首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reason for obduction, or tectonic transport of oceanic lithosphere onto continents, is investigated by two‐dimensional thermo‐mechanical numerical modelling based on the geology of the Anatolia–Lesser Caucasus ophiolites. Heating of the oceanic domain and extension induced by far‐field plate kinematics appear to be essential for the obduction of ~80‐Ma‐old oceanic crust over distances exceeding 200 km. Heating of the oceanic lithosphere by mantle upwelling is evidenced by a thick alkaline volcanic series emplaced on top of the oceanic crust 10–20 Ma before obduction, at the onset of Africa–Eurasia convergence. Regional heating reduced the negative buoyancy and strength of the magmatically old lithosphere. Extension facilitated the propagation of obduction by reducing the mantle lithosphere thickness, which led to the exhumation of eclogite‐free continental crust previously underthrusted beneath the ophiolites. This extensional event is ascribed to far‐field plate kinematics resulting from renewed Neotethys oceanic subduction beneath Eurasia.  相似文献   

2.
内蒙古索伦山地区出露蛇绿岩,其研究对探讨古亚洲洋演化具有重要意义。对内蒙古索伦山地区蛇绿岩进行了系统的调查和研究,探讨了其就位机制与时限。 结合索伦山蛇绿岩地质特征和区域地质背景综合分析,认为研究区蛇绿岩组合包括地幔与洋壳组分。索伦山地区蛇绿岩存在较为完整的蛇绿岩组合模式,出露地幔岩石组合为蛇纹石化纯橄榄岩、蛇纹石化二辉-方辉橄榄岩、橄榄辉石岩和硅化碳酸盐化蚀变超基性岩(风化壳)等。蛇绿岩组合中洋壳组分为辉长岩、辉绿岩、玄武岩和硅质岩。蛇绿岩就位机制划分为4种,即碰撞仰冲型、增生底垫型、俯冲剥离型和角流型。其中,俯冲剥离型就位机制表现为岩石组合齐全完整的特征,产出形态为岩块、岩片,其中岩块、岩片与基质为构造断层接触;在俯冲带近大陆一侧常形成岛弧岩浆岩等特征。索伦山蛇绿岩地质特征与俯冲剥离型就位机制特征完全相符,故索伦山蛇绿岩就位机制大致为洋中脊俯冲剥离型。根据大洋岩石圈形成之后在10 Ma之内就位这一原则,结合索伦山地区辉长岩SHRIMP锆石U Pb年龄为(2807±53) Ma,认为索伦山蛇绿岩就位时限在270 Ma左右。  相似文献   

3.
早前寒武纪洋壳的地质记录及其板块构造意义   总被引:5,自引:0,他引:5  
元古宙蛇绿岩的不断发现表明威尔逊旋回至少在早元古代已经明显起作用,部分太古宙绿岩带由不同的构造单元拼合而成,并发育不同于显生宙蛇绿岩的大洋壳岩石组合,地幔柱在早太古代构造演化过程中起重要作用,是板块构造的重要补充机制,地球早期热产量较高,可能是造成板块规模较小,洋壳较厚,板块运动速度较快的原因,并以缓倾角俯冲为特征。  相似文献   

4.
The Limousin ophiolite is located at the suture zone between two major thrust sheets in the western French Massif Central. This ophiolitic section comprises mantle‐harzburgite, mantle‐dunite, wehrlites, troctolites and layered gabbros. It has recorded a static metamorphic event transforming the gabbros into undeformed amphibolites and the magmatic ultramafites into serpentinites and/or pargasite‐bearing chloritites. With various thermobarometric methods, it is possible to show that the different varieties of amphibole have registered low‐P (c. 0.2 GPa) conditions with temperature ranging from high‐T, late‐magmatic conditions to greenschist–zeolite metamorphic facies. The abundance of undeformed metamorphic rocks (which is typical of the lower oceanic crust), the occurrence of Ca–Al (–Mg) metasomatism illustrated by the growth of Ca–Al silicates in veins or replacing the primary magmatic minerals, the PT conditions of the metamorphism and the numerous similarities with oceanic crustal rocks from Ocean Drilling Program and worldwide ophiolites are the main arguments for an ocean‐floor hydrothermal metamorphism in the vicinity of a palaeo‐ridge. Among the West‐European Variscan ophiolites, the Limousin ophiolites constitute an extremely rare occurrence that has not been involved in any HP (subduction‐related) or MP (orogenic) metamorphism as observed in other ophiolite occurrences (i.e. France, Spain and Germany).  相似文献   

5.
The evolution of Central Asiatic geosynclines through sea-floor spreading   总被引:1,自引:0,他引:1  
Late Precambrian-Early Paleozoic and Middle Paleozoic oceanic basins are reconstructed in the orogenic belt of Central Asia. These basins coincide with eugeosynclinal ophiolites which can be considered as remnants of a former oceanic floor. As these ophiolites are of decreasing age from the edges of the eugeosynclinal zones toward their centres, one can assume the creation of an ancient oceanic basin by a sea-floor spreading process. Restored oceanic basins can be considered as analogues of present marginal and inland seas. The distinct structural-magmatic zonal pattern came into existence during the generation of a given oceanic basin. This pattern appears to be governed by the ancient Benioff zone along which energy and light lithophile substance ascended as mantle diapir.  相似文献   

6.
This paper is a synthesis of structural and geochronological data from eastern Mediterranean ophiolitic metamorphic rocks and surrounding units to interpret the intra‐oceanic subduction and ophiolite emplacement mechanism.

Metamorphic rocks occur as discontinuous tectonic slices at the base of the ophiolites, generally between the peridotite tectonites and volcanic‐sedimentary units, and locally in fault zones in the overlying peridotites. They consist essentially of amphibolite, and in lesser quantities, micaschist, quartzite, epidotite and marble.

Geological and geochronological data indicate that recrystallization of the metamorphic rocks occurred in the oceanic environment. The contact between the metamorphic rocks and the hanging‐wall is parallel to the foliation of the metamorphic rocks, and is interpreted as the fossil plane of intra‐oceanic subduction. Structural relationships suggest that intra‐oceanic subduction was situated between two lithospheric blocks separated by an oceanic fracture zone. Therefore the Neotethyan ophiolites with metamorphic soles represent the remnants of the overriding oceanic lithosphere's training slices of the metamorphic rocks at the base.

In the Anatolian region, radiometric dating of metamorphic rocks from the Taurus and Izmir‐Ankara‐Erzincan zone ophiolites yield nearly identical ages. Besides, palaeontological and structural data indicate coeval opening and similar oceanic ridge orientation. Consequently it is highly probable that Taurus and Izmir‐Ankara‐Erzincan zone ophiolites represent fragments of the same oceanic lithosphere derived from a single spreading zone. Palaeontological data from underlying volcanic and sedimentary units point out that the opening of the Neotethyan ocean occurred during Late Permian‐Middle Triassic time in the Iranian‐Oman region, during Middle Triassic in Dinaro‐Hellenic area, and finally during Late Triassic in the Anatolian region.

Radiometric dating of the metamorphic rocks exhibit that the intra‐oceanic thrusting occurred during late Lower‐early Late Jurassic for Dinaro‐Hellenic ophiolites, late Lower‐early Late Cretaceous for Anatolian, Iranian and Oman ophiolites well before their obduction on the Gondwanian continent. Neotethyan ophiolites were obducted onto various sections of the Gondwanian continent from late Upper Jurassic to Palaeocene time, Dinaro‐Hellenic ophiolites during late Upper Jurassic‐early Lower Cretaceous onto the Adriatic promontory, Anatolian, Iranian and Oman ophiolites from late Lower Cretaceous to Palaeocene onto the Aegean, Anatolian and Arabic promontories.  相似文献   

7.
《Gondwana Research》2015,28(4):1560-1573
We used Os isotopic systematics to assess the geochemical relationship between the lithospheric mantle beneath the Balkans (Mediterranean), ophiolitic peridotites and lavas derived from the lithospheric mantle. In our holistic approach we studied samples of Tertiary post-collisional ultrapotassic lavas sourced within the lithospheric mantle, placer Pt alloys from Vardar ophiolites, peridotites from nearby Othris ophiolites, as well as four mantle xenoliths representative for the composition of the local mantle lithosphere. Our ultimate aim was to monitor lithospheric mantle evolution under the Balkan part of the Alpine-Himalayan belt. The observations made on Os isotope and highly siderophile element (HSE) distributions were complemented with major and trace element data from whole rocks as well as minerals of representative samples. Our starting hypothesis was that the parts of the lithospheric mantle under the Balkans originated by accretion and transformation of oceanic lithosphere similar to ophiolites that crop out at the surface.Both ophiolitic peridotites and lithospheric mantle of the Balkan sector of Alpine-Himalayan belt indicate a presence of a highly depleted mantle component. In the ophiolites and the mantle xenoliths, this component is fingerprinted by the low clinopyroxene (Cpx) contents, low Al2O3 in major mantle minerals, together with a high Cr content in cogenetic Cr-spinel. Lithospheric mantle-derived ultrapotassic melts have high-Fo olivine and Cr-rich spinel that also indicate an ultra-depleted component in their mantle source. Further resemblance is seen in the Os isotopic variation observed in ophiolites and in the Serbian lithospheric mantle. In both mantle types we observed an unusual increase of Os abundances with increase in radiogenic Os that we interpreted as fluid-induced enrichment of a depleted Proterozoic/Archaean precursor. The enriched component had suprachondritic Os isotopic composition and its ultimate source is attributed to the subducting oceanic slab. On the other hand, a source–melt kinship is established between heterogeneously metasomatised lithospheric mantle and lamproitic lavas through a complex vein + wall rock melting relationship, in which the phlogopite-bearing pyroxenitic metasomes with high 187Re/188Os and extremely radiogenic 187Os/188Os > 0.3 are produced by recycling of a component ultimately derived from the continental crust.We tentatively propose a two-stage process connecting lithospheric mantle with ophiolites and lamproites in a geologically reasonable scenario: i) ancient depleted mantle “rafts” representing fragments of lithospheric mantle “recycled” within the convecting mantle during the early stages of the opening of the Tethys ocean and further refertilized, were enriched by a component with suprachondritic Os isotopic compositions in a supra-subduction oceanic environment, probably during subduction initiation that induced ophiolite emplacement in Jurassic times. Fluid-induced partial melts or fluids derived from oceanic crust enriched these peridotites in radiogenic Os; ii) the second stage represents recycling of the melange material that hosts above mantle blocks, but also a continental crust-derived terrigenous component accreted to the mantle wedge, that will later react with each other, producing heterogeneously distributed metasomes; final activation of these metasomes in Tertiary connects the veined lithospheric mantle and lamproites by vein + wall rock partial melting to generate lamproitic melts. Our data are permissive of the view that the part of the lithospheric mantle under the Balkans was formed in an oceanic environment.  相似文献   

8.
Diamonds have been discovered in mantle peridotites and chromitites of six ophiolitic massifs along the 1300 km‐long Yarlung‐Zangbo suture (Bai et al., 1993; Yang et al., 2014; Xu et al., 2015), and in the Dongqiao and Dingqing mantle peridotites of the Bangong‐Nujiang suture in the eastern Tethyan zone (Robinson et al., 2004; Xiong et al., 2018). Recently, in‐situ diamond, coesite and other UHP mineral have also been reported in the Nidar ophiolite of the western Yarlung‐Zangbo suture (Das et al., 2015, 2017). The above‐mentioned diamond‐bearing ophiolites represent remnants of the eastern Mesozoic Tethyan oceanic lithosphere. New publications show that diamonds also occur in chromitites in the Pozanti‐Karsanti ophiolite of Turkey, and in the Mirdita ophiolite of Albania in the western Tethyan zone (Lian et al., 2017; Xiong et al., 2017; Wu et al., 2018). Similar diamonds and associated minerals have also reported from Paleozoic ophiolitic chromitites of Central Asian Orogenic Belt of China and the Ray‐Iz ophiolite in the Polar Urals, Russia (Yang et al., 2015a, b; Tian et al., 2015; Huang et al, 2015). Importantly, in‐situ diamonds have been recovered in chromitites of both the Luobusa ophiolite in Tbet and the Ray‐Iz ophiolite in Russia (Yang et al., 2014, 2015a). The extensive occurrences of such ultra‐high pressure (UHP) minerals in many ophiolites suggest formation by similar geological events in different oceans and orogenic belts of different ages. Compared to diamonds from kimberlites and UHP metamorphic belts, micro‐diamonds from ophiolites present a new occurrence of diamond that requires significantly different physical and chemical conditions of formation in Earth's mantle. The forms of chromite and qingsongites (BN) indicate that ophiolitic chromitite may form at depths of >150‐380 km or even deeper in the mantle (Yang et al., 2007; Dobrthinetskaya et al., 2009). The very light C isotope composition (δ13C ‐18 to ‐28‰) of these ophiolitic diamonds and their Mn‐bearing mineral inclusions, as well as coesite and clinopyroxene lamallae in chromite grains all indicate recycling of ancient continental or oceanic crustal materials into the deep mantle (>300 km) or down to the mantle transition zone via subduction (Yang et al., 2014, 2015a; Robinson et al., 2015; Moe et al., 2018). These new observations and new data strongly suggest that micro‐diamonds and their host podiform chromitite may have formed near the transition zone in the deep mantle, and that they were then transported upward into shallow mantle depths by convection processes. The in‐situ occurrence of micro‐diamonds has been well‐demonstrated by different groups of international researchers, along with other UHP minerals in podiform chromitites and ophiolitic peridotites clearly indicate their deep mantle origin and effectively address questions of possible contamination during sample processing and analytical work. The widespread occurrence of ophiolite‐hosted diamonds and associated UHP mineral groups suggests that they may be a common feature of in‐situ oceanic mantle. The fundamental scientific question to address here is how and where these micro‐diamonds and UHP minerals first crystallized, how they were incorporated into ophiolitic chromitites and peridotites and how they were preserved during transport to the surface. Thus, diamonds and UHP minerals in ophiolites have raised new scientific problems and opened a new window for geologists to study recycling from crust to deep mantle and back to the surface.  相似文献   

9.
Regional geological evidence appears to be incompatible with the hypothesis that the alpine-type ophiolites, which are found at numerous localities on the northern margins of the Arabian and Indian continental blocks, represent oceanic lithosphere emplaced by obduction. All of them were emplaced during the same brief period in the Late Cretaceous, at which time these Gondwana continents were at varying distances from Eurasia and were drifting passively northwards towards a north-dipping subduction zone at the opposing, northern side of the closing Tethys ocean: they were apparently emplaced on inactive continental margins which show no evidence of underlying subduction or, necessarily, of compression. As a possible solution to the problem of their origin, it is suggested that they reached their present positions above the miogeosynclines on the continental margins by means of gravitational gliding from an uplift, caused by the intrusion/extrusion of mantle material at a locus of weakness along those margins. Although some material from the former Tethys floor may be included, the ophiolites are thought to consist primarily of mantle material that has broken through the earth's surface under conditions of tension. The necessary identification of ophiolites as fragments of oceanic lithosphere, as marking former plate boundaries, and as indicative of a compressive environment, should be regarded with caution.  相似文献   

10.
蛇绿岩研究的进展   总被引:12,自引:0,他引:12  
近几年蛇绿岩的研究已取得显著的进展,主要反映在下述几个方面:1.对于蛇绿岩的概念已有了新的认识,蛇绿岩代表古代的大洋岩石圈碎片,但并非正常的大洋岩石圈;2.关于蛇绿岩的多样性已经提出了许多不同的见解,最近有关特提斯与环太平洋蛇绿岩的对比研究使许多作者得出结论,它们具有不同的特征;3.蛇绿岩源区的研究表明,蛇绿岩并非唯一地来自亏损的软流圈地幔,不同地幔端元之间的混合以及来自陆壳物质的混染作用也是常见的现象;4.早元古代蛇绿岩的发现。预期90年代,在蛇绿岩的多样性、地幔岩部分熔融、岩浆来源、蛇绿岩的侵位机制以及蛇绿岩与高压变质作用等方面将取得长足的进展.  相似文献   

11.
青藏高原西部蛇绿岩类型:岩石学与地球化学证据   总被引:22,自引:0,他引:22  
对青藏高原西部地区的班公湖蛇绿岩、狮泉河蛇绿岩、雅鲁藏布江西段蛇绿岩和普兰—当穷蛇绿岩带中代表性岩体的地质学、岩石化学、稀土元素、微量元素、Pb、Sr同位素地球化学研究表明,青藏高原西部地区4条蛇绿岩中的地幔橄榄岩主要为方辉橄榄岩和少量纯橄岩,岩石化学成分具有富镁、贫铝、钙、碱的特点;论述了地幔橄榄岩轻稀土元素富集是由于先经历了较强的部分熔融,后经历了俯冲消减过程中的流体交代的二次过程;微量元素中大离子亲石元素Rb、不活动元素Nb、Zr、Hf和放射性生热元素Th等元素的丰度较高,以及Ti、Sm、Y、Yb等强不相容元素亏损的特点,与交代地幔岩特征类似;Pb、Sr同位素组成具有明显的壳源组分混入的特点,说明青藏高原西部的蛇绿岩曾受洋壳俯冲消减过程中的流体交代作用,蛇绿岩产于SSZ构造环境。对比青藏高原东部、三江、西昆仑地区以及形成于典型的SSZ环境的Troodos蛇绿岩中的地幔橄榄岩,就岩石化学富MgO、轻稀土元素富集而言,它们具有与青藏高原西部基本一致的地质地球化学特征,结合与俯冲岩浆作用有关的玻安岩和埃达克岩产出,说明可能包括三江、西昆仑库地在内的青藏高原不同时代蛇绿岩都主要形成于俯冲消减环境,属于SSZ型蛇绿岩。  相似文献   

12.
豆荚状铬铁矿:古大洋岩石圈残片的重要证据   总被引:16,自引:2,他引:16  
豆荚状铬铁矿为蛇绿岩的特征性矿产 ,保留了上地幔岩浆构造作用、高温变形以及岩石成因的重要信息。它们常见于方辉橄榄岩内 ,位于大洋岩石圈莫霍面下 1~ 2km的古深度范围内。豆荚状铬铁矿常被纯橄岩薄壳围限 ,保留特征的豆状、豆壳状等构造。豆荚状铬铁矿的TiO2 含量较低 ,铂族元素 (PGE)的分布模式显示特征的负斜率。普遍认为 ,豆荚状铬铁矿形成于部分熔融条件下 ,涉及原始地幔熔体与亏损地幔橄榄岩的相互作用 ,伴随复杂的岩浆混合及结晶过程。狭窄的上地幔岩浆通道或孔穴为豆荚状铬铁矿理想的堆积部位。超俯冲带 (弧后盆地、岛弧、弧前 )、大洋中脊、转换断层均可能是豆荚状铬铁矿形成的理想环境。其中 ,洋脊扩张模式及大洋上俯冲带模式较好地解释了豆荚状铬铁矿成因。对于经历高级变质及多期变形的华北大陆基底 ,豆荚状铬铁矿是研究古老蛇绿岩最直接而有效的地质标志 ,对于研究古大洋岩石圈增生过程 ,上地幔演化 ,探索早期板块构造意义重大。  相似文献   

13.
祁连山蛇绿岩带和原特提斯洋演化   总被引:2,自引:1,他引:1  
位于阿拉善地块和柴达木地块之间的祁连造山带记录原特提斯洋扩张、俯冲、闭合、大陆边缘增生和碰撞造山的完整过程。从南向北,祁连造山带发育有三条平行排列、不同类型的蛇绿岩带:(1)南部南祁连洋底高原-洋中脊-弧后蛇绿岩混杂带;(2)中部托勒山洋中脊型蛇绿岩带;(3)北部走廊南山SSZ型蛇绿岩带。南部南祁连蛇绿混杂岩带以拉脊山-永靖蛇绿岩为代表,为典型的洋底高原型蛇绿岩,是大洋板内地幔柱活动的产物,形成年龄为525~500Ma;中部托勒山蛇绿岩带沿熬油沟-玉石沟-冰沟-永登一线分布,为大洋中脊型蛇绿岩,蛇绿岩形成年龄为550~495Ma;北部蛇绿岩带包括弧前和弧后两种类型,弧前蛇绿岩以大岔大阪蛇绿岩为代表,形成时代为517~487Ma,反映初始俯冲/弧前扩张到弧后盆地的过程;弧后蛇绿岩以九个泉-老虎山蛇绿岩为代表,为典型的SSZ型蛇绿岩,是弧后扩张的产物,形成时代为奥陶纪(490~445Ma)。三个蛇绿岩带分别代表了新元古代-早古生代祁连洋演化历史不同环境的产物,对了解秦祁昆构造带原特提斯洋的构造演化过程有重要意义。蛇绿岩及弧火山岩的时空分布特征限定了原特提斯洋的俯冲极性为向北消减俯冲。  相似文献   

14.
杨高学  朱钊  刘晓宇  李海  佟丽莉 《地质学报》2023,97(6):2054-2066
蛇绿岩记录了大洋岩石圈形成、演化、消亡的全过程,是刻画区域板块构造和洋 陆格局演化的关键证据。本文通过系统梳理前人相关研究,总结西准噶尔蛇绿岩最新研究成果,探讨大陆地壳增生方式、恢复古大洋演化历史,从而对西准噶尔构造体制转化提供新制约。西准噶尔地区发育多条震旦纪—石炭纪被构造肢解的蛇绿岩带,具有典型的岩块 基质结构,绝大多数蛇绿岩包括正常洋壳组分和海山/大洋高原残片,其中基性岩具有MORB和OIB的地球化学特征。基于前人研究,本文认为在西准噶尔古大洋发育过程中,发育不同时代与地幔柱有关的海山/大洋高原,同时存在增生型和侵蚀型两类汇聚板块边界。另外,大洋高原增生不仅是大陆地壳增生的有效途径之一,还可能诱发俯冲极性反转和传递。而在大洋高原形成初期,还可能存在地幔柱诱发俯冲起始机制。  相似文献   

15.
Ophiolites exposed across the western Tauride Belt in SW Turkey represent tectonically emplaced fragments of oceanic lithosphere incorporated into continental margin following the closure of the Neotethys Ocean during the Late Cretaceous. The mantle sections of the ophiolites contain peridotites with diverse suites of geochemical signatures indicative of residual origin by melt depletion in both mid‐ocean ridge (MOR) and supra‐subduction zone (SSZ) settings. This study uses a laser‐ablation inductively‐coupled plasma‐mass spectrometry (LA‐ICP‐MS) for in situ measurements of trace elements in primary mantle phases in order to identify the upper mantle petrogenetic processes effective during variable stage of melt extraction in these discrete tectonic settings and to discriminate between the effects of reaction with chemically distinct mantle melts migrating through the solid residues. Trace element signatures in pyroxenes suggest small‐length scales of compositional variations which may be interpreted to be a result of post‐melting petrogenetic processes. Relative distribution of rare earth elements and Li between coexisting orthopyroxene‐clinopyroxene pairs in the peridotites suggests compositional disequilibrium in sub‐solidus conditions, which possibly reflects differential effects of diffusive exchange during melting and melt transport or interaction with subduction melts/fluids. On the basis of Ga abundances and Ga–Ti–Fe+3# [Fe+3/(Fe+3 + Cr + Al)] relationships of chrome‐spinels it is documented that the peridotites have experienced the combined effects of partial melting and variable extent of melt‐solid interaction. The MOR peridotites have spinels with geochemical signatures indicative of melt‐depleted residual origin with subsequent incompatible element enrichment through melt impregnation, while the Ga–Ti–Fe+3# relationships of chrome‐spinels in SSZ peridotites indicate that these highly depleted peridotites are not simple melt residues, but have been subject to significant compositional modification by interaction with subduction related melts/fluids. The observed compositional variations, which are related to long‐term tectonic reorganisation of oceanic lithosphere, provide evidence for a time integrated evolution from a mid‐ocean ridge to a supra‐subduction zone setting and may be a possible analogue to explain the coexistence of geochemically diverse MOR–SSZ suites in other Tethyan ophiolites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The study of geology, geochemistry, rare earth elements, trace elements, Pb and Sr isotopes of representative ophiolite bodies from four ophiolitic belts in the western Qinghai-Tibetan Plateau, shows that the mantle peridotites of these ophiolites are mainly harzburgite in composition, with minor dunite. They are characterized by high magnesium (MgO) and low aluminum, calcium and alkali oxide contents. Enrichment of light rare earth elements in mantle peridotites may be due to two geological processes: relatively strong partial melting; and later metasomatism by the liquids released during the subduction of oceanic crust. Mantle peridotites are characterized by low contents of the trace elements Sr, Ti and Y and relatively high contents of Rb, Nb, Zr, Hf and Th, similar to metasomatic pyrolite. The isotopic compositions of Sr and Pb show evidence of contamination by a crustal component. All the evidence indicates that the four ophiolite belts in the western Qinghai-Tibetean Plateau have undergone metasomatism by liquids released during the subduction of oceanic crust, suggesting that they were formed in a supra-subduction zone (SSZ) tectonic setting. The mantle peridotites in ophiolite belts located in eastern Qinghai-Tibetan Plateau, e.g. Sanjiang and West Kunlun, may be compared with the Troodos, which is regarded as a typical SSZ complex, having the same geochemical characteristics, i.e. high MgO and LREE-rich. The geochemistry, combined with the occurrence of boninite and adakite rocks, which are associated with subduction magmatism, suggest that ophiolites formed at different times in Qinghai-Tibetan Plateau, including Sanjiang and West Kunlun, are all SSZ-type ophiolites formed in a supra-subduction zone tectonic setting.  相似文献   

17.
全球多地蛇绿岩型地幔橄榄岩和铬铁矿中发现微粒金刚石,并在中国西藏南部和俄罗斯乌拉尔北部的蛇绿岩铬铁矿中发现原位产出的金刚石,认为是地球上金刚石的一种新的产出类型,不同于金伯利岩型金刚石和超高压变质型金刚石。它们与呈斯石英假象的柯石英、高压相的铬铁矿和青松矿等高压矿物以及碳硅石和单质矿物等强还原矿物伴生,指示蛇绿岩中的这些矿物组合形成于深度150~300 km或者更深的地幔。金刚石具有很轻的C同位素组成(δ13C-18‰~-28‰),并出现多种含Mn矿物和壳源成分包裹体。研究认为它们曾是早期深俯冲的地壳物质,达到>300 km深部地幔或地幔过渡带后,经历了熔融并产生新的流体,后者在上升过程中结晶成新的超高压、强还原矿物组合,通过地幔对流或地幔柱作用被带回到浅部地幔,由此建立了一个俯冲物质深地幔再循环的新模式。蛇绿岩型地幔橄榄岩和铬铁矿中发现金刚石等深部矿物,质疑了蛇绿岩铬铁矿形成于浅部地幔的已有认识,引发了一系列新的科学问题,提出了新的研究方向。   相似文献   

18.
东秦岭松树沟超镁铁岩侵位机制及其构造演化   总被引:8,自引:1,他引:8       下载免费PDF全文
董云鹏 《地质科学》1997,32(2):173-180
东秦岭松树沟蛇绿岩主要由镁铁质-超镁铁质岩石组成。镁铁质岩类的Sm-Nd全岩等时年龄为1030±46(2δ)Ma,εNd(t)=+5.7±0.2,代表了蛇绿岩的形成时代。超镁铁质岩石由不同成因的橄榄质糜棱岩和中粗粒橄榄岩组成,橄榄质糜棱岩是地幔橄榄岩经历复杂变形并多次部分熔融的残余体,具LREE亏损特征,其中发育橄榄石高温位错构造和高温组构以及低温位错构造和低温组构。中粗粒橄榄岩具LREE略富集的分布特征,是地幔橄榄岩残余体再次部分熔融熔体分离结晶的产物。野外地质、地球化学、构造变形特征均表明超镁铁岩块是因洋壳俯冲而底辟侵位于上覆玄武岩中的地幔橄榄岩残余体。综合分析认为,松树沟蛇绿岩经历了古陆块裂解或洋脊扩张(1271-1440Ma)-洋壳形成(1030-1271Ma)-洋壳俯冲消减-橄榄岩块底辟侵位(983Ma)-蛇绿岩构造侵位及其后构造变形叠加改造的复杂演化过程。  相似文献   

19.
We establish the ‘subduction initiation rule’ (SIR) which predicts that most ophiolites form during subduction initiation (SI) and that the diagnostic magmatic chemostratigraphic progression for SIR ophiolites is from less to more HFSE-depleted and LILE-enriched compositions. This chemostratigraphic evolution reflects formation of what ultimately becomes forearc lithosphere as a result of mantle melting that is progressively influenced by subduction zone enrichment during SI. The magmatic chemostratigraphic progression for the Izu–Bonin–Mariana (IBM) forearc and most Tethyan ophiolites is specifically from MORB-like to arc-like (volcanic arc basalts or VAB ± boninites or BON) because SI progressed until establishment of a mature subduction zone. MORB-like lavas result from decompression melting of upwelling asthenosphere and are the first magmatic expression of SI. The contribution of fluids from dehydrating oceanic crust and sediments on the sinking slab is negligible in early SI, but continued melting results in a depleted, harzburgitic residue that is progressively metasomatized by fluids from the sinking slab; subsequent partial melting of this residue yields ‘typical’ SSZ-like lavas in the latter stages of SI. If SI is arrested early, e.g., as a result of collision, ‘MORB-only’ ophiolites might be expected. Consequently, MORB- and SSZ-only ophiolites may represent end-members of the SI ophiolite spectrum. The chemostratigraphic similarity of the Mariana forearc with that of ophiolites that follow the SIR intimates that a model linking such ophiolites, oceanic forearcs, and SI is globally applicable.  相似文献   

20.
Structural analysis in the well-exposed and well-preserved Neyriz ophiolite suggests that it is a relatively undisturbed piece of oceanic lithosphere. Detailed structural mapping of high-T deformation mantle flow revealed the presence of three elliptical shaped diapirs trending NW–SE. These diapirs are characterized by vertical mantle foliations associated with vertical plunging stretching lineations, which progressively incline toward parallelism with the gently NE-dipping Moho. The NW–SE direction of asthenospheric upwelling of diapirs is parallel with the orientations of the vertical sheeted dike complex. This suggests that the Neyriz ophiolite was created by two NW–SE palaeo-ridge axes. These palaeo-ridges are classified as fast-spreading ridges. These ridges are segmented by a dextral palaeo-transform fracture zone. This is consistent with fast-spreading ridges. Comparison between the Neyriz and Oman ophiolites reveals that they show similar characteristics. Most of the Oman palaeo-ridge systems are oriented NW–SE and NNW–SE. They also display similar sheeted dike complex orientations and crustal thickness variations. These two ophiolites originally were part of the Neo-Tethyan oceanic lithosphere and afterwards were separated by the Oman line during continental collision of the Iranian micro-continent and Afro-Arabian continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号