首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
当前洪水风险分析按照典型设计标准洪水进行计算的模式难以满足实际防洪管理需要,为了提高洪水风险分析的实时性以及适应洪水演进的动态性,设计了动态实时洪水风险分析框架。在本框架中,先采用一维和二维动态耦合水动力学数值方法耦合溃堤模型,然后在樵桑联围防洪保护区建立洪水演进模拟模型,通过灵活处理模型计算边界条件以及动态设置溃堤功能,计算不同设计标准洪水发生时,堤防出现单一溃口或者组合溃口后保护区内洪水演进过程。按照上述框架开发了樵桑联围动态实时洪水风险图编制与管理应用系统,并利用历史洪水资料开展模型验证,验证结果表明,2008-06洪水马口站、三水站、大熬站、甘竹(一)站的实测最高水位和模型计算最高水位的绝对误差分别为-0.10、0.10、0.09、0.04 m,均满足洪水模拟精度要求。利用模型计算了西江发生200年一遇的洪水情况下,江根堤防出现溃口后的洪水流量及溃口内外洪水水位变化过程,模拟溃口宽度168 m,最大溃口洪水流量达到5 190 m3,分析了堤防溃决后3、6和24 h洪水漫延导致村落淹没情况,结果表明其满足合理性分析。  相似文献   

2.
Groundwater constitutes the main source of water supply in the High Mekerra watershed of northwestern Algeria. This resource is currently under heavy pressures to meet the growing needs of drinking water and irrigation. This study assesses the geochemical characteristics of groundwater of the High Mekerra watershed at 21 points distributed across the two main aquifers (Ras El Ma and Mouley Slissen) in the region. Hydrochemical facies of Ras El Ma groundwater are dominantly MgCl and CaCl type, while those of Mouley Slissen groundwater are of CaHCO3 type. Principal component analysis shows a strong correlation between groundwater mineralization and Ca2+, Na+, Cl? and SO4 2? ions stemming from the dissolution of carbonates, gypsum and anhydrite. Groundwater mineralization evolves from south to north. Geochemical modeling shows that the High Mekerra groundwater is saturated with respect to calcite and dolomite and undersaturated with respect to gypsum and anhydrite. Nitrate concentrations that exceed the WHO standard (50 mg L?1) at several points are linked to the agro-pastoral activities in this region.  相似文献   

3.
The historical records show that the Northwestern Algeria has experienced more than 130 floods, which were sometimes catastrophic. They caused more than 1000 deaths and significant damage. In this work, we try to reconstruct the most devastating and deadly historical flood that occurred on November 26 and 27, 1927. This event is interesting to discuss disaster scenario because of its extent and impacts and the availability of data. For this purpose, we used historical press reports, scientific papers, and archival reports. This work allowed the reconstruction of the hydroclimatic situation during the flood and the regional scale impacts. It presents also the catastrophic flooding of the Ain Sefra river at Mostaganem and that of El Hammam river, as well as the Fergoug dam breaking at Mohammadia. The main factor triggering these floods was the heavy rainfall. Other factors have increased the damage such as the occupation of high-risk areas and the human failure. This event caused 430 killed persons, more than 1200 disaster victims, and around one billion francs losses. These effects evidence the high vulnerability of the Northwestern Algeria to the occurrence of floods. For that, if a similar event occurs in the future, it can be extremely negative.  相似文献   

4.
In this paper, the lumped quasi-distributed hydrological model HEC HMS is used to simulate the rainfall–runoff process of the Mekerra watershed, located in the northwest of Algeria. The model parameters’ uncertainty and the predictive intervals were evaluated with the generalized likelihood uncertainty estimation (GLUE) approach. According to the results, good simulations were obtained with different values of variables for many sets of parameters generated randomly by the Monte Carlo procedure, which is known as Equifinality. After the analysis, only the hydraulic conductivity at saturation parameter appears well defined, taking values within a limited range. In addition, results indicated that combinations of likelihood measures associated with multiple and different periods of observations reduce a posterior uncertainty of estimated parameters and predictive intervals in some degree. Overall, the GLUE analysis showed that there is a significant uncertainty associated with hydrological modelling of watershed Mekerra, to a great extent due to multiple sources of errors.  相似文献   

5.
Risk, including flood risk, can be defined as ??the combination of the probability of an event and its consequences??. Assessing and managing the risk from flooding should explicitly include the estimation of impacts to people. Extensive research is currently ongoing looking at both quantitative and qualitative approaches for assessing flood impacts on people. Although there is some literature available on such approaches, examples of methodological and routinely applications of these methodologies as part of flood risk assessments are rare. This paper focuses on quantitative approaches for estimating impacts of flooding to people, notably on methods for assessing fatality numbers associated with flooding. Three methods for assessing losses of life are discussed in detail. The methods discussed here constitute the forefront of research in Canada, UK and The Netherlands. These methods provide an assessment of the physical consequences of flooding on people and can be used to introduce the impacts to people as quantitative metric for the assessment of flood risk. In this paper, the three methodologies are discussed and applied in a UK case study reproducing the 1953 East Coast flood event. This study aims to provide a comprehensive comparison on both the reliability and the applicability of the methods. We analyse possible added values on using of these methods in systematic analyses, aiming to provide guidelines for applying these methods for flood fatality risk assessment.  相似文献   

6.
T. Mahdi 《Natural Hazards》2007,42(1):225-236
The direct consequences of exceptional floods are usually considered to be limited to the maximum flooding zone created downstream. However, considering the magnitude of the flows, the morphology of the flooded zone could undergo deep changes. To predict the hazard zone on a river undergoing exceptional flooding, numerical simulations are widely used. In this article, the simulation of the evolution of river reaches resulting from such catastrophic events is performed by coupling the hydraulic and sediment transport numerical model GSTARS with a developed slope stability model based on the Bishop’s simplified method. This is a novel methodology for the delimitation of hazard zones along riverbanks by taking into consideration not only the flood risks but also the possible induced landslides. Indeed, each section of the river reach is subject to changes caused by the river hydraulics and the associated erosion or sediment deposition and also undergoes profile changes caused by possible landslides. The initial hydraulic and geotechnical characteristics are first defined and then used to test the stability of several slopes of representative sections of the river reaches before the dam break. Validation tests are performed on specific reaches of the Outaouais River (Quebec) undergoing a dam break flood.  相似文献   

7.
C. Neuhold 《Natural Hazards》2013,65(3):2015-2030
Landfills are mainly located in lowland areas close to settlements inducing flood risk of potential environmental contamination and adverse health effects. During recent flood events, numerous landfill sites were reportedly exposed to inundations, leading to erosion of landfilled material and release of pollutants threatening humans and the environment. Although emissions from landfills under regular operating conditions are well investigated, the behaviour and associated emissions in case of flooding are widely unknown. To enable environmental risk management, flood-prone landfills must be identified to establish priorities for subsequent protection and mitigation measures. This paper presents two flood risk assessment approaches at different spatial scales: a macro-scale assessment approach (MaSA) and a micro-scale assessment approach (MiSA). Both methodologies aim to determine the proportion of landfills endangered by flooding, and evaluate the impacts. The latter are expressed by means of risk categories (minor to serious) of impacts that flooded sites might have on humans and the environment. The evaluation of 1,064 landfills in Austria based on MaSA yields roughly 30 % of landfills located within or close to flood risk zones. Material inventories of 147 sites exposed to flooding are established, and potential emissions during a flood event are estimated. Three representative case study areas are selected and investigated in detail by applying the MiSA approach based on 2D hydrodynamic models to calculate flow depths and shear stress and by developing emission scenarios to validate the macro-scale screening approach (MaSA). The applications of MiSA and MaSA outlines that hazardous emissions due to flooding can lead to significant impacts on the environment. Uncertainty associated with related processes and data sources is considerably high. Nevertheless, both MiSA and MaSA provide a decision support tool to identify landfills with imminent risk for humans and the environment. Therefore, the described methodologies provide toolsets to enable environmental risk reduction by applying a priority-ranked flood risk management.  相似文献   

8.
Basins across Mediterranean coast are often subject to rapid inundation phenomena caused by intense rainfall events. In this flash flooding regime, common practices for risk mitigation involve hydraulic modeling, geomorphic, and hydrologic analysis. However, apart from examining the intrinsic characteristics of a basin, realistic flood hazard assessment requires good understanding of the role of climatic forcing. In this work, peak rainfall intensities, total storm accumulation, average intensity, and antecedent moisture conditions of the 52 most important storms in record, during the period from 1993 to 2008, in northeast Attica, in Greece, are examined to investigate whether there is a correlation between specific rainfall conditions and flood triggering in the area. For this purpose, precipitation data from a network of five rain gauges installed across the study area were collected and analyzed. Storms totals, average intensity, antecedent moisture conditions, and peak intensities variations were calculated and compared with local flooding history. Results showed that among these rainfall measures, only peak storm intensity presents a significant correlation with flood triggering, and a rainfall threshold above which flooding becomes highly probable can be defined.  相似文献   

9.
Coastal regions are the areas most threatened by natural hazards, with floods being the most frequent and significant threat in terms of their induced impacts, and therefore, any management scheme requires their evaluation. In coastal areas, flooding is a hazard associated with various processes acting at different scales: coastal storms, flash floods, and sea level rise (SLR). In order to address the problem as a whole, this study presents a methodology to undertake a preliminary integrated risk assessment that determines the magnitude of the different flood processes (flash flood, marine storm, SLR) and their associated consequences, taking into account their temporal and spatial scales. The risk is quantified using specific indicators to assess the magnitude of the hazard (for each component) and the consequences in a common scale. This allows for a robust comparison of the spatial risk distribution along the coast in order to identify both the areas at greatest risk and the risk components that have the greatest impact. This methodology is applied on the Maresme coast (NW Mediterranean, Spain), which can be considered representative of developed areas of the Spanish Mediterranean coast. The results obtained characterise this coastline as an area of relatively low overall risk, although some hot spots have been identified with high-risk values, with flash flooding being the principal risk process.  相似文献   

10.
Hydrodynamic flow modeling is carried out using a coupled 1D and 2D hydrodynamic flow model in northern India where an industrial plant is proposed. Two flooding scenarios, one considering the flooding source at regional/catchment level and another considering all flooding sources at local level have been simulated. For simulating flooding scenario due to flooding of the upstream catchment, the probable maximum flood (PMF) in the main river is routed and its flooding impact at the plant site is studied, while at the local level flooding, in addition to PMF in the main river, the probable maximum precipitation at the plant site and breaches in the canals near the plant site have been considered. The flood extent, depth, level, duration and maximum flow velocity have been computed. Three parameters namely the flood depth, cross product of flood depth and velocity and flood duration have been used for assessing the flood hazard, and a flood hazard classification scheme has been proposed. Flood hazard assessment for flooding due to upstream catchment and study on local scale facilitates determination of plinth level for the plant site and helps in identifying the flood protection measures.  相似文献   

11.
A well-balanced finite volume method for solving two-dimensional shallow water equations with weighted average flux (WAF) is developed in this work to simulate flooding. Friction source terms are estimated with a semi-implicit scheme resulting in an efficient numerical method for simulating shallow water flows over irregular domains, for both wet and dry beds. A wet/dry cell tracking technique is also presented for reducing computational time. The accuracy of these methods are investigated by application to well-studied cases. For practical purposes, the developed scheme is applied to simulate the flooding of the Chao Phraya river from Chai Nat to Sing Buri provinces in Thailand during October 13–17, 2011. The numerical simulations yield results that agree with the existing data obtained from the satellite images.  相似文献   

12.
Current flood protection policies in the Netherlands are based on design water levels. This concept does not allow for a proper evaluation of costs and benefits of flood protection. Hence, research is being carried out on the introduction of a flood risk approach, which looks into both the probability of flooding and the consequences of flooding. This research is being carried out within the framework of a major project called the Floris project (FLOod RISk in the Netherlands). To assess the probability of flooding the Floris project distinguishes different failure modes for dikes and structures within the dike ring. Based on a probabilistic analysis of both loads and resistance the probability of failure is determined for each failure mode. Subsequently the probabilities of failure for different failure modes and dike sections are integrated into an estimate of the probability of flooding of the dike ring as a whole. In addition the Floris project looks into the different consequences of flooding, specifically the economic damages and the number of casualties to be expected in case of flooding of a particular dike ring. The paper describes the approach in the Floris project to assess the flood risk of dike rings in the Netherlands. One of the characteristics of the Floris project is the explicit attention to different types of uncertainties in assessing the probability of flooding. The paper discusses the different starting-points adopted and presents an outline on how the Floris project will deal with uncertainties in the analysis of weak spots in a dike ring as well as in the cost benefit analysis of flood alleviation measures.  相似文献   

13.
基于Godunov格式的溃坝水流数学模型   总被引:5,自引:1,他引:4       下载免费PDF全文
为了更好地把握溃坝洪水风险,减小因溃坝洪水而造成的人员生命和财产损失,建立了基于Godunov格式的一维、二维溃坝水流耦合数学模型。一维溃坝水流模型采用HLL格式的有限体积法求解,二维溃坝水流模型采用基于非结构网格的Roe格式离散求解,在一维、二维模型的链接处采用重叠计算区域的方法实现一维模型和二维模型之间的水力要素信息交换。经弯道溃坝算例和断面突变溃坝算例验证,该耦合模型具有良好的可靠性和适用性,验证后的耦合模型为大尺度的溃坝水流数值模拟打下了基础。  相似文献   

14.
Despite massive investment in flood control infrastructure (FCI), neither cities nor rivers have been well served—flooding continues to challenge cities around the world, while riverine ecosystems are degraded by FCI. Although new flood hazard management concepts have shifted the focus away from FCI, many cities continue to count on FCI to prevent flood damage. It is assumed that existing built-up areas can only count on FCI, as large-scale retreat is often impossible. However, flood adaptation—retrofitting the built environment to prevent damage during flooding—as an option is often ignored. This paper argues against the continual use of FCI to prevent flood damage by reviewing FCI’s established problems. The paper examines human–river interactions associated with FCI, focusing on the feedback mechanisms in the interactions, with a case study on the Lower Green River (LGR) valley in King County, Washington, USA. An urban ecology research model is employed to organize the case study, where interactions between floodplain urbanization, FCI, flow and sediment changes, flood risk, and riverine ecosystem are explored and two feedback mechanisms—river adjustment and flood risk perception—are explicitly addressed. The resulting complex dynamics, in terms of cross–scale interactions, emergence, nonlinearity, and surprises, are synthesized and limitations of FCI outlined. Flood adaptation is explored as a plausible alternative to flood control to nurture flood resilience. A management scenario of flood adaptation for the City of Kent—the largest municipality in the LGR valley—is developed to discuss the implications of flood adaptation on flood risk and river restoration.  相似文献   

15.

Frequent flood is a concern for most of the coastal regions of India. The importance of flood maps in governing strategies for flood risk management is of prime importance. Flood inundation maps are considered dependable output generated from simulation results from hydraulic models in evaluating flood risks. In the present work, a continuous hydrologic-hydraulic model has been implemented for mapping the flood, caused by the Baitarani River of Odisha, India. A rainfall time-series data were fed into the hydrologic model and the runoff generated from the model was given as an input into the hydraulic model. The study was performed using the HEC-HMS model and the FLO-2D model to map the extent of flooding in the area. Shuttle Radar Topographic Mission (SRTM) 90 m Digital Elevation Model (DEM) data, Land use/Land cover map (LULC), soil texture data of the basin area were used to compute the topographic and hydraulic parameters. Flood inundation was simulated using the FLO-2D model and based on the flow depth, hazard zones were specified using the MAPPER tool of the hydraulic model. Bhadrak District was found to be the most hazard-prone district affected by the flood of the Baitarani River. The result of the study exhibited the hydraulic model as a utile tool for generating inundation maps. An approach for assessing the risk of flooding and proper management could help in mitigating the flood. The automated procedure for mapping and the details of the study can be used for planning flood disaster preparedness in the worst affected area.

  相似文献   

16.
Flood and sediment disasters caused by glacial lake outbursts have occurred frequently in recent years in the Himalayas of Nepal. Glacial lake outburst floods (GLOFs) can cause catastrophic flooding in downstream areas with serious damage to lives and property. It is thus important to investigate outburst floods from potentially dangerous glacial lakes. In this study, the characteristics of potential outburst floods from the Tsho Rolpa glacial lake due to two types of moraine dam failure caused by seepage flow or water overtopping were analyzed with various scenarios by using integrated modeling system of three numerical models: (1) the flow and bed-surface erosion model, (2) the seepage model and (3) the slope stability model. Flood inundation areas were also identified by using the numerical model of the flow and moraine dam failure and geographical information system tools. Possible threats and damages due to the potential GLOF events from the lake were also analyzed based on numerical results, flood inundation maps and field investigations.  相似文献   

17.
Two-dimensional dam break flooding simulation: a GIS-embedded approach   总被引:2,自引:2,他引:0  
In the twenty-first century, around 200 notable dam and reservoir failures happened worldwide causing massive fatalities and economic costs. In order to reduce the losses, managers usually define mitigation strategies identifying flooding area due to dam break by using standalone hydrodynamic models and then importing the results within a GIS to perform risk analysis. This two-step procedure is time expensive, error prone due to export/import requirements and not user friendly. For this reason with this work, a new numerical model for the solution of the two-dimensional dam break problem has been implemented in the GRASS GIS with a GIS-embedded approach. The model solves the conservative form of the 2D shallow water equations using a finite volume method; the intercell flux is computed by one-side upwind conservative scheme extended to a two-dimensional problem. The newly developed GIS module, among others outputs, allows to derive maximum intensity maps that can be directly used for risk assessment. Finally, the model has been (1) tested against two standard synthetic problems referenced in literature showing differences in estimated water depth of 2, 3 and 15% and (2) verified against official flooding map of an existing dam (Verzasca) detecting 75% of similarity. The problem formulation, the new GRASS module and its validation is presented.  相似文献   

18.
Hydrological parameters are among the widely used parameters in assessing flood risk. On the other hand, anticipated flood damages, in case of flooding, are estimated with the help of expected losses in areas nearer to the watercourse. The major source of almost every-year flooding in Pakistan is the Indus River system that comprises the major rivers of Pakistan. We first use observed data to construct simulated data models based on various probability distributions namely normal, lognormal, Weibull, largest extreme value, gamma-3, and log-Pearson type-3 distributions and thereby compute probable maximum flood. Secondly, we perform log-Pearson type-3 analysis with and without historic adjustment on the observed data series of 17 years to forecast floods with return periods T of 2, 5, 10, 25, 50, 100, and 200 years. We also categorize the river structures based on the risk of flooding. Lastly, we estimate risk of flood damages in terms of expected losses based on observed data. The present study reveals that the log-Pearson type-3 distribution is relatively better for estimating probable maximum flood. We use exceedence probability to assess the risk of flooding in the various structures of the said rivers. The analysis shows that flood damages in Pakistan may be reduced by increasing the design capacity of the structures and also by giving awareness to people about the flood-generating factors.  相似文献   

19.
Considering that urban areas may suffer more substantial losses than riparian farmlands during floods, diverting floodwater into riparian areas for temporal detention is expected to mitigate flood damage in downstream urban areas. In this study, an assessment has been conducted to evaluate the effect of flood mitigation through riparian detention in response to a changing climate in the Tou-Chien River basin of Taiwan. An integrated 1D–2D flow model was used to simulate the movement of flood wave in the main stream and the overbank flow inundating into the nearby lowlands. Based on the numerical simulation results, the flooding extents in the basin corresponding to different return periods of flood using existing flood prevention infrastructures were investigated. A detention strategy by lowering the levee along the riparian farmlands was proposed to avoid severe flooding in the densely populated urban areas of the basin. Research findings showed that the proposed detention measure can completely protect the downstream areas from overbank flooding when a flood having 20-yr period occurs, and can effectively alleviate the downstream flooding area from 27.4 to \(7.6\,\hbox {km}^{2}\) for a flood possessing 200-yr period.  相似文献   

20.
Extreme sea-level events (e.g. caused by storm surges) can cause coastal flooding, and considerable disruption and damage. To understand the impacts or hazards expected by different sea levels, waves and defence failures, it is useful to monitor and analyse coastal flood events, including generating numerical simulations of floodplain inundation. Ideally, any such modelling should be calibrated and validated using information recorded during real events, which can also add plausibility to synthetic flood event simulations. However, such data are rarely compiled for coastal floods. This paper demonstrates the capture of such a flood event dataset, and its integration with defence and floodplain modelling to reconstruct, archive and better understand the regional impacts of the event. The case-study event comprised a significant storm surge, high tide and waves in the English Channel on 10 March 2008, which resulted in flooding in at least 37 distinct areas across the Solent, UK (mainly due to overflow and outflanking of defences). The land area flooded may have exceeded 7 km2, with the breaching of a shingle barrier at Selsey contributing to up to 90 % of this area. Whilst sea floods are common in the Solent, this is the first regional dataset on flood extent. The compilation of data for the validation of coastal inundation modelling is discussed, and the implications for the analysis of future coastal flooding threats to population, business and infrastructure in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号