首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper develops a tectono‐stratigraphic model for the evolution and drowning of Early Jurassic carbonate platforms. The model arises from outcrop analysis and Sr isotope dating of successions exposed in the Betic Cordillera in southeastern Spain. Here, an extensive Early Jurassic (Sinemurian) carbonate platform developed on the rifted Tethyan margin of the Iberian Plate. The platform was dissected by extensional faults in early jamesoni times (ca. 191 Ma) and again in late ibex times (ca.188 Ma) during the Pliensbachian stage. Extensional faults and fault block rotation are shown to control the formation of three sequence boundaries that divide the platform stratigraphy (the Gavilan Formation) into three depositional sequences. The last sequence boundary marks localised drowning of the platform and deposition of the deeper water Zegri Formation, whereas adjacent platforms remain exposed or continue as the site of shallow‐marine sediment accumulation. This study is based on mapping, facies analysis and dating of platform carbonates exposed in three tectonic units within the zone: Gabar, Ponce and Canteras. Facies analysis leads to the recognition of facies associations deposited in carbonate ramp environments and adjacent to synsedimentary, marine, fault scarps. Sr isotope dating enables us to correlate platform‐top carbonates from the different tectonic units at a precision equivalent to ammonite zones. A sequence stratigraphic analysis of sections from the three tectonic units is carried out using the facies models together with the Sr isotope dates. This analysis indicates a clear tectonic control on the development of the stratigraphy: depositional sequences vary in thickness, have wedge‐shaped geometries and vary in facies, internal geometries and systems tracts from one tectonic unit to another. Criteria characterising depositional sequences and sequence boundaries from the Gabar and Ponce units are used to establish a tectono‐stratigraphic model for carbonate platform depositional sequences and sequence boundaries in maritime rifts, which can be applied to other less well‐exposed or subsurface successions from other sedimentary basins. Onlapping transgressive and progradational highstand systems tracts are recognised on dip slope ramps. Falling stage and lowstand systems tracts are developed as thick breccia units in hangingwall areas adjacent to extensional faults. Sequence boundaries vary in character, amplitude and/or duration of sea‐level fall and persistence across the area. Some boundaries coalesce onto the Canteras unit, which remained as a relatively positive area throughout the early Pliensbachian (Carixian). The carbonate platform on the Ponce tectonic unit drowned in the latest Carixian (davoei biozone). However, the adjacent tectonic units remained emergent and developed a long‐lived sequence boundary, indicating tectonic subsidence as the major cause for platform drowning. The stratigraphic evolution of this area on the rifted southern Iberian margin indicates that a widespread restricted shallow‐water carbonate platform environment accumulating peritidal carbonates evolved with faulting to a more open‐marine setting. Sr dating indicates that this transition took place around the Sinemurian–Pliesbachian boundary and it was driven by local fault‐related subsidence together with likely post‐faulting regional subsidence.  相似文献   

2.
The present work investigates a mountain front within the Plio-Quaternary deposits belonging to the sedimentary fill of the Guadix-Baza Basin (Betic Cordillera, Southern Spain). This 30 km-long front, developed in soft sediments and within a context of high erosion, is generated by the recent activity of the Baza Normal Fault. The mountain front is the natural limit between the western and eastern sectors, corresponding to the two sub-basins of Guadix and Baza. The two main glacis described in previous works in the area of the Baza Fault – the Old Glacis in the Guadix Sub-basin and the Recent Glacis in the Baza Sub-basin – are interpreted here as a single one, displaced by the fault. Using this Glacis as a marker we deduced that its age and the transition of the basin from endorheic to exorheic must be much older than previous estimations. The Baza Fault may be considered as one of the most active faults of the central part of the Betic Cordillera, according to the results of the general quantitative analysis of the mountain front relief using the Smf/Vf ratio and the SL index.  相似文献   

3.
Active deformation structures have an incidence in topography that can be quantified by using geomorphic indices. Most of these indices have been checked in faulted regions with high-deformation rates. The application of several geomorphic indices (hypsometric curve analysis, normalized stream-length gradient, and valley width-to-valley height ratio) to the drainage network of the southern limb of the Sierra de Las Estancias antiform (Internal Zones, eastern Betic Cordillera), where low-rate active folding has been recognized, allows us to investigate the suitability of these indices to identify active structures in such a scenario. Hypsometric curves clearly identify regions with recent uplift and young topography, but they do not provide any constraint on the location of active folds. Local valley width-to-valley height index variations have been detected just coinciding whit the position of ENE–WSW active folds. Normalized stream-length gradient index serves to locate active folds in areas of hard rock substratum, but not in those areas with soft sediments (Neogene-Quaternary sedimentary basins). This is most likely due to the fact that in the basins erosion is much more intense than in the hard rock sectors. In view of these results, we consider that geomorphic indices constitute a valuable tool for identifying sectors affected by low-rate uplift related to active folding, with the best results obtained in hard rock areas.  相似文献   

4.
The Betic Cordillera (Southern Spain) acquired its present configuration during the Neogene. The formation, evolution and total or partial destruction of Neogene sedimentary basins were highly controlled by the geodynamic situations and the positions of the basins in the Betic Cordillera. It is impossible to reconstruct the geometry of basins formed during the Early and Middle Miocene, concurrently with the westward drift of the Internal Zones, because in many cases only small outcrops remain. The basins formed on the mobile substratum (the Internal Zones) are characterized by a sedimentary infill made up of synorogenic deposits, which were intensely deformed towards the end of the Middle Miocene, and which were heavily eroded before the beginning of the Late Miocene. In the External Zones, deposition mainly took place in the North Betic Strait, an area across which there was wide communication between the Atlantic and the Mediterranean, which received huge olistostromic masses in its more mobile sector (the foredeep basin), and which evolved differently in its eastern and western sectors. The palaeogeography of the Cordillera changed radically at the beginning of the Late Miocene, when the westward drift of the Internal Zones ceased. During this time the North Betic Strait disappeared and, in what had been its northwestern half approximately, the Guadalquivir Basin became individualized. This basin, which was located between the Betic Chain and the emerged Hercynian Massif, acquired a structure similar to that of the present basin and its extension was also similar to that of the present Neogene outcrops. Intramontane basins became individualized in the recently formed and progressively emerged mountain chain, reaching a development and size in this Cordillera much greater than in other Alpine chains. These basins are characterized by their thick infills, which are unconformable on the folded and deformed substratum, and which can be subdivided according to the different movements of the fault sets that controlled their evolution.  相似文献   

5.
The Serra Gelada sea cliffs are carved in Mesozoic carbonate rocks belonging to the External Zones of the eastern Betic Cordillera (Alicante, SE Spain). Several normal faults with vertical slips of more than a hundred metres have played an important role in the origin of this coastline. Some previous studies propose that the present cliff morphology was mainly originated by Quaternary fault activity. However, the integration of geomorphological features, stratigraphical and sedimentological data, together with the results of the tectonic analysis of fractures occurring in Serra Gelada, and a detailed study of seismic reflection profiles carried out in the adjacent continental shelf, indicate that these normal faults were active mainly during the late Miocene. Therefore, the Serra Gelada sea cliffs represent a tectonically controlled long-term landscape. Thus, normal faults have not significantly modified the Serra Gelada relief since then. Furthermore, the northern part of the Serra Gelada cliff may be considered as an inherited pre-Quaternary relict palaeocliff since it has only undergone very little erosive recession.  相似文献   

6.
The propagation of the deformation front in foreland systems is typically accompanied by the incorporation of parts of the basin into wedge‐top piggy‐back basins, this process is likely producing considerable changes to sedimentation rates (SR). Here we investigate the spatial‐temporal evolution of SR for the Tremp–Jaca Basin in the Southern Pyrenees during its evolution from a wedge‐top, foreredeep, forebulge configuration to a wedge‐top stage. SR were controlled by a series of tectonic structures that influenced subsidence distribution and modified the sediment dispersal patterns. We compare the decompacted SR calculated from 12 magnetostratigraphic sections located throughout the Tremp–Jaca Basin represent the full range of depositional environment and times. While the derived long‐term SR range between 9.0 and 84.5 cm/kyr, compiled data at the scale of magnetozones (0.1–2.5 Myr) yield SR that range from 3.0 to 170 cm/kyr. From this analysis, three main types of depocenter are recognized: a regional depocenter in the foredeep depozone; depocenters related to both regional subsidence and salt tectonics in the wedge‐top depozone; and a depocenter related to clastic shelf building showing transgressive and regressive trends with graded and non‐graded episodes. From the evolution of SR we distinguish two stages. The Lutetian Stage (from 49.1–41.2 Ma) portrays a compartmentalized basin characterized by variable SR in dominantly underfilled accommodation areas. The markedly different advance of the deformation front between the Central and Western Pyrenees resulted in a complex distribution of the foreland depozones during this stage. The Bartonian–Priabonian Stage (41.2–36.9 Ma) represents the integration of the whole basin into the wedge‐top, showing a generalized reduction of SR in a mostly overfilled relatively uniform basin. The stacking of basement units in the hinterland during the whole period produced unusually high SR in the wedge‐top depozone.  相似文献   

7.
A magnetostratigraphy‐based chronological framework has been constructed in the Eocene sediments of the Montserrat alluvial fan/fan‐delta complex (southeast Ebro Basin), in order to unravel forcing controls on their sequential arrangement and to revise the tectonosedimentary history of the region. The palaeomagnetic study is based on 403 sites distributed along an 1880‐m‐thick composite section, and provides improved temporal constraints based on an independent correlation to the geomagnetic polarity time scale. The new chronological framework together with sequence stratigraphy and geohistory analysis allow us to investigate the interplay between factors controlling the sequential arrangement of the Montserrat complex at the different temporal scales and to test for orbitally driven climate forcing. The results suggest that the internal stacking pattern in transgressive and regressive sequences sets within the more than 1000‐m‐thick Milany Composite Megasequence can be explained as the result of subsidence‐driven accommodation changes under a general increase of sediment supply. Composite sequences (tens to hundreds of metres thick) likely reflect orbitally forced cyclicity related to the 400‐kyr eccentricity cycle, possibly controlled by climatically induced sea‐level fluctuations. This study also provides new insights on the deformational history of the area, and shows a correlation between (tectonic) subsidence and forelimb rotation measured on basin‐margin deformed strata. Integration of subsidence curves from different sectors of the eastern Ebro Basin allows us to estimate the variable contribution of tectonic loads from the two active basin margins: the Catalan Coastal Ranges and the Pyrenees. The results support the presence of a double flexure from Late Lutetian to Late Bartonian, associated with the two tectonically active margins. From Late Bartonian to Early Priabonian the homogenization of subsidence values is interpreted as the result of the coupling of the two sources of tectonic load.  相似文献   

8.
Dove Basin, a small oceanic domain located within the southern Scotia Sea, evidences a complex tectonic evolution linked to the development of the Scotia Arc. The basin also straddles the junction between the main Southern Ocean water masses: the Antarctic Circumpolar Current (ACC), the Southeast Pacific Deep Water (SPDW) and the Weddell Sea Deep Water (WSDW). Analysis of multichannel seismic reflection profiles, together with swath bathymetry data, reveals the main structure and sediment distribution of the basin, allowing a reconstruction of the tectonostratigraphic evolution of the basin and assessment of the main bottom water flows that influenced its depositional development. Sediment dispersed in the basin was largely influenced by gravity‐driven transport from adjacent continental margins, later modified by deep bottom currents. Sediments derived from melting icebergs and extensive ice sheets also contributed to a fraction of the basin deposits. We identify four stages in the basin evolution which – based on regional age assumptions – took place during the early Miocene, middle Miocene, late Miocene–early Pliocene and late Pliocene–Quaternary. The onsets of the ACC flow in Dove Basin during the early Miocene, the WSDW flow during the middle Miocene, and the SPDW during the late Miocene were influenced by tectonic events that facilitated the opening of new oceanic gateways in the region. The analysis of Dove Basin reveals that tectonics is a primary factor influencing its sedimentary stacking patterns, the structural development of new oceanic gateways permitting the inception of deep‐water flows that have since controlled the sedimentary processes.  相似文献   

9.
Multiple episodes of extensional tectonism dominated the formation of Mesozoic fault-bounded basins on the Grand Banks of Newfoundland, the Irish Continental Shelf and the central North Sea. A range of structural and stratigraphic responses in the Jeanne d'Arc, Porcupine and Moray Firth basins support widespread synchronous tectonic controls on sedimentation during one of these episodes, the Late Cimmerian. Rifting was preceded by a phase of related tectonism during which subsidence rates began to vary across broad areas but without significant fault block rotation. This Late Cimmerian ‘onset warp’ pattern of subsidence is considered to have been essential in the establishment of restricted anoxic basins from latest Oxfordian through Kimmeridgian (sensu gallico) time and the development of one prolific layer of organic-rich source rocks. The most prominent and widely recognized structural/lithostratigraphic response to Late Cimmerian rifting was the deposition of sediment wedges. Tithonian to early Valanginian strata generally thicken- into northerly trending faults in the Jeanne d'Arc and Porcupine basins, indicating that extensional stress was orientated WNW-ESE across a very broad area. The misalignment of this regional Late Cimmerian extensional stress with local inherited structural fabric may be responsible for transpressional uplift of individual fault blocks in the Outer Moray Firth basin. Sedimentological responses to Late Cimmerian rifting were varied, though a common lithofacies stacking pattern is recognized. Variably thick conglomerates and/or sandstones were widely deposited at the start of rift deformation, while palaeoenvironments ranged from alluvial and braid plain to submarine fan even within individual basins. The relatively coarse basal sediments fine upwards into a second layer of commonly organic-rich shales and mark The widest variations in palaeoenvironments and sediment thicknesses occurred during the last phase of Late Cimmerian rift tectonism, though all three basins show evidence of decreasing water depths, increasing oxygen levels and increasing grain size. This lithofacies stacking pattern of relatively coarse to fine to coarse (reservoir/source/reservoir) and the development of bounding unconformities are largely attributable to progressive changes in rift-controlled subsidence. Rift basin subsidence rates are interpreted to increase from a low at initiation of faulting to a mid-rift peak, followed by slowing subsidence to the end of extension. A number of counteracting crustal mechanisms that may account for progressive variations in rift-induced subsidence are considered.  相似文献   

10.
Fission track thermogeochronology using detrital apatite and zircon from a synorogenic foreland basin on the northern margin of the Betic Cordillera Internal Zone is used to reconstruct the cooling and unroofing history of the sediment source areas in the Oligo-Miocene mountain belt. Previously, a heavy mineral study on the same sedimentary rocks showed that progressively deeper tectonometamorphic units were being unroofed during the latest Oligocene to middle Miocene at a minimum rate of 3  km Myr−1. The fission track data have further constrained the exhumation history showing that the structurally highest (i.e. shallowest) parts of the mountain belt (Malaguide Complex) cooled relatively slowly during the latest Oligocene–Aquitanian, while the deeper metamorphic units (Alpujarride Complex) cooled at much higher rates (up to 300 °C Myr−1) during the Burdigalian–Langhian. These fast cooling rates from synorogenic detritus are consistent with cooling rates calculated previously for the deeper parts of the early Miocene orogenic belt, using 39Ar–40Ar dating of muscovite, biotite and amphibole from basement metamorphic rocks. Rapid cooling in the early Miocene, which commenced at ≈21  Ma, is attributed to the change in process from erosional to tectonic denudation by orogen-scale extension within the eastern Betic Cordillera.

  相似文献   


11.
Fission track analyses of detrital components in the Permo-Triassic Karoo Basin (South Africa), highlight the potency of tectono-magmatically driven fluids to penetrate wide and far in foreland basins. The data, together with the data published on Karoo tectonics and magmatism, support a model which requires that fluids were driven north out of the Cape-Karoo orogen during the Cape Orogeny (270–200 Ma). Later fluids were redistributed and aquifers rejuvenated during (and after) the final break-up of Gondwana (<200 Ma). The fission track data indicate that thermal annealing of fission tracks in zircon occurs non-uniformly between individual zircon grains. This model is in agreement with recent models applied to deformed foreland basins and implicates tectonic fluids in U metallogenesis.  相似文献   

12.
The late Messinian mixed carbonate‐siliciclastic platforms of the Sorbas Basin, known as the Terminal Carbonate Complex, record significant changes in carbonate production and geometry. Their facies and stratigraphic architecture result from complex interactions between base‐level fluctuations, evaporite deformation/dissolution and detrital inputs. A 3D quantitative approach (with DIONISOS software) is used to explore the basin‐scale platform architecture and to quantify the carbonate production of the Terminal Carbonate Complex. The modelling strategy consists in integrating detailed 2D field‐based transects and modern carbonate system parameters (e.g. carbonate production rates, bathymetric and hydrodynamic ranges of production). This approach limits user impact and so provides more objective output results. Tests are carried out on carbonate production rates, subsidence and evaporite deformation/dissolution. Numerical modelling provides accurate predictions of geometries, facies distributions and depositional sequence thicknesses, validated by field data. Comparative statistical testing of the field transects and of the various model outputs are used to discern the relative contribution of the parameters tested to the evolution of basin filling. The 3D visualization and quantification of the main carbonate producers (ooids and microbialites) are discussed in terms of changes in base‐level and detrital supply. This study demonstrates that base‐level fluctuations have the greatest impact on the carbonate budget. Evaporite deformation/dissolution affects the type and amount of carbonate production, inducing a transition from an ooid‐ to microbialite‐dominated system and also has a major effect on stratigraphic architecture by inducing the migration of depocentres. The numerical modelling results obtained using modern carbonate system parameters could also be applied to subsurface ooid‐microbialite reservoirs, and the Terminal Carbonate Complex is a good analogue for such systems.  相似文献   

13.
Abstract The Pitaiito Basin is an intramontane basin (15 × 20 km2) situated at the junction of the Central and Eastern Cordillera in the southern part of the Colombian Andes. Tectonic structures, evolution of the basin and distribution of the sediments suggest that the basin was formed adjacent to an active dextral strike-slip fault. Based on sedimentation rates it is estimated that subsidence started around 4.5 Ma. The basin can be divided into a relatively shallow western part (c. 300 m deep) and a deep eastern part (c. 1200 m deep). The transition between both areas is sharp and is delineated by a NW/SE-oriented fault. The position of this fault is reflected by the areal distribution of the deep non-exposed sediments as well as sediments at the surface: west of this fault the basin infill consists of coarse to medium elastics (conglomerates and sand) whereas in the eastern part fine elastics (clay and peat) are present. The lateral transition between both types of sediment is abrupt and its position is stable in time. The surface and near surface sediments in the Pitalito Basin reflect the last stage of sedimentary infill which came to a halt between 17,000 and 7500 years bp . These sediments were deposited by an eastward prograding fluvial system. The western upstream part of this system differs significantly from that of the eastern part which forms the downstream continuation. The western part exhibits unstable, shallow fluvial channels that wandered freely over the surface which predominantly consists of clayey overbank sediments. The alluvial architecture in the eastern half is characterized by stable channels and thick accumulations of organic-rich flood basin sediments and resembles an anastomosing river. The transition between both alluvial systems also coincides with the N/S-oriented normal fault. Palaeoclimatic conditions over the last c. 61,500 years were determined by means of a pollen record. From c. 61,500 to 20,000 years BP the mean annual temperature fluctuated considerably and decreased by 2–3oC during the relatively warm periods (interstadials) and by 6–8oC during the cold periods (stadials) in comparison with modern temperatures. These changes led to a displacement of the zonal vegetation belts from c. 200 m during the stadials to c. 1500 m in interstadial times without significant effects on the fluvial system present in the Pitaiito Basin until c. 20,000 years BP. Around this period the organic-rich eastern flood basins were choked with sediments and peat growth came to an end. Palynological and sedimentological data suggest that around that period the climate was cold (Δ 6–8oC) and very dry and that a sparse vegetation cover was present around the basin. In these semi-arid climatic conditions the river system changed from an anastomosing pattern to one with ephemeral stream characteristics. This may have lasted until at least 17,000 years BP. Somewhere between 17,000 and 7500 years BP the eastward-flowing infilling river system changed into a NW-flowing erosive river system due to climatic or tectonic control and the present state was reached.  相似文献   

14.
The Alhama de Murcia and Crevillente faults in the Betic Cordillera of southeast Spain form part of a network of prominent faults, bounding several of the late Tertiary and Quaternary intermontane basins. Current tectonic interpretations of these basins vary from late‐orogenic extensional structures to a pull‐apart origin associated with strike–slip movements along these prominent faults. A strike–slip origin of the basins, however, seems at variance both with recent structural studies of the underlying Betic basement and with the overall basin and fault geometry. We studied the structure and kinematics of the Alhama de Murcia and Crevillente faults as well as the internal structure of the late Miocene basin sediments, to elucidate possible relationships between the prominent faults and the adjacent basins. The structural data lead to the inevitable conclusion that the late Miocene basins developed as genuinely extensional basins, presumably associated with the thinning and exhumation of the underlying basement at that time. During the late Miocene, neither the Crevillente fault nor the Alhama de Murcia fault acted as strike–slip faults controlling basin development. Instead, parts of the Alhama de Murcia fault initiated as extensional normal faults, and reactivated as contraction faults during the latest Miocene–early Pliocene in response to continued African–European plate convergence. Both prominent faults presently act as reverse faults with a movement sense towards the southeast, which is clearly at variance with the commonly inferred dextral or sinistral strike–slip motions on these faults. We argue that the prominent faults form part of a larger scale zone of post‐Messinian shortening made up of SSE‐ and NNW‐directed reverse faults and NE to ENE‐trending folds including thrust‐related fault‐bend folds and fault‐propagation folds, transected and displaced by, respectively, WNW‐ and NNE‐trending, dextral and sinistral strike–slip (tear or transfer) faults.  相似文献   

15.
Exceptional 3‐D exposures of fault blocks forming a 5 km × 10 km clastic sediment‐starved, marine basin (Carboneras subbasin, southeast Spain) allow a test of the response of carbonate sequence stratigraphic architectures to climatic and tectonic forcing. Temperate and tropical climatic periods recorded in biofacies serve as a chronostratigraphic framework to reconstruct the status of the basin within three time‐slices (late Tortonian–early Messinian, late Messinian, Pliocene). Structural maps and isopach maps trace out the distribution of fault blocks, faults, and over time, their relative motions, propagational patterns and life times, which demonstrate a changing layout of the basin because of a rotation of the regional transtensional stress field. Progradation of early Messinian reefal systems was perpendicular to the master faults of the blocks, which were draped by condensed fore‐slope sediments. The hangingwall basins coincided with the toe‐of‐slope of the reef systems. The main phase of block faulting during the late Tortonian and earliest Messinian influenced the palaeogeography until the late Pliocene (cumulative throw < 150–240 m), whereas displacements along block bounding faults, which moved into the hangingwall, died out over time. An associated shift of the depocentres of calciturbidites, slump masses and fault scarp degradation breccias reflects 500–700 m of fault propagation into the hangingwall. The shallow‐water systems of the footwall areas were repeatedly subject to emergence and deep peripheral erosion, which imply slow net relative uplift of the footwall. In the dip‐slope settings, erosional truncations of tilted proximal deposits prevail, which indicate rotational relative uplift. Block movements were on the order of magnitude of third order sea‐level fluctuations during the late Tortonian and earliest Messinian. We suggest that this might be the reason for the common presence of offlapping geometries in early Messinian reef systems of the Betic Cordilleras. During the late Pliocene, uplift rates fell below third order rates of sea‐level variations. However, at this stage, the basin was uplifted too far to be inundated by the sea again. The evolution of the basin may serve as a model for many other extensional basins around the world.  相似文献   

16.
We present a chronological model of erosion surface development in the Iberian and Cantabrian Ranges of north-central Spain. We map four erosion surfaces and interpret these to be related to Duero basin continental sediments and tectonic activity from Upper Oligocene to Plio-Pleistocene. The oldest erosion surface, SE1, formed across Upper Oligocene–Lower Miocene synorogenic deposits; while surface SE2 was contemporaneous with the Middle Miocene alluvial systems, ending with an uplift stage in the Astaracian. The two most recent erosion surfaces, SE3 and SE4, developed during extensional tectonic episodes and are associated with the deposition of Upper Páramo sedimentary units at the end of the Miocene (Upper Turolian) and alluvial fan deposits, known as rañas (Plio-Pleistocene). With the exception of SE1, which seems to be associated with a relatively wet climate, the surfaces formed during periods of marked aridity and generally warm temperatures. Through geostatistical reconstruction of the best preserved surface (SE2), applying ordinary kriging method to the topography (DEM) of the erosion surface and its correlating sedimentary plains, we identify the deformation processes which occurred on this surface after its formation.  相似文献   

17.
This paper discusses the Cenozoic interaction of regional tectonics and climate changes. These processes were responsible for mass flux from mountain belts to depositional basins in the eastern Alpine retro‐foreland basin (Venetian–Friulian Basin). Our discussion is based on the depositional architecture and basin‐scale depositional rate curves obtained from the decompacted thicknesses of stratigraphic units. We compare these data with the timing of tectonic deformation in the surrounding mountain ranges and the chronology of both long‐term trends and short‐term high‐magnitude (‘aberrant’) episodes of climate change. Our results confirm that climate forcing (and especially aberrant episodes) impacted the depositional evolution of the basin, but that tectonics was the main factor driving sediment flux in the basin up to the Late Miocene. The depositional rate remained below 0.1 mm year?1 on average from the Eocene to the Miocene, peaking at around 0.36 mm year?1, during periods of maximum tectonic activity in the eastern Southern Alps. This dynamic strongly changed during the Pliocene–Pleistocene, when the basin‐scale depositional rate increased to an average of 0.26 mm year?1 (Pliocene) and 0.73 mm year?1 (Pleistocene). This result fits nicely with the long‐term global cooling trend recorded during this time interval. Nevertheless, we note that the timing of the observed increase may be connected with the presumed onset of major glaciations in the southern flank of the Alps (0.7–0.9 Ma), the acceleration of the global cooling trend (since 3–4 Ma) and climate variability (in terms of magnitude and frequency). All these factors suggest that combined high‐frequency and high‐magnitude cooling–warming cycles are particularly powerful in promoting erosion in mid‐latitude mountain belts and therefore in increasing the sediment flux in foreland basins.  相似文献   

18.
The intermontane Quebrada de Humahuaca Basin (Humahuaca Basin) in the Eastern Cordillera of the southern Central Andes of NW Argentina (23°–24°S) records the evolution of a formerly contiguous foreland‐basin setting to an intermontane depositional environment during the late stages of Cenozoic Andean mountain building. This basin has been and continues to be subject to shortening and surface uplift, which has resulted in the establishment of an orographic barrier for easterly sourced moisture‐bearing winds along its eastern margin, followed by leeward aridification. We present new U–Pb zircon ages and palaeocurrent reconstructions suggesting that from at least 6 Ma until 4.2 Ma, the Humahuaca Basin was an integral part of a largely contiguous depositional system that became progressively decoupled from the foreland as deformation migrated eastward. The Humahuaca Basin experienced multiple cycles of severed hydrological conditions and subsequent re‐captured drainage, fluvial connectivity with the foreland and sediment evacuation. Depositional and structural relationships among faults, regional unconformities and deformed landforms reveal a general pattern of intrabasin deformation that appears to be associated with different cycles of alluviation and basin excavation in which deformation is focused on basin‐internal structures during or subsequent to phases of large‐scale sediment removal.  相似文献   

19.
Deciphering the evolution of mountain belts requires information on the temporal history of both topographic growth and erosion. The exhumation rate of a mountain range undergoing shortening is related to the erodability of the uplifting range as well as the efficiency of erosion, which partly depends on the available precipitation. Young, rapidly deposited sediments have low thermal conductivity and are readily eroded, in contrast to underlying resistant basement rocks that have a higher thermal conductivity. Apatite fission‐track thermochronology can quantify cooling; thermal models constrain the relationship between this cooling and exhumation. By utilizing geological relations for a datum, we can examine the evolution of rock uplift, surface uplift and exhumation. In the northern Sierras Pampeanas of Argentina, a young sedimentary basin that overlay resistant crystalline basement prior to rapid exhumation provides an ideal setting to examine the effect of contrasting thermal and erosional regimes. There, tectonically active reverse‐fault‐bounded blocks partly preserve a basement peneplain at elevations in excess of 4500 m. Prior to exhumation, the two study areas were covered by 1000 and 1600 m of recently deposited sediments; this sequence begins with shallow marine deposits immediately overlying the regional erosion surface. Apatite fission‐track data were obtained from vertical transects in the Calchaquíes and Aconquija ranges. At Cumbres Calchaquíes, erosion leading to the development of the peneplain commenced in the Cretaceous, probably as a result of rift‐shoulder uplift. In contrast, Sierra Aconquija cooled rapidly between 5.5 and 4.5 Myr. At the onset of this rapid exhumation, the sediment was quickly removed, causing fast cooling, but relatively slow rates of surface uplift. Syntectonic conglomerates were produced when faulting exposed resistant bedrock; this change in rock erodability led to enhanced surface uplift rates, but decreased exhumation rates. The creation of an orographic barrier after the range had attained sufficient elevation further decreased exhumation rates and increased surface uplift rates. Differences in the magnitude of exhumation at the two transects are related to both differences in the thickness of the sedimentary basin prior to exhumation and differences in the effective precipitation due to an orographic barrier in the foreland and hence differences in the magnitude of headward erosion.  相似文献   

20.
The coastal evolution of the El Abalario area (Huelva, southern Spain) during the Late Pleistocene and Holocene is reinterpreted after a refinement of the available geochronology by means of optically stimulated luminescence (OSL) dating. New data come from the analysis of soft sediment deformation, palaeosols, geomorphological mapping, and published seismic surveys on the onshore and offshore Gulf of Cadiz.The present structure of El Abalario dome resulted from the complex interaction of littoral-catchment processes and sea-level changes upon an emergent coastal plain, conditioned by the upwarping of the underlying Pliocene–Pleistocene prograding deltaic sequence. Upwarping is probably related to escape of over-pressurized fluids, accompanied by dewatering, prior to (?) and during OIS (Oxygen Isotopic Stage) 5. Continued upwarping produced the large NW–SE gravitational fault of Torre del Loro (TLF) in the southwestern flank of the dome, roughly parallel to the present coastline during OIS 5–OIS 4. The resulting escarpment favoured the accumulation of aeolian sand dunes (units U1, U2, and U3) from OIS 5 to early OIS 1. Unit U1 (OIS 5) ends upwards in a supersurface with a thick weathering profile that suggests moist and temperate climatic conditions. Unit U2 accumulated mainly during OIS 4 and OIS 3 with prevailing W/E winds. The supersurface between U2 and U3 records a part of OIS 2, with relative low sea level. Sedimentation of unit U3 took place during the Last Deglaciation (radiocarbon and OSL ages) with prevailing W/SW winds, under a temperate moist climate, that became more arid towards the top (Holocene). A major supersurface with an iron crust-like layer (SsFe) developed during the Holocene Climatic Optimum (OIS 1) under wetter and more temperate conditions than before, fossilizing the TLF. The supersurface is covered by younger aeolian dunes (U4, U5, U6, and U7) transported by W–SW winds since the Late Neolithic–Chalcolithic cultural period (5.0 ky cal BP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号