首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Palaeomagnetic measurements have been made on specimens from Late Pleistocene sediments of a piston boring at Rubjerg in Vendsyssel, northern Jutland. The stratigraphy of the deposits is based on content of foraminifera. A total of 70 relatively oriented specimens were investigated palaeomagnetically. Normal steep inclinations close to that of the axial dipole field were found in the Upper Saxicava Sand and in the Younger Yoldia Clay (radiocarbon dated at 14,650 ± 190?12,650 ± 180 B.P.), and a secular variation with an amplitude of 10–12° in the inclincation and a “period” roughly estimated at about 350–400 years was found in the Younger Yoldia Clay.Seventeen relatively oriented specimens from undisturbed older marine deposits revealed a stable low inclination of 11° with α95 = 3°. The age of this apparent geomagnetic excursion falls somewhere between 23,000 and 40,000 B.P. (Older Yoldia Clay). Among other known geomagnetic excursions and events within this interval are Laschamp in France, Mono Lake in California and Lake Mungo in Australia. Until more definite ages have been obtained, the excursion is provisionally named the “Rubjerg Excursion”.  相似文献   

2.
Increases in the production rate of cosmogenic radionuclides associated with geomagnetic excursions have been used as global tie-points for correlation between records of past climate from marine and terrestrial archives. We have investigated the relative timing of variations in 10Be production rate and the corresponding palaeomagnetic signal during one of the largest Pleistocene excursions, the Iceland Basin (IB) event (ca. 190 kyr), as recorded in two marine sediment cores (ODP Sites 1063 and 983) with high sedimentation rates. Variations in 10Be production rate during the excursion were estimated by use of 230Thxs normalized 10Be deposition rates and authigenic 10Be/9Be. Resulting 10Be production rates are compared with high-resolution records of geomagnetic field behaviour acquired from the same discrete samples. We find no evidence for a significant lock-in depth of the palaeomagnetic signal in these high sedimentation-rate cores. Apparent lock-in depths in other cores may sometimes be the result of lower sample resolution. Our results also indicate that the period of increased 10Be production during the IB excursion lasted longer and, most likely, started earlier than the corresponding palaeomagnetic anomaly, in accordance with previous observations that polarity transitions occur after periods of reduced geomagnetic field intensity prior to the transition. The lack of evidence in this study for a significant palaeomagnetic lock-in depth suggests that there is no systematic offset between the 10Be signal and palaeomagnetic anomalies associated with excursions and reversals, with significance for the global correlation of climate records from different archives.  相似文献   

3.
Three closely spaced 6-m piston cores were taken in the central part of Lake Tahoe. Cores were split into two complete replicates for paleomagnetic study and the remaining sections were used for stratigraphic and mineralogical analysis.Stratigraphic correlation of the cores is based on two distinctive horizons (volcanic ash and diatomite) and upon three different sedimentological regimes dominated by (1) poorly bedded silts and muds, (2) well bedded graded units, and (3) finely laminated silts. These correlations served as the standards for the evaluation of the paleomagnetic data. Extrapolation of14C dates obtained in the upper sections of the Lake Tahoe sediments suggests that the lower sections of the cores may reach ages of 25,000–30,000 years B.P.X-ray, optical, Curie point, and hysteresis measurements show that magnetite is the only important magnetic mineral in the sediments and occurs in the size range of 10 μm. Hematite is essentially absent. Based on large changes in the declination and inclination of the natural remanent magnetism (NRM) within single graded layers the paleomagnetic signature is a post-depositional remanent magnetism (PDRM). This PDRM is believed to be caused by magnetic orientation during compaction.Paleomagnetic measurements show three regimes that are correlated with the stratigraphic regimes. NRM declination and inclination data show good correlation between the three cores and agree well with the correlations based on sediment character. NRM intensity variations are due largely to the variations in magnetite content and its occurrence as either single detrital grains or as inclusions within the larger silicates. Thus the variation in paleo intensity was not determined.Comparisons of Lake Tahoe data with that from Mono Lake show fair correlations of declination and inclination. The occurrence of a short-wavelength, high-amplitude event in the lower section of the Lake Tahoe cores may provide confirmation of the Mono Lake geomagnetic excursion.  相似文献   

4.
The10Be method of dating of marine sediment cores is applied to five North Pacific cores. Assuming a constant10Be precipitation rate and varying sedimentation rates with time during the past 2.5 m.y. dating confirms to that obtained from paleomagnetic stratigraphy. The10Be concentration variations with depth in the cores are primarily due to changes in sediment dilution and do not reflect cosmic ray intensity or global climate variations. The limits of10Be deposition rate variation in the investigated cores are less than ± 10% for periods of (2–7) × 105 years and less than ±30% for periods of 1 × 105 years. The data set gives a half-life of10Be is 1.50 × 106 years. The latitudinal effect of10Be concentrations and10Be/9Be ratios relates to a frequency of particulate matter occurrence (detrital and biological particles) in the oceans and to oceanic circulation.  相似文献   

5.
As a result of detailed paleomagnetic and magnetic studies of Paleolithic site deposits in the Matuzka Cave, a record of the Matuzka geomagnetic excursion in lithologic layer 7 has been discovered and studied. Such characteristic features as the geomagnetic field direction, position of the virtual geomagnetic pole, geomagnetic field intensity (roughly estimated) after and during the excursion, and climatic conditions coeval with its existence make the Matuzka excursion similar to the ~130-ka Blake excursion. This dates at ~130 ka the formation of layer 7 with ancient archaeological findings.  相似文献   

6.
Two large-diameter cores from the Greater Antilles Outer Ridge have confirmed the Blake episode 0.1 m.y. B.P. as a genuine paleomagnetic reversed interval at least in that region. The feature is clearly defined in more than 125 stably magnetized specimens of Last Interglacial abyssal brown clay, but its precise age and duration cannot yet be estimated reliably from these or other available data. During the reversed period, positions of the virtual geomagnetic pole lay about 20° from the south geographic pole, with polarity transitions traversing paths in the eastern hemisphere. Each core also recorded a normally polarized excursion within the Blake feature. Because the most acceptable Blake episode data presently span only a small geographic area, they are insufficient for distinguishing between global and local geomagnetic models for the feature.  相似文献   

7.
近12000年以来北京地区地球磁场变化机理探讨   总被引:3,自引:0,他引:3       下载免费PDF全文
距今12000年以来北京地区地球磁场长期变化由长周期(大于1000年)和短周期(约500年)两部分组成,长周期和短周期分量分别受控于漂移场和稳定场的变化.与日本地区相比,北京地区地球磁场最显著的特征是在距今(5110-4670)±110年之间曾发生短极性漂移事件,这样的短极性地磁事件可能与地球外核流体运动的异常变化有关.  相似文献   

8.
Recent studies have shown that, in addition to the role of solar variability, past climate changes may have been connected with variations in the Earth??s magnetic field elements at various timescales. An analysis of variations in geomagnetic field elements, such as field intensity, reversals, and excursions, allowed us to establish a link between climate changes at various timescales over the last millennia. Of particular interest are sharp changes in the geomagnetic field intensity and short reversals of the magnetic poles (excursions). The beginning and termination of the examined geomagnetic excursions can be attributed to periods of climate change. In this study, we analyzed the possible link between short-term geomagnetic variability (jerks) and climate change, as well as the accelerated drift of the north magnetic pole and surface temperature variations. The results do not rule out the possibility that geomagnetic field variations which modulate the cosmic ray flux could have played a major role in climate change in addition to previously induced by solar radiation.  相似文献   

9.
An analysis of the paleomagnetic characteristics of the bottom sediments taken in 2000 in the northern Barents Sea for the first time revealed the Gothenburg geomagnetic field excursion (13 000–12 000 years ago) at the time boundary of the transition from the glacial period to the recent warm epoch (the Holocene). The obtained data confirm the excursion complex structure: the presence of two successive time intervals of variations in the geomagnetic field inclination. An increase in the magnetic susceptibility and natural remanent magnetization of the samples at the above boundary and about 15 000 years ago indicates that the magnetic parameters of the sediments respond to climate changes in the environment in this time interval.  相似文献   

10.
The results of instrumental observations of geomagnetic variations at the Mikhnevo midlatitudinal observatory of Institute of Geosphere Dynamics of the Russian Academy of Sciences (54.9595° N; 37.7664° E) are presented and discussed. The main periodicities of the local background variations of geomagnetic field are determined. Variations of ~ 27 days have been registered, as well as periodicities with periods of ~6–9, 12–14, 60 days, and a semiannual periodicity. It has been shown that the background geomagnetic variation periodicities have a sporadic and scaling character. An alternating effect of increasing and degradation periods in geomagnetic variation intensity (the intermittency effect) is found.  相似文献   

11.
A well-dated, 3.3-m section of deep-lake clays from pluvial Lake Lahontan, now exposed along the shore of Pyramid Lake, Nevada, has provided a paleomagnetic record of secular variation during the time interval 25,000–36,000 years B.P. The measured ranges of inclination and declination are 40° and 75°, respectively, and represent values which are comparable to observed secular variation at northern mid-latitudes. These results and those from a previously reported study from Clear Lake, California, together provide strong evidence for the conclusion that northern California and western Nevada were not affected by any geomagnetic excursion during the time interval 21,000–36,000 years B.P. Such a conclusion puts severe constraints on the nature and timing of the proposed Mono Lake, Laschamp and Lake Mungo geomagnetic excursions.  相似文献   

12.
Paleomagnetic and/or micropaleontological studies have been carried out on approximately 28 sedimentary cores of latest Pleistocene age from the Gulf of Mexico. Sedimentation rates range from 9 cm to 20 cm/1000 yr. A distinct excursion in the earth's magnetic field occurs in the upper parts of 8 of 15 cores for which paleomagnetic studies were conducted and is independently correlated with planktonic foraminiferal zones. An inclination change to zero or negative inclination is often associated with a declination change. The age of the excursion was determined by extrapolation of sedimentation rates from the Z-Y paleontological boundary which is dated at 11,000 B.P. The magnetic excursion occurred between 12,500 and 17,000 yr ago within the upper part of zone Y. This falls within the age range of the Laschamp Event as originally defined.  相似文献   

13.
14.
Variations in geomagnetic field data at different spectral frequencies and with different periods are observed during increased geomagnetic activity. The formed local structures depend on the field disturbance and contain information on the magnetic storm intensity and character of development. Numerical solutions and algorithms based on wavelet transforms, which make it possible to “automatically” detect periods of increased geomagnetic activity and identify and analyze the structures forming this process, have been proposed in order to study the time characteristics of geomagnetic field variations, using the H component as an example. The separated components, characterizing disturbances, make it possible to estimate variations in the field energy characteristics. An analysis of the constructed wavelet images makes it possible to trace the dynamics of variations in the H component the day before and during a magnetic storm.  相似文献   

15.
Changes in total geomagnetic field intensity, of 2–3 nT, were observed prior to the 1995 Hyogo-ken Nanbu (Kobe) earthquake at the Amagase (AMG) site, located approximately 70 km from the epicenter. We examined whether the observed variations are local signals arising from the Earth's crust, or global variations that are unlikely to originate from the crust. To remove global-scale variations in total geomagnetic intensity data, we employed a regional geomagnetic field model. Using data recorded at five reference sites in Japan, we estimated global-scale variations in total geomagnetic intensity, and removed them from the observed total geomagnetic intensity at the AMG site. The reminder still showed variations during the period prior to the Kobe earthquake. In addition, these pre-seismic variations include two of the largest shifts recorded during the entire observation period at the AMG site, raising the possibility that these variations were indeed related to the earthquake. These variations cannot be interpreted as signals arising from the area close to the seismic source because of the large distance between the epicenter and the site. Therefore, our results raise the possibility that the physical state of the Earth's crust shows marked changes over a wide region in the lead-up to a seismic event.  相似文献   

16.
The record of the Earth’s magnetic field intensity during the past (paleointensity) carries important information about the geodynamo and the state of the Earth’s interior that is not contained in the record of its paleodirection. To determine what the critical factors in obtaining reliable estimate of paleointensity are, we present new results of a paleointensity study of the 1955 and 1960 Kilauea volcano lava flows, from the Big Island of Hawaii. Rock magnetic measurements on representative hand samples from each flow in conjunction with reflected light microscopy observations show the primary carriers of remanence to be pseudo-single domain titanomagnetite with various titanium contents. Paleointensity samples (small fragments previously embedded into salt pellets) were subjected to the Thellier-Coe experimental procedure. Fourteen temperature steps were distributed over the entire temperature range used (ambient temperature to 570°C). Control heating steps (commonly referred to as partial thermo-remanent magnetization — pTRM checks) were also conducted each third double heating step. Mean field intensity value (36.6 ± 0.7 μT) retrieved from 3 reliable site mean determinations reproduces the expected value within 1.1%. With the knowledge of the rock magnetic characteristics of the samples and the strength of the geomagnetic field during cooling of the lava, our investigation suggests that the Hawaiian lavas can faithfully record the local geomagnetic field and confirms that the Thellier-Coe type techniques are suitable on historical lava flows to yield reliable absolute paleointensity determinations. The variations in direct field measurements and in lab paleofield determinations may reflect local heterogeneities of the lava or influence of very local field anomalies due to the volcanic underlying terrain. These results underscore the importance that a better understanding of intensity results of historical lava flows is still required if reliable paleointensity determinations of older periods, for which we do not know the answer, are sought.  相似文献   

17.
Data on the amplitude of variations in the direction of the geomagnetic field and the frequency of reversals in the Vendian-Cambrian are presented. It has been established from these data that (a) distributions of variations in the direction of the geomagnetic field S p are bimodal (modes 9° and 11°); (b) the maximum of the average amplitude S p takes place by 5–10 Myr later than the Vendian-Cambrian boundary; (c) S p tends to increase as plume epicenters are approached; and (d) the plume formation is more often confined to intervals with different frequencies of geomagnetic reversals than to the interval of a stable state of the geomagnetic field without reversals (Vendian hyperchron). The listed features of the geomagnetic field behavior are repeated near all boundaries of geological eras of the Phanerozoic.  相似文献   

18.
Paleomagnetic measurements have been made on a continuously sampled, 5-m section of a core from Clear Lake, California. The sediments studied span an 8000-year interval centered at 25,000 years B.P., the approximate date of the large-scale, counterclockwise loop of the magnetic vector recorded in sediments from Mono Lake, California. The data from Mono Lake have been interpreted as a geomagnetic excursion with a duration of 600–1000 years. Because Clear Lake is only 320 km from Mono Lake and since each sample from Clear Lake represents 26 years of sedimentation, the magnetic signature of the Mono Lake geomagnetic excursion should be recorded in detail in the Clear Lake samples. Aside from a generally uniform shallowing of inclinations due to compaction, the paleomagnetic record from Clear Lake contains no anomalous features which would correspond to the Mono Lake excursion. Thus it has yet to be shown that the Mono Lake excursion was recorded anywhere besides Mono Lake. Even if the existence of the excursion is ultimately confirmed, its usefulness as a magnetostratigraphic horizon is limited.  相似文献   

19.
Spatiotemporal variations of the nondipole (ND) magnetic field over the Chinese mainland and neighboring regions from 10000 BC to 1990 AD were analyzed using the latest global geomagnetic models CALS10K.1b, CALS3K.4, and IGRF11. Moreover, for field sources, we investigated 2 n (n = 2–10) pole ND fields and their energies. The results suggest that the study period can be divided into three. The intensity of the ND field has been mainly positive since 10000 BC and lasted almost 7500 years, then gradually decreased to negative in 2500 BC to 1500 AD, and finally sharply increased to positive. The anomaly areas of the ND field in East Asia took shape for n = 3, when the anomaly areas in East Asia were shaped into closed circles in the mainland. This suggests that the first three harmonic degrees account for most of the ND field. The energy of the ND field rapidly attenuates at the core–mantle boundary and is stable at the surface.  相似文献   

20.
Results from joint work between the Geophysical Institute (Sofia, Bulgaria), and the Geomagnetic Institute (Grocka, Yugoslavia) on the geomagnetic field variation in the prehistoric past are presented. Preliminary curves of variation of the three geomagnetic elements: declination, inclination and intensity are presented. The movement of the virtual pole position for the 6500 years time period B.C. is derived. The curves and the virtual pole positions provide a dating tool for archaeological purposes and determination of the periodicities in the geomagnetic secular variations in southeastern Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号