首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
The results of palaeomagnetic surveys of Mesozoic and Tertiary rocks from Gondwanaland can be reconciled with the results of modelling the evolution of oceanic floors from analyses of marine magnetic anomalies. Previous inconsistencies were mainly due to errors apparent in the Australian Cenozoic palaeomagnetic data. An alternative Tertiary apparent polar wander path (APWP) has been constructed from an analysis of all published laterite and weathered profile data. Palaeomagnetic results for Africa, Antarctica, Australia, India, Madagascar and South America are compared for rotations corresponding to marine magnetic anomalies 16, 22, 28, 34 and M1 and for “fit”. India has been selected as the reference continent since it provides the most detailed APWP having drifted about 50° of latitude since breakup.  相似文献   

2.
Palaeomagnetic results are reported from the continental facies of the Triassic-Jurassic Isalo Group of Madagascar. Stability of the magnetic remanence was tested using the alternating field and progressive thermal demagnetization techniques. Results from 8 sites, 6 located in northwestern Madagascar and 2 from the southwestern region, yield a palaeomagnetic pole at 74.2°S, 97.1°E (N = 8, A95 = 6.3°). Three models previously proposed to describe the drift history of Madagascar relative to Africa are considered and the relevant geological and geophysical information is reviewed. The palaeomagnetic data are only consistent with the pre-drift model which places Madagascar off the east coast of Africa adjacent to Kenya and Tanzania. This is also the continental drift fit favoured on geological grounds.  相似文献   

3.
Madagascar has one of the highest poverty rates in the world and consequently the long-term monitoring of groundwater resources is not a priority for the authorities. However, groundwater is often the only sustainable resource that has a satisfactory quality to supply the population. This is especially true in the south-west of the country, which is a semi-arid region and a global change hot spot (intense land use and climate changes). In response to the lack of data, the Groundwater Resource Observatory for Southwestern Madagascar (GROSoM) was established to monitor piezometry and meteorology over the longer term as part of a humanitarian response. The first site was setup in 2014 in a catchment located over a carbonate plateau; in 2018, a second site was installed in an alluvial setting within a crystalline basement catchment and a third site will be installed in 2020 to monitor groundwater dynamics in a coastal setting. The three sites, located between Toliara and Taolagnaro cities, are complementary and representative of various hydrogeological systems in Southwestern Madagascar. Each site includes a weather station and between 3 and 6 piezometric probes. The monitoring data indicate a strong inter-annual variability in precipitation, which induces a strong variability in aquifers recharge. One of the driest years in 2016 seems to be consistent with strong El Niño – Southern Oscillation (ENSO) effects observed at the global scale, while years with higher recharge appear to be related to cyclones such as Fundi in 2015 and Eketsang in 2019. Preliminary results of cross-disciplinary studies demonstrated a link between groundwater and health issues (i.e., admissions to basic health centres). This observatory aims to produce long-term data and has two objectives: (i) strengthening the early warning system for humanitarian crises in Madagascar; (ii) contributing to a better understanding of the effects of climate change on groundwater resources in this semi-arid region.  相似文献   

4.
Davie fracture zone and the movement of Madagascar   总被引:1,自引:0,他引:1  
A curvilinear feature extending over 21° of latitude can be recognised in the western Indian Ocean. Its structure and relationship to Madagascar suggest that it is a fracture zone that may have controlled the motion of Madagascar as the island drifted southwards to its present position. The pole of rotation defined by the fracture zone does not allow a good fit between the late Palaeozoic to early Mesozoic palaeomagnetic poles for Africa and Madagascar [3] if the latter was in a position against Kenya at the time. The likely presence of the fracture zone needs to be reconciled with the palaeomagnetic results.  相似文献   

5.
A revised Paleozoic/Mesozoic stratigraphy of coastal Kenya (including, in particular, the Karroo) based on current geological mapping near Mombasa is briefly described. This stratigraphy provides the geological framework for proposals concerning the Proto-Indian Ocean and the tectonic setting of the Karroo depositional basins.Recent geophysical evidence suggests that, within Gondwanaland, Madagascar was situated off East Africa near Kenya/Tanzania. The southern limits of the marine Lower Jurassic and southern limits of the marine Middle and Upper Jurassic are in similar positions in mainland Africa and Madagascar using the latter reconstruction. These paleogeographic limits also define the position, during the Jurassic, of an embayment from an ocean to the north. Regional geological similarities also support this reconstruction and are reinforced by paleocurrent data from the Karroo of Kenya indicating drainage north-northeast during the Permian and Triassic and possibly the Lower Jurassic. Marine connections during Karroo times appear to be of different ages in Kenya, Tanzania, Somalia, and Madagascar, probably reflecting physical limitations to marine access in fault-separated basins.The above embayment encroached across the Karroo depositional basins from northeast Kenya to southern Tanzania during the Lower and Middle Jurassic, i.e. from the direction towards which the Karroo drainage had been previously directed. Marine conditions remain to the present day so this embayment can be considered the Proto-Indian Ocean for East Africa. The marine incursion took place before the breakup of Gondwanaland suggesting that during the Jurassic the Proto-Indian Ocean in East Africa was an epicontinental sea and not a true ocean (i.e. floored by simatic crust). The epicontinental nature of this sea is confirmed by the lithologies of the associated sediments. Paleontological data indicate that this sea was an arm of Tethys. True oceanic conditions could not have been established until the displacement of Madagascar away from Africa, probably in the Cretaceous.Accepting the above northern position of Madagascar, the writers also postulate that in East Africa the fault-bounded Karroo depositional basins (troughs) were located within a major triradial rift system extending from Lake Malawi at least as far as eastern Kenya (some 1600 km). This rift system, if valid, was established within Gondwanaland over a period ~100 m.y. in the Paleozoic/Mesozoic (pre-breakup) in marked contrast to the East African Rift System (classical rift valleys) which is mainly a Cainozoic phenomenon (post-breakup). It is, therefore, considered that there is a fundamental difference in origin between the two rift systems.  相似文献   

6.
Lavaka represent a typical erosional landform in Madagascar. The chronology of their formation remains, however, under discussion. Our research focuses on the Ankarokaroka lavaka, a spectacular landform located in NW Madagascar (Ankarafantsika natural reserve), which is characterized by the presence of sandy units of regional extension at its top. The two main units correspond to white and red sands, and are closely associated with specific vegetations (dry dense forest for the white sands, savannah grasslands for the red sands). We applied a geochronological approach based on Optically Stimulated Luminescence (for the coversands) associated with radiocarbon dating performed on archaeological remains found at the contact between the sands and the lavaka. The combination of this approach with field work and sedimentological analyses makes it possible to show that the sands experienced a complex history, both in terms of sedimentation and post‐sedimentary pedogenesis (podzolization of the white sands, rubefaction of the red sands). The numerical ages furthermore indicate that the Ankarokaroka lavaka formed between 18.5 ± 2.3 ka ago and the 14th century AD. The present study demonstrates that this lavaka has a climatic origin, and highlights the potential of OSL to date sediments associated with Madagascar lavaka. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
226Ra profiles have been measured in the western Indian Ocean as part of the 1977–1978 Indian Ocean GEOSECS program. These profiles show a general increase in deep and bottom water Ra concentration from the Circumpolar region to the Arabian Sea. A deep Ra maximum which originates in the Arabian Sea and in the Somali basin at about 3000 m depth spreads southward into the Mascarene basin and remains discernible in the Madagascar and Crozet basins. In the western Indian Ocean, the cold Antarctic Bottom Water spreads northward under the possibly southward-flowing deep water, forming a clear benthic front along the Crozet basin across the Southwest Indian Ridge into the Madagascar and Mascarene basins. The Antarctic Bottom Water continues to spread farther north to the Somali basin through the Amirante Passage at 10°S as a western boundary current. The benthic front and other characteristic features in the western Indian Ocean are quite similar to those observed in the western Pacific where the benthic front as a distinctive feature was first described by Craig et al. [15]. Across the Mid-Indian Ridge toward the Ceylon abyssal plain near the triple junction, Ra profiles display a layered structure, reflecting the topographic effect of the mid-ocean ridge system on the mixing and circulation of the deep and bottom waters. Both Ra and Si show a deep maximum north of the Madagascar basin. Linear relationships between these two elements are observed in the deep and bottom water with slopes increasing northward. This suggests a preferential input of Ra over Si from the bottom sediments of the Arabian Sea and also from the flank sediments of the Somali basin.  相似文献   

8.
Palaeomagnetic results are reported from the predominantly green sediments of the Upper Permian to Lower Triassic Sakamena Group and the Upper Carboniferous to Lower Permian Sakoa Group of Madagascar. Secondary magnetizations could only be removed successfully through thermal demagnetization procedures and then only if the cleaning process was completed by 450°C. Heating in air caused extensive magnetochemical changes to occur above this temperature. Coercivity spectrum analysis and low-temperature characteristics of the heated and unheated green sediments indicate that considerable amounts of fine-grained single-domain magnetite are formed at 500°C or more from some non-magnetic mineral, probably the iron silicates. For this reason consistent palaeomagnetic data could only be obtained from about half the samples collected. Results from 4 sites (19 samples) of the Lower Sakamena Group give a palaeomagnetic pole at 64.9S, 113.9E (A95 = 5.6°) and 3 sites (16 samples) from the Glacial Series of the Sakoa Group give a pole at 47.9S, 84.1E (A95 = 8.1°). When compared with corresponding data from Africa these results confirm and strengthen our previous conclusions from the Triassic-Jurassic Isalo Group regarding the palaeoposition of Madagascar. All three poles are only consistent with the Smith and Hallam reconstruction which places Madagascar off the eastern coast of Africa adjacent to Kenya and Tanzania.  相似文献   

9.
The Comores Islands together with the Tertiary volcanic province of northern Madagascar form a sublinear trend of alkali olivine basalt shield volcanoes across the northern entrance of the Mozambique Channel. Potassium-argon dating of shield-building lavas confirms an eastward increase in age of volcanism along the chain, consistent with a hotspot origin for the lineament. The velocity of the Somali plate over the mantle magma source is 50 mm/yr.

We use the distribution of ages along the Comores-Madagascar chain in conjunction with existing age data for the Reunion-Mascarene Plateau hotspot track to model the absolute motion of the Somali plate for the last 10 m.y. We calculate the relative motion across the East African Rift by subtracting the Somali plate absolute motion from African plate absolute motion during this period. The model predicts 320 km of total separation across the East African Rift during the past 10 m.y. which is greater than has been estimated from surface geological evidence

The geometry of older portions of the Comores and Reunion trends indicates that there was no significant relative motion between the African and Somali plates prior to about 10 m.y. ago.  相似文献   


10.
Extensive Upper Cretaceous volcanism in southern Madagascar was fed in part by mantle sources resembling those expressed today in the Indian Ocean at Marion and Prince Edward islands and on the central Southwest Indian Ridge. In addition, very low εNd(T) (to −17.4), high(87Sr/86Sr)T (to 0.72126) tholeiites in southwestern Madagascar were variably but highly contaminated by ancient continental material broadly like that affecting the Bushe and Poladpur Formations of the later Deccan Traps in India. Alkalic dikes in southwestern Madagascar have a rough analogue in the Mahabaleshwar Formation of the Deccan, in that they document the influence of a low 206Pb/204Pb, negative εNd, relatively low 87Sr/86Sr reservoir. A very similar reservoir is manifested at present in mid-ocean ridge basalts on the central Southwest Indian Ridge near 40°E. The original location of this end-member appears likely to have been in the Madagascan lithospheric mantle, a portion of which may have been removed in the Middle Cretaceous by the action of the Marion hotspot or the rifting of Indo-Madagascar. An origin within the hotspot itself also may be possible; however, recent products of the hotspot appear to lack completely the necessary low 206Pb/204Pb, low εNd signatures.  相似文献   

11.
The interpretation of new and pre-existing aeromagnetic survey data for Kenya, in conjunction with published gravity data, indicates the existence of a palaeo-triple junction of Jurassic age in eastern Kenya. Two arms, represented by the Mombasa coast and the Somali coast respectively, developed into a part of the Indian Ocean. The third arm, which is now concealed by a cover of Quaternary sediments and volcanic rocks, remains as a rifted, sediment-filled trough extending at least as far northwest as the presently active East Africa Rift in Lake Turkana. It has a remarkable similarity, both in scale and geometry, with the Benue Trough of the Niger Delta. As with the Niger Delta, the present Kenyan coastline is not indicative of the true continental margin, as extensive sedimentation has occurred beyond the continental edge in the region of the triple junction since dispersal. Delineation of the true continental margin from aeromagnetic evidence allows pre-drift Madagascar to be re-assembled in closer proximity to the coast than indicated in many reconstructions though the geological evidence supporting this pre-drift position is still controversial.  相似文献   

12.
We present a study to estimate the large-scale landscape history of a continental margin, by establishing a source-to-sink volume balance between the eroding onshore areas and the offshore basins. Assuming erosion as the primary process for sediment production, we strive to constrain a numerical model of landscape evolution that balances the volumes of eroded materials from the continent and that deposited in the corresponding basins, with a ratio imposed for loss of erosion products. We use this approach to investigate the landscape history of Madagascar since the Late Cretaceous. The uplift history prescribed in the model is inferred from elevations of planation surfaces formed at various ages. By fitting the volumes of terrigenous sediments in the Morondava Basin along the west coast and the current elevation of the island, the landscape evolution model is optimized by constraining the erosion law parameters and ratios of sediment loss. The results include a best-fit landscape evolution model, which features two major periods of uplift and erosion during the Late Cretaceous and the middle to late Cenozoic. The model supports suggestions from previous studies that most of the high topography of the island was constructed since the middle to late Miocene, and on the central plateau the erosion has not reached an equilibrium with the high uplift rates in the late Cenozoic. Our models also indicate that over the geological time scale a significant portion of materials eroded from Madagascar was not archived in the offshore basin, possibly consumed by chemical weathering, the intensity of which might have varied with climate.  相似文献   

13.
Crustal receiver functions have been calculated from 128 events for two three-component broadband seismomenters located on the south coast (FOMA) and in the central High Plateaux (ABPO) of Madagascar. For each station, crustal thickness and V p /V s ratio were estimated from H- κ plots. Self-consistent receiver functions from a smaller back-azimuthal range were then selected, stacked and inverted to determine shear wave velocity structure as a function of depth. These results were corroborated by guided forward modeling and by Monte Carlo error analysis. The crust is found to be thinner (39 ± 0.7 km) beneath the highland center of Madagascar compared to the coast (44 ± 1.6 km), which is the opposite of what would be expected for crustal isostasy, suggesting that present-day long wavelength topography is maintained, at least in part, dynamically. This inference of dynamic support is corroborated by shear wave splitting analyses at the same stations, which produce an overwhelming majority of null results (>96 %), as expected for vertical mantle flow or asthenospheric upwelling beneath the island. These findings suggest a sub-plate origin for dynamic support.  相似文献   

14.
This study assesses the causes of the high spatial variability of the mineral content of groundwater in crystalline bedrock of Southern Madagascar. Although many kilometres from the coast and at a mean altitude of 400 m a.s.l, wells drilled in this area produce water with electrical conductivities in the range of 300–30,000 μS cm−1 with a high spatial variability. Chemical and isotopic data are used to identify the processes involved in the groundwater mineralization. It is shown that the chemical composition of the groundwater in this region has its origin in (i) normal silicate and carbonate weathering reactions and (ii) input of marine salts, probably via rainfall recharge, modified by evapo-concentrative processes probably including precipitation and re-dissolution of secondary evaporites in the unsaturated zone. To obtain a better understanding of the spatial salinity distribution, well parameters such as yields, weathered zone thickness, weathered materials and morphological positions (upper slope, mid-slope, lower slope or valley bottom) are scrutinized.

A correlation was found between high salinity and low flow, shallow groundwater environments (flat hill tops, valley bottoms, weakly developed and clayey weathered zones) and between low salinity and high flow environments (granular, well-developed weathered zones and situation on valley slopes).  相似文献   


15.

Distribution of the Jurassic ostreids (Bivalvia) from Tanggula area of China includes three patterns, which are (1) Tethys: containingLiostrea birmanica andEligmus rollandi, (2) western Europe and northern Tethys: consisting ofGryphaea (Bilobissa) bilobata; and (3) Global: composed ofActinostreon gregareum andNanogyra nana. However, they are all limited between palaeolatidudes 60° South and North.Actinostreon gregareum originated in the Sinemurian of northern Chile and it entered Kenya and Madagascar in the Toarcian, but there is no reliable Sinemurian-ToarcianA. gregareum fossil record in continental margins between Chile and Kenya and Madagascar. Such distribution patterns and dispersal processes have demonstrated that (1) during the Jurassic all seas and oceans were connected to each other; (2) the Tethys and the western European epicontinental seas did produce some endemic taxa; (3) the distribution of these ostreids was most likely controlled by latitudes and creature ecology; and (4)A. gregareum underwent a trans-Pacific dispersal from east to west.

  相似文献   

16.
To address some of the issues of project Year of Tropical Convection (YOTC) and the project ATHENA as ongoing international activities, an endeavor has been made for the first time to study the predictability of Indian summer monsoon in the backdrop of tropical predictability using 850 hPa atmospheric circulations with the high resolution (T1279) ECMWF model during the boreal summer of 2008 as one of the focus years of YOTC. The major findings obtained from the statistical forecast have been substantiated by the dynamical prediction in terms of the systematic error energy, its growth rate and the attribution of the dominant nonlinear dynamical processes to error growth. The systematic error energy of T1279 (16 km resolution) ECMWF model are generated in African landmass, India and its adjoining oceanic region, in near equatorial west Pacific and around the Madagascar region where the root mean square errors are observed and the zonal wind anomaly shows poor forecast skill. As far as the inadequate predictability of Indian summer monsoon by T1279 ECMWF model (revealed from the results of project ATHENA) is concerned, the systematic error energy and the error growth over Arabian Sea, in the eastern and western India due to the nonlinear convergence and divergence of error flux along with the erroneous Mascarene high may possibly be the determining factors for not showing any discernable improvement in Indian monsoon during the medium range forecast up to 240 h. This work suggests that the higher resolution of ECMWF model may not necessarily lead to the better forecast of Indian monsoon circulations during 2008 unless a methodology can be devised to isolate the errors due to the nonlinear processes that are inherent within the system.  相似文献   

17.
A complex and highly dynamical ocean region, the Agulhas Current System plays an important role in the transfer of energy, nutrients and organic material from the Indian to the Atlantic Ocean. Its dynamics are not only important locally, but affect the global ocean-atmosphere system. In working towards improved ocean reanalysis and forecasting capabilities, it is important that numerical models simulate mesoscale variability accurately—especially given the scarcity of coherent observational platforms in the region. Data assimilation makes use of scarce observations, a dynamical model and their respective error statistics to estimate a new, improved model state that minimises the distance to the observations whilst preserving dynamical consistency. Qualitatively, it is unclear whether this minimisation directly translates to an improved representation of mesoscale dynamics. In this study, the impact of assimilating along-track sea-level anomaly (SLA) data into a regional Hybrid Coordinate Ocean Model (HYCOM) is investigated with regard to the simulation of mesoscale eddy characteristics. We use an eddy-tracking algorithm and compare the derived eddy characteristics of an assimilated (ASSIM) and an unassimilated (FREE) simulation experiment in HYCOM with gridded satellite altimetry-derived SLA data. Using an eddy tracking algorithm, we are able to quantitatively evaluate whether assimilation updates the model state estimate such that simulated mesoscale eddy characteristics are improved. Additionally, the analysis revealed limitations in the dynamical model and the data assimilation scheme, as well as artefacts introduced from the eddy tracking scheme. With some exceptions, ASSIM yields improvements over FREE in eddy density distribution and dynamics. Notably, it was found that FREE significantly underestimates the number of eddies south of Madagascar compared to gridded altimetry, with only slight improvements introduced through assimilation, highlighting the models’ limitation in sustaining mesoscale activity in this region. Interestingly, it was found that the threshold for the maximum eddy propagation velocity in the eddy detection scheme is often exceeded when data assimilation relocates an eddy, causing the algorithm to interpret the discontinuity as eddy genesis, which directly influences the eddy count, lifetime and propagation velocity, and indirectly influences other metrics such as non-linearity. Finally, the analysis allowed us to separate eddy kinetic energy into contributions from detected mesoscale eddies and meandering currents, revealing that the assimilation of SLA has a greater impact on mesoscale eddies than on meandering currents.  相似文献   

18.
Measurements of 231Pa, 230Th and 232Th concentrations have been made on five water-column profiles along the western margin of the Madagascar and Mascarene Basins in the southern Indian Ocean. These measurements help to fill a significant gap in the global coverage of water-column 232Th, 230Th and 231Pa data. 232Th concentrations vary, but generally increase with depth, suggesting higher particle loading in deeper waters, and the presence of a significant dissolved fraction of 232Th. 230Th concentrations increase with depth, and profiles are similar to the average of existing data from other regions. 231Pa concentrations, on the other hand, show significant depth structure, apparently reflecting the various water masses sampled at this location. The modified remnants of North Atlantic Deep Water are found at a depth of ≈ 2000 m and exhibit elevated 231Pa concentrations exported from the South Atlantic. Antarctic Intermediate and Bottom Waters have lower 231Pa, probably due to scavenging onto opal particles during transit from the Southern Ocean. The differences between water masses raises a question: which water mass is important in controlling the 231Pa/230Th ratio in underlying sediments? A simple one-dimensional model is used to demonstrate that the 230Th and 231Pa exported to sea-floor sediments last equilibrates with waters close to the seafloor (within ≈ 1000 m), rather than averaging the whole water column. These findings suggest that 231Paxs/230Thxs in sediments provides information primarily about deep-water masses. In this region, sedimentary records will therefore provide information about the past flow of Antarctic Bottom Water into the Indian Ocean. Interpretation of data from other regions, such as the North Atlantic where this proxy has most successfully been applied, requires careful consideration of regional oceanography and knowledge of the composition of the water masses being investigated.  相似文献   

19.
The Proterozoic Kerala Khondalite Belt (KKB), southern India preserves a distinct high-grade terrain that is interpreted to have been situated adjacent to Madagascar and Sri Lanka during Gondwana assembly. As such, it has become a major focus for testing models of supercontinent amalgamation and dispersal. The lithounits of KKB have remarkable petrological similarities to the Highland Complex (HC) of Sri Lanka and south-central Madagascar. However, there is no well-constrained petrogenetic model for the KKB that fits explicitly within a supercontinent reconstruction model. We present here results from our on-going studies on the origin and evolution of K-rich (potassic, where K2O/Na2O > 1) gneisses of KKB in relation to Proterozoic supercontinent events. Our results show, in a major departure from earlier metasedimentary origin, that potassic gneisses are metamorphosed granitoids. The metagranitoid samples display high K2O contents and low Al2O3/(FeO + MgO + TiO2) values. They are moderate to strongly peraluminous (ASI values ranging from 1.05 to 1.47) rocks showing mineralogical, petrological, and geochemical characteristics distinctive of the high-K calc-alkaline suites. Typical of igneous suites, the high-K metagranites show minor variation in chemical compositions with most oxides showing negative correlation with SiO2. Geochemistry illustrates distinctive features of arc-related magmas with LILE (K, Rb, and Th) and LREE enriched patterns and considerable depletion of HSFE (Nb, Zr, and Ti). The high-K metagranites are further characterized by strong negative anomalies of Eu (Eu/Eu* = 0.10–0.44) and Sr, suggesting melting in plagioclase stability field and retention of plagioclase in the residual phase. Petrogenetic discrimination for granitoids, using major and trace elements demonstrates that the high-K metagranites of the KKB formed by partial melting of igneous source in lower- to middle-crust levels. Overall the geochemical features are supportive of origin in relation to a convergent margin setting, possibly in a continental magmatic arc system, which can be connected to the amalgamation and dispersal of continental fragments in a supercontinent event. This study, therefore, provides a lead towards more robust comparisons between the Proterozoic supercontinent events and processes.  相似文献   

20.
井间地震资料精细解释方法研究与应用   总被引:1,自引:0,他引:1       下载免费PDF全文
井间地震资料分辨率很高,但是缺乏成熟的解释方法,本文针对井间地震资料的特点,借鉴地面地震解释技术对井间地震资料开展了精细解释方法研究.首先在深度域资料特点分析的基础上,利用区域速度和层析成像速度将深度域井间地震资料转换到时间域进行研究,并通过粗化降频建立起井间地震资料与地面地震资料之间的相似性联系,得到对井间地震低频反射特征的认识,结合井旁道合成地震记录标定建立起井间地震资料的反射特征,准确的解释了井间地震的反射层位.采用地震瞬时属性分析和时频属性分析得到了对沉积环境的认识,进一步通过波阻抗反演更好的认识井间储层特征.在实际应用中综合多种方法进行解释,并结合测井资料对比落实了井间砂体展布特征,得到对井间储层的精细描述结果,解决了两口井之间储层分布范围、横向连通性及厚度变化等问题,取得了较好的应用效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号