve how much of the total asthenospheric heat flux might be caused by a temperature gradient in the asthenosphere. Simple thermal arguments indicate that the initial lithospheric thickness, L0, at ridge crests should depend on the local half-spreading rate, V, as L0 = 3 km/V(cm/year).  相似文献   

6.
Up to now, tests of thermal models of the oceanic lithosphere as it cools and moves away from the ridge crest have been based mainly on topography and heat flow data. However, large areas of the ocean floor deviate from the normal subsidence due to thermal contraction and heat flow data are not very sensitive to the form of the model.

Cooling of the lithosphere causes a short-wavelength step in the geoid across fracture zones that can also be used to constrain thermal models. We have analyzed geoid data at fracture zones from the SEASAT altimeter measurements in the entire Pacific Ocean and redetermined parameters of the cooling models. We find that the data reveal two distinct regimes of cooling; one for seafloor ages in the range 0–30 Ma, the other beyond 30 Ma; this does not appear to be correlated with particular fracture zones but rather it is representative of the whole area studied, i.e., the entire south Pacific and northeast Pacific Ocean. These two trends may be interpreted in terms of two different (asymptotic) thermal thicknesses of the plate model. The smaller thermal thickness ( 65 km) found for ages <30 Ma—compared to 90 km in the age range 30–50 Ma—calls for some kind of thermal perturbation in the vicinity of the ridge crest.

From the results obtained in this study, we conclude that the half-space cooling model is unable to explain the data, that beyond 30 Ma, a simple plate model gives a satisfactory fit to the data but in the younger plate portion (ages < 30 Ma) the cooling history of the oceanic lithosphere is much more complex than predicted by the usual cooling models. Furthermore, the depth-age relationship obtained from the geoid-derived thermal parameters departs significantly beyond 30 Ma from the widely used Parsons and Sclater's depth-age curve, predicting a lesser subsidence.  相似文献   


7.
Recent advances in the measurement and interpretation of geoid height anomalies provide a new way to estimate the thickness of the oceanic lithosphere as a function of crustal age. GEOS-III satellite altimetry measurements show abrupt changes in sea level across fracture zones which separate areas of lithosphere with different ages. These changes have the correct location, amplitude, and wavelength to be caused by the combined gravitational attraction of the relief across the fracture zone and the isostatic support of this relief. Eight profiles of geoid height and bathymetry across the Mendocino fracture zone are inverted to determine the depth of the isostatic compensation, assuming that the compensation occurs in a single layer. These depths are then interpreted with a thermal boundary layer model of lithospheric growth. To explain satisfactorily the geoid measurements, the thermal diffusivity of the upper mantle must be 3.3 × 10?3 cm2 s?1 and the thickness of the lithosphere, defined as the depth at which the geotherm reaches 95% of its maximum value, must be9.1km m.y.?1/2 × t1/2, where t is lithospheric age.  相似文献   

8.
The basaltic ocean crust, metasomatized and metamorphosed during and after generation at the ocean ridge, contains H2O stored in minerals and pore fluid. Phase equilibrium data establish the conditions for dehydration, and the conditions for melting of amphibole-gabbro or amphibole-quartz-eclogite, or for quartz-eclogite or mantle peridotite if aqueous fluids are available. But there is no concensus about the temperature distribution through the subducted crust, or within the overlying mantle wedge. Therefore, a variety of magmatic models can be derived from the experimental data. According to some calculations, endothermic dehydration reactions in the depth interval 75–125 km cool the oceanic crust to such an extent that it cannot be a major source of magmas; instead, concentrated aqueous fluids released from the crust generate magmas in the overlying peridotite. However, according to most existing thermal models, if temperatures in ocean crust are cool enough to prohibit melting of amphibolite, then temperatures in the mantle above the main sources of expelled fluids are too low for hydrous melting. The ocean crust appears to be effectively dehydrated by 100–125 km depth. Dense hydrous magnesian silicates are not likely candidates for deeper H2O transport. The extent to which H2O can be fixed in metasomatic phlogopite in crust or mantle is a significant but undetermined factor. Experimental data on minerals and liquid compositions do not support the concept of primary magmas for andesites and associated lavas from mantle or subducted crust. Complex, multi-stage processes appear to be more likely, which is consistent with recent interpretations of geochemical data.  相似文献   

9.
Ocean Drilling Program (ODP) Hole 504B near the Costa Rica Rift is the deepest hole drilled in the ocean crust, penetrating a volcanic section, a transition zone and a sheeted dike complex. The distribution of Li and its isotopes through this 1.8-km section of oceanic crust reflects the varying conditions of seawater alteration with depth. The upper volcanic rocks, altered at low temperatures, are enriched in Li (5.6-27.3 ppm) and have heavier isotopic compositions (δ7Li=6.6-20.8‰) relative to fresh mid-ocean ridge basalt (MORB) due to uptake of seawater Li into alteration clays. The Li content and isotopic compositions of the deeper volcanic rocks are similar to MORB, reflecting restricted seawater circulation in this section. The transition zone is a region of mixing of seawater with upwelling hydrothermal fluids and sulfide mineralization. Li enrichment in this zone is accompanied by relatively light isotopic compositions (−0.8-2.1‰) which signify influence of basalt-derived Li during mineralization and alteration. Li decreases with depth to 0.6 ppm in the sheeted dike complex as a result of increasing hydrothermal extraction in the high-temperature reaction zone. Rocks in the dike complex have variable isotopic values that range from −1.7 to 7.9‰, depending on the extent of hydrothermal recrystallization and off-axis low-temperature alteration. Hydrothermally altered rocks are isotopically light because 6Li is preferentially retained in greenschist and amphibolite facies minerals. The δ7Li values of the highly altered rocks of the dike complex are complementary to those of high-temperature mid-ocean ridge vent fluids and compatible to equilibrium control by the alteration mineral assemblage. The inventory of Li in basement rocks permits a reevaluation of the role of oceanic crust in the budget of Li in the ocean. On balance, the upper 1.8 km of oceanic crusts remains a sink for oceanic Li. The observations at 504B and an estimated flux from the underlying 0.5 km of gabbro suggest that the global hydrothermal flux is at most 8×109 mol/yr, compatible with geophysical thermal models. This work defines the distribution of Li and its isotopes in the upper ocean crust and provides a basis to interpret the contribution of subducted lithosphere to arc magmas and cycling of crustal material in the deep mantle.  相似文献   

10.
Continental mantle heat flow values are obtained by subtracting the radiogenic heat produced in the lower crust and lithosphere beneath the crust from reduced heat flow values reported for various heat flow provinces. The significance of continental mantle heat flow values thus obtained is that they can be considered essentially as representing the residual heat of cooling of the continental lithosphere. A plot of these mantle heat flow values against 1/t where t is the geologic age of the last thermal event suggests a linear trend. It is also found that the recently proposed relationQ=500 (1/t) for the variation of oceanic heat flowQ (in mW/M2) with aget (in million years) provides a reasonably good fit to the mantle heat flow data. The constant thickness plate model however, is found to be unsatisfactory in explaining the variation of continental mantle heat flow with age.  相似文献   

11.
洋中脊速度结构是揭示大洋岩石圈演化过程的重要约束.为探讨不同扩张速率下洋中脊的洋壳速度结构特征,挑选了全球152处快速(全扩张速率 90mm·a-1)、慢速(全扩张速率20~50mm·a-1)和超慢速(全扩张速率20mm·a-1)扩张洋中脊和非洋中脊的洋壳1-D地震波速度结构剖面,通过筛选统计、求取平均值等方法对分类的洋壳1-D速度结构进行对比研究,获得了不同扩张速率下洋中脊洋壳速度结构差异以及洋中脊与非洋中脊洋壳速度结构差异的新认识:(1)快速、慢速和超慢速扩张洋中脊的平均正常洋壳厚度分别为6.4km、7.2km和5.3km,其中洋壳层2的厚度基本相似,洋壳厚度差异主要源自洋壳层3;其洋壳厚度变化范围分别为4.9~8.1km、4.6~8.7km和4.2~10.2km,随着洋中脊扩张速率减小,洋壳厚度的变化范围逐渐增大;(2)快速扩张洋中脊的洋壳速度大于慢速和超慢速,可能与快速扩张脊洋壳生成过程中深部高密度岩浆上涌比较充足有关;(3)非洋中脊(10Ma)的洋壳比洋中脊(10Ma)的洋壳厚~0.3km,表明洋壳厚度与洋壳年龄有一定的正相关性.  相似文献   

12.
基于南海北部大陆边缘珠江口—琼东南盆地深水区实施的14条近垂直深反射地震探测叠加速度谱,利用Dix公式将叠加速度剖面转换为地壳层速度剖面,并利用时深转换方法构建了深度域地壳层速度模型,综合各地壳速度剖面分析了南海北部大陆边缘珠江口与琼东南盆地不同深度层次的P波速度变化趋势以及地壳几何分层特征.结果表明,琼东南盆地区可分为4~8 km沉积层(VP为1.7~4.7 km/s)、4~10 km厚的上地壳层(VP为5.2~6.3 km/s)、5 km〗左右的下地壳层(VP为6.4~7.0 km/s)以及2~6 km厚的高速下地壳底层(VP>7.0 km/s).VP>7.0 km/s下地壳高速层的存在被认为是岩石圈伸展、下地壳底部底辟构造或者是残存的原始华夏下地壳基性层的地震学指示;综合研究区地球物理探测成果构建了跨越华南大陆与南海北部陆坡区剖面莫霍和岩石圈底界图像,揭示出岩石圈上地幔在华南大陆与南海北部大陆边缘的减薄特征.  相似文献   

13.
The cooling history and therefore thermal structure of oceanic lithosphere in slow-spreading environments is, to date, poorly constrained. Application of thermochronometric techniques to rocks from the very slow spreading SW Indian Ridge provide for the first time a direct measure of the age and thermal history of in situ lower oceanic crust. Crystallization of felsic veins (∼850°C) drilled in Hole 735B is estimated at 11.93±0.14 Ma, based on U-Pb analyses of zircon by ion probe. This crystallization age is older than the ‘crustal age’ from remanence inferred from both sea surface and near-bottom magnetic anomaly data gathered over Hole 735B which indicate magnetization between major normal polarity chrons C5n.2n and C5An.1n (10.949-11.935 Ma). 40Ar/39Ar analyses of biotite give plateau ages between 11 and 12 Ma (mean 11.42±0.21 Ma), implying cooling rates of >800°C/m.y. over the first 500,00 years to temperatures below ∼330-400°C. Fission-track ages on zircon (mean 9.35±1.2 Ma) and apatite reveal less rapid cooling to <110°C by ∼7 Ma, some 4-5 m.y. off axis.Comprehensive thermochronometric data from the structurally intact block of gabbro between ∼700 and 1100 m below sea floor suggest that crust traversed by ODP Hole 735B mimics conductive cooling over the temperature range ∼900-330°C, characteristic of a 2-D plate-cooling model for oceanic lithosphere. In contrast, lower temperature chronometers (fission track on zircon, titanite, and apatite; T≤280°C) are not consistent with these predictions and record anomalously high temperatures for crust >700 m below sea floor at 8-10 Ma (i.e. 2-4 m.y. off axis). We offer two hypotheses for this thermal anomaly:
(i)
Off-axis (or asymmetric) magmatism that caused anomalous reheating of the crust preserved in Hole 735B. This postulated magmatic event might be a consequence of the transtension, which affected the Atlantis II transform from ∼19.5 to 7.5 Ma.
(ii)
Late detachment faulting, which led to significant crustal denudation (2.5-3 km removed), further from the ridge axis than conventionally thought.
  相似文献   

14.
Seasat altimetry profiles across the Falkland-Agulhas fracture zone (FZ) and the Ascension FZ in the South Atlantic were examined for evidence of step-like geoid offsets predicted from thermal modeling of the lithosphere. The geoid profiles exhibit much short-wavelength power and the step-like offsets are often small, making reliable estimation of the heights of the observed geoid offsets difficult. The offsets were estimated by the least-squares fitting of quadratic curves incorporating a step function to the altimetry profiles. A preferred offset value was determined for each profile by taking the average of step heights computed with various distances around the fracture zone excluded from the fit. The age of the crust surrounding the fracture zones, necessary for computing a theoretical geoid offset, was determined from surface ship magnetic anomaly data and from existing ocean floor age maps.Observed variations in geoid step height with age of the lithosphere are not consistent with those predicted from standard thermal plate models. For ages less than 30 Ma, the step offsets across both fracture zones decrease in a manner appropriate for an unusually thin plate with a thickness of 50–75 km. At greater ages, the offsets show complex behavior that may be due to bathymetric features adjacent to the fracture zones. Similar geoid patterns on opposite branches of the Falkland-Agulhas FZ are indicative of processes that act symmetrically on both sides of the Mid-Atlantic Ridge. This behavior of the geoid is consistent both with small-scale convection occurring beneath the lithosphere and with bathymetric features originally produced along the ridge crest and now located symmetrically on opposite sides of the ridge. The west flank of the Ascension FZ displays a regrowth in step height at about 40 Ma consistent with small-scale convection and in agreement with other studies of Pacific and South Atlantic fracture zones.  相似文献   

15.
16.
Fluxes of fluid and heat from the oceanic crustal reservoir   总被引:1,自引:0,他引:1  
Recent discoveries define a global scale fluid reservoir residing within the uppermost igneous oceanic crust, a region of seafloor that is both warm and may harbor a substantial biosphere. This hydrothermal fluid reservoir formed initially within volcanic rocks newly erupted at mid-ocean ridges, but extends to the vastly larger and older ridge flanks. Upper oceanic crust is porous and permeable due to the presence of lava drainbacks, fissuring, and inter-unit voids, and this porosity and permeability allows active fluid circulation to advect measurable quantities of lithospheric heat from the crust to an average age of 65 Myr. A compilation of crustal porosities shows that this fluid reservoir contains nearly 2% of the total volume of global seawater. Heat flow and sediment thickness data allow calculation of reservoir temperatures, predicting 40°C mean temperatures in Cretaceous crust. Utilizing these temperature estimates, heat flow measurements and models for the thermal structure and evolution of the oceanic lithosphere, we have computed mean hydrothermal fluxes into the deep ocean as a function of plate age. The total hydrothermal volume flux into the oceans approaches 20% of the total riverine input and may contribute to the global seawater mass balance.  相似文献   

17.
—More than 60 events recorded by four recently deployed seismic broadband stations around Scotia Sea, Antarctica, have been collected and processed to obtain a general overview of the crust and upper mantle seismic velocities.¶Group velocity of the fundamental mode of Rayleigh waves in the period between 10 s to 30–40 s is used to obtain the S-wave velocity versus depth along ten different paths crossing the Scotia Sea region. Data recorded by two IRIS (Incorporated Research Institutions for Seismology) stations (PMSA, EFI) and the two stations of the OGS-IAA (Osservatorio Geofisico Sperimentale—Instituto Antarctico Argentino) network (ESPZ, USHU) are used.¶The Frequency-Time Analysis (FTAN) technique is applied to the data set to measure the dispersion properties. A nonlinear inversion procedure, "Hedgehog," is performed to retrieve the S-wave velocity models consistent with the dispersion data.¶The average Moho depth variation on a section North to South is consistent with the topography, geological observations and Scotia Sea tectonic models.¶North Scotia Ridge and South Scotia Ridge models are characterised by similar S-wave velocities ranging between 2.0 km/s at the surface to 3.2 km/s to depths of 8 km/s. In the lower crust the S-wave velocity increases slowly to reach a value of 3.8 km/s. The average Moho depth is estimated between 17 km to 20 km and 16 km to 19 km, respectively, for the North Scotia Ridge and South Scotia Ridge, while the Scotia Sea, bounded by the two ridges, has a faster and thinner crust, with an average Moho depth between 9 km and 12 km.¶On other paths crossing from east to west the southern part of the Scotia plate and the Antarctic plate south of South Scotia Ridge, we observe an average Moho depth between 14 km and 18 km and a very fast upper crust, compared to that of the ridge. The S-wave velocity ranges between 3.0 and 3.6 km/s in the thin (9–13 km) and fast crust of the Drake Passage channel. In contrast the models for the tip of the Antarctic Peninsula consist of two layers with a large velocity gradient (2.3–3.0 km/s) in the upper crust (6-km thick) and a small velocity gradient (3.0–4.0) in the lower crust (14-km thick).  相似文献   

18.
The straight-line relationship between depth and the square root of age predicted by recent variations of the thermal contraction model for ocean rise elevation is confirmed to an age of 80 m.y.We then examine this relationship in the immediate vicinity of the rise crest in an attempt to determine the sensitivity of the slopes thus obtained. Depth versus t1/2 profiles from a variety of rise types ranging from the topographically smooth, fast-spreading Pacific-Antarctic rise to the rough, slow-spreading Mid-Atlantic rise are discussed, ages having been assigned using a finite rotation pole. Because of the variety of superimposed anomalous features concentrated within a limited and well-surveyed region, the Galapagos Spreading Center has provided a suitable arena for determining the precision with which the method can decompose such an agglomeration into distinctly recognizable components. Although topographic “noise” precludes precise quantification of the slopes, it is concluded that, by removing the first-order effect of thermal contraction, the method can be quite revealing when topography is examined in relation to other data. Slopes for several profiles across the Pacific-Antarctic and Pacific-Nazca rises reveal the pattern expected in the case of asymmetric spreading, a conclusion which has independently been derived from the magnetic anomalies. In the Galapagos region “jumps” of the spreading center, a basic compositional difference, and uplift from below are exposed by their predictable effect on the slopes obtained from the depth versus t1/2 plots.  相似文献   

19.
Results from 12 new two-ship seismic refraction profiles in the Philippine Sea detail regions of crustal thickness significantly less than average for the Pacific. A comparison of layer 3 and mantle intercept times shows that layer 3 in the West Philippine basin is 1–2 km thinner than for similarly aged crust in the Pacific. In the Parece Vela basin layer 3 is on average 0.5 km thinner than its Pacific counterpart but varies considerably across the basin. Layer 2 parameters are also quite variable between profiles but its thicknesses are in the mean 0.5–1.0 km less in the West Philippine basin than for either the Parece Vela basin or for any of the 7 Pacific age groups. In the northeastern sector of the West Philippine basin layer 2 and 3 are both particularly thin which results in a total crustal thickness of as little as 3–4 km.Pacific and Philippine depth versus age data from DSDP holes are corrected for these variations in crustal thicknesses. The resultant compensated mantle depths can only be fitted by theoretical conductive cooling curves which are depressed for the Philippine basins by an additional 1 km from those that would match Pacific depths. Given such an offset, Philippine Sea depth and heat flow values are consistent with thermal models in which the lithosphere may remain thinner than it is in the Pacific, but still must reach a minimum thickness of at least 50–75 km.  相似文献   

20.
We present a 3D model of shear velocity of crust and upper mantle in China and surrounding regions from surface wave tomography.We combine dispersion measurements from ambient noise correlation and traditional earthquake data.The stations include the China National Seismic Network,global networks,and all the available PASSCAL stations in the region over the years.The combined data sets provide excellent data coverage of the region for surface wave measurements from 8 to 120 s,which are used to invert for 3D shear wave velocity structure of the crust and upper mantle down to about150 km.We also derive new models of the study region for crustal thickness and averaged S velocities for upper,mid,and lower crust and the uppermost mantle.The models provide a fundamental data set for understanding continental dynamics and evolution.The tomography results reveal significant features of crust and upper mantle structure,including major basins,Moho depth variation,mantle velocity contrast between eastern and western North China Craton,widespread low-velocity zone in midcrust in much of the Tibetan Plateau,and clear velocity contrasts of the mantle lithosphere between north and southern Tibet with significant E–W variations.The low velocity structure in the upper mantle under north and eastern TP correlates with surface geological boundaries.A patch of high velocity anomaly is found under the eastern part of the TP,which may indicate intact mantle lithosphere.Mantle lithosphere shows striking systematic change from the western to eastern North China Craton.The Tanlu Fault appears to be a major lithosphere boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号