首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Formation,history and energetics of cores in the terrestrial planets   总被引:1,自引:0,他引:1  
The cores of the terrestrial planets Earth, Moon, Mercury, Venus and Mars differ substantially in size and in history. Though no planet other than the Earth has a conclusively demonstrated core, the probable cores in Mercury and Mars and Earth's core show a decrease in relative core size with solar distance. The Moon does not fit this sequence and Venus may not. Core formation must have been early (prior to ~4 · 109 yr. ago) in the Earth, by virtue of the existence of ancient rock units and ancient paleomagnetism and from UPb partitioning arguments, and in Mercury, because the consequences of core infall would have included extensional tectonic features which are not observed even on Mercury's oldest terrain. If a small core exists in the Moon, still an open question, completion of core formation may be placed several hundred million years after the end of heavy bombardment on tectonic and thermal grounds. Core formation time on Mars is loosely constrained, but may have been substantially later than for the other terrestrial planets. The magnitude and extent of early heating to drive global differentiation appear to have decreased with distance from the sun for at least the smaller bodies Mercury, Moon and Mars.Energy sources to maintain a molten state and to fuel convection and magnetic dynamos in the cores of the terrestrial planets include principally gravitational energy, heat of fusion, and long-lived radioactivity. The gravitational energy of core infall is quantifiable and substantial for all bodies but the Moon, but was likely spent too early in the history of most planets to prove a significant residual heat source to drive a present dynamo. The energy from inner core freezing in the Earth and in Mercury is at best marginally able to match even the conductive heat loss along an outer core adiabat. Radioactive decay in the core offers an attractive but unproven energy source to maintain core convection.  相似文献   

2.
无论在行星大小、质量还是轨道速度等方面,金星都是太阳系中与地球最相似的行星.自1960年代初期开始,金星一直是人类深空探测的重要目标.本文简要地回顾了人类探索金星的历史,总结了对金星已有的认识,梳理了金星的主要科学问题,最后介绍了未来的国际探测计划,并建议了我国的金星探测目标.早期对金星的探测以苏联的金星计划(Венера)和美国的水手系列(Mariner)为代表,后期的探测器以欧盟、日本等国家的“金星快车(Venus Express)”、“拂晓号(Akatsuki)”为代表.这些探测结果为我们认识金星大气成分、地表地形和内部结构提供了重要的数据.金星的大气组成以CO2为主,含少量N2,与现在地球的大气组成显著不同,类似早期地球的大气组成.虽然金星地表目前没有液态水,但部分理论模拟工作表明金星地表可能曾经有液态水.一系列探测器对金星地表成分的分析表明,金星地表主要由玄武岩组成.在地形地貌方面,由于金星特殊的地表环境,金星表面风化作用对地表地貌影响很小.金星的地表主要受控于比较年轻的火山作用,发育了许多不同于地球的地貌特征,主要包括区域平原、盾状火山平原、冕状地形以及瓦片状地形等,其动力学机制可能是地幔柱—岩石圈相互作用或地幔对流,至今未发现与板块构造相关的地貌.现阶段金星没有太多大型的、活跃的火山热点,虽然无法估测准确的火山活动速率,但相比地球来说火山活动速率小很多.在内部结构方面,金星具有与地球类似的核幔壳结构.金星的内部组成也与地球类似,例如金星地幔很可能是与地球相似的橄榄岩成分.不存在内部磁场和缺乏板块构造是金星区别于地球的两个重要特征.关于金星为什么没有自身磁场,主流观点是金星地核缺乏对流,无法演化出磁场.而针对金星为什么没有演化出板块构造,目前认为主要有三个可能的原因:地表温度过高,没有软流圈,金星缺乏液态水,其中液态水的缺乏接受度最广.从大气组成、地表岩石组合、构造作用等角度来看,金星都与早期地球非常相似,是我们理解类地行星演化的天然实验室.研究金星和地球为什么会朝不同方向演化,是深入理解包括系外行星在内的行星的宜居性形成与演变的重要途径。因此,金星一直是优先级别最高的深空探测目标之一.近几年,美国、俄罗斯以及欧洲等国家和地区分别针对金星目前主要的科学问题,例如金星是否存在早期海洋、金星的宜居性以及结构和重力场等,先后提出各自的金星探测计划.我国在新的国际竞争中应该、也必然有所作为.  相似文献   

3.
Magellan radar images of the surface of Venus show a spatially broad distribution of volcanic features. Models of magmatic ascent processes to planetary surfaces indicate that the thermal structure of the interior significantly influences the rate of magmatic cooling and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of planetary thermal structure have the greatest influence on the cooling of buoyantly ascending magma, we have constructed magma cooling profiles for a plutonic ascent mechanism, and evaluated the profiles for variations in the surface and mantle temperature, surface temperature gradient, and thermal gradient curvature. Results show that, for a wide variety of thermal conditions, smaller and slower magma bodies are capable of reaching the surface on Venus compared to Earth, primarily due to the higher surface temperature of Venus. Little to no effect on the cooling and transport of magma are found to result from elevated mantle temperatures, elevation-dependent surface temperature variations, or details of the thermal gradient curvature. The enhanced tendency of magma to reach the surface on Venus may provide at least a partial explanation for the extensive spatial distribution of observed volcanism on the surface.  相似文献   

4.
The theory of three-dimensional and finite-amplitude convection in a viscous spherical shell with temperature and pressure dependent physical parameters is developed on the basis of a modified Boussinesq fluid assumption. The lateral dependences of the variables are resolved through their spherical harmonic representations, whereas their radial and time dependences are determined by numerical procedures. The theory is then applied to produce thermal evolution models for Venus. The emphasis is on illustrating the effects of certain physical parameters on the thermal evolution rather than proposing a specific thermal history for the planet. The main conclusions achieved in this paper are (1) a significant portion of the present temperature in the mantle and heat flux at the surface of Venus is probably owing to the decay of a high temperature established in the planet at the completion of its core formation, (2) the effective Rayleigh number of the mantle is so high that even the lower order modes of convection cool the planet sufficiently and maintain an almost adiabatic temperature gradient in the convecting region and high temperature gradients in the thermal boundary layers, (3) the convection is oscillatory with avalanche type properties which induces oscillatory features to the surface heat flux and the thickness of the crustal layer, and (4) a planetary model with a recycling crust cools much faster than those with a permanently buoyant crust.The models presented in this paper suggest that Venus has been highly convective during its history until ~ 0.5 Ga ago. The vigorous convection was bringing hot and fresh material from the deep interior to the surface and dragging down the crustal slags, floating on the surface, in to the mantle. The rate of cooling of the planet was so high that its core has solidified. In the last 0.5 Ga the vigour of convection diminished considerably and the crustal slags developed into a global and permanently buoyant crustal layer. The tectonic style on Venus has, consequently, changed from the recycling of crustal plates to hot spot volcanics. At the present time the planet is completely solid, except in the upper part of its mantle where partial melting may occur.  相似文献   

5.
金星表层年龄和构造活动特点表明其岩石层在最近的地质历史时期经历过广泛的更新.这种全球性的表层改造与其内部热演化历史进程密切相关.如果金星存在相变形成的上、下地幔,依据现今所了解的金星物理性质和参量化的热对流理论,并且考虑金星地幔相变边界层状态对对流的控制作用,我们计算了金星热演化历史.结果表明,金星的热演化历史是一种非单调的冷却过程,在这种非单调的热演化历史进程中,金星地幔会出现大体等周期的翻转.由于参数选取的不同,翻转时金星上、下地幔的温差随时间可能出现稳定变化、逐渐加强、逐渐减弱三种不同演化模式,目前尚不能确定实际金星热演化历史究竟是哪一种模式.金星地幔相变边界层的穿透对流可能是推动其表层岩石层全球性更新的关键,导致其表层火山活动和地表构造以大致500 Ma时间间隔更新和重造.  相似文献   

6.
Stable carbon isotope measurements of the organic matter associated with the carbonate globules and the bulk matrix material in the ALH84001 Martian meteorite indicate that two distinct sources are present in the sample. The delta 13C values for the organic matter associated with the carbonate globules averaged -26% and is attributed to terrestrial contamination. In contrast, the delta 13C values for the organic matter associated with the bulk matrix material yielded a value of -15%. The only common sources of carbon on the Earth that yield similar delta 13C values, other then some diagenetically altered marine carbonates, are C4 plants. A delta 13C value of -15%, on the other hand, is consistent with a kerogen-like component, the most ubiquitous form of organic matter found in carbonaceous chondrites such as the Murchison meteorite. Examination of the carbonate globules and bulk matrix material using laser desorption mass spectrometry (LDMS) indicates the presence of a high molecular weight organic component which appears to be extraterrestrial in origin, possibly derived from the exogenous delivery, of meteoritic or cometary debris to the surface of Mars.  相似文献   

7.
高精度金星重力场的获取,是金星探测的重要内容.本文利用最新的金星地形和重力模型,通过高通滤波后的残差地形(RTM)并在考虑均衡改正的情况下改进了重力的短波成分,最终提出了一个新的金星重力模型VGM2013,该模型赤道分辨率达10 km量级,大大高于现有的金星重力场模型,最终结果是金星表面重力加速度和重力扰动.研究中同时发现金星在Airy-Heiskanen均衡模型下的全球最优补偿深度为30 km,金星地壳的密度可能小于当前认为的2700~2900 kg·m-3.VGM2013模型的结果可为将来的金星探测器定轨和着陆导航提供参考,作为重力计算的先验模型.但由于该模型没有包含短波重力观测信息,不建议直接用于更小尺度的地质和地球物理解释.  相似文献   

8.
A possible naked-eye comet that may have been important in early cometary theory is announced by D J Asher , M E Bailey , A Christou , J McFarland , M F Muir and P P Rafferty .
Early indications sugest that Comet C/2002 (Ikeya-Zhang), discovered on 1 February 2002, may brighten to naked-eye visibility in late March 2002. It has also been suggested that it may be identical to one of the brighter comets of the 16th or 17th centuries, namely C/1532 R1 or C/1661 C1. The first of these, observed for more than 100 days towards the end of 1532, played an important role in the development of cometary theory. The second, although identified by Halley as having an orbit similar to that of the comet C/1532 R1, was not seen on its predicted return in 1788/1789 and so was presumably unrelated. Here we present long-term orbital integrations of C/2002 C1 which suggest that it orginated from the Oort cloud, and will be ejected again, within ˜0.3 Myr. There is a chance of 10–20% that it will end its life by falling into the Sun during a Halley-type phase of cometary evolution. The discovery of Ikeya-Zhang so closeto perigee by two amateur astonomers highlights the need for surveys covering both hemispheres to discover long-period and intermediate-period comets on Earth-crossing orbits.  相似文献   

9.
The initial parameters of disturbing fluxes of coronal mass ejections (CMEs) such as loop, front, spike, multiple structure ejection, and structureless ejection, which cannot be determined from direct observations, are determined using the data on the interplanetary coronal mass ejections (ICMEs) registered on the Helios and Pioneer Venus Orbiter spacecraft in the vicinity of Venus. The method of MHD modeling the modified initial parameters of CMEs has been used for this purpose. The ICME parameters have been analyzed in order to determine the types of the solar sources of the considered plasma flows.  相似文献   

10.
Analyses are made of the upper limits on the height of mountains and the thickness of possible continental blocks on Venus. Insufficient creep data exist to reach definitive conclusions about these limits. However, if Venusian rocks are no more refractory than quartzite or dunite, as appears likely, then it is possible to conclude that high mountains, continental blocks of appreciable thicknesses, and deep ocean basins can exist over an extended period of time on Venus, at temperatures prevailing there now, only if the cytherean rocks are dry. Plate tectonics cannot exist on Venus if her rocks are wet. The elevation differences that are maintained by active tectonic or volcanic processes are not considered in this paper.  相似文献   

11.
We investigate the inclinations of heliospheric current sheet at two sites in interplanetary space, which are generated from the same solar source. From the data of solar wind magnetic fields observed at Venus (0.72 AU) and Earth (1 AU) during December 1978–May 1982 including the solar maximum of 1981, 54 pairs of candidate sector boundary crossings are picked out, of which 16 pairs are identified as sector boundaries. Of the remainder, 12 pairs are transient structures both at Venus and Earth, and 14 pairs are sector boundaries at one site and have transient structures at the other site. It implies that transient structures were often ejected from the coronal streamer belt around the solar maximum. For the 16 pairs of selected sector boundaries, we determine their normals by using minimum variance analysis. It is found that most of the normal azimuthal angles are distributed between the radial direction and the direction perpendicular to the spiral direction both at Venus and Earth. The normal elevations tend to be smaller than ≈45° with respect to the solar equatorial plane, indicating high inclinations of the heliospheric current sheet, in particular at Earth. The larger scatter in the azimuth and elevation of normals at Venus than at Earth suggests stronger effects of the small-scale structures on the current sheet at 0.72 AU than at 1 AU. When the longitude difference between Venus and Earth is small (<40° longitudinally), similar or the same inclinations are generally observed, especially for the sector boundaries without small-scale structures. This implies that the heliospheric current sheet inclination tends to be maintained during propagation of the solar wind from 0.72 AU to 1 AU. Detailed case studies reveal that the dynamic nature of helmet streamers causes variations of the sector boundary structure.  相似文献   

12.
According to the variations observed in the various meteorite classes, 54Cr represents an isotopic tool for planetary body discrimination. In the search for the nature of the Cretaceous-Tertiary (KT) impactor, Cr isotopic measurements were already performed at KT boundary. The current work is aimed to modernize Cr isotopic data with high-precision measurements to confirm a carbonaceous chondrite type infall, the contribution of which is also estimated. Isotopic signatures of two marine clays (Caravaca, Stevens Klint) exhibit an isotopic ratio which would represent a mixing of a carbonaceous chondrite of CM2 type with terrestrial material in a ratio 6% to 19%. A single impactor may account for both marine and continental Cr isotopic signatures.  相似文献   

13.
The first observations of cometary wave activity were carried out in 1985/1986 by several space missions (ICE, VEGAs 1 and 2, Suisei, Sakigake, Giotto) in the environments of comets Giacobini-Zinner and Halley. The interpretation of thesein situ field (and particle) measurements fostered investigations on (among other topics) wave generation that, leaving aside the inherently nonlinear (but related) problem of the eventual formation of a cometary bow shock wave, explored the free energy available in two specific features of the velocity distributions of the newborn particle populations: their parallel (with respect to the IMF direction) drift in the solar wind frame and perpendicular ring-like organization. Analytical and simulation works looked into the influence of the solar wind and cometary newborn parameters on the instabilities and the ensuing, or associated (as evidenced by wave observations), nonlinear phenomenology. Comprehensive reviews have described the experimental and theoretical results obtained in this cometary wave research until 1992 and identified outstanding problems warranting further attention. Here, only a cursory revisit to the Giacobini-Zinner/Halley era of low frequency wave observation and interpretation shall be made: rather, attention shall be predominantly focussed on the new implications to cometary wave research of the recent Giotto encounter with comet Grigg-Skjellerup on July 10 of 1992. The three visited comets, starting with their gas production rates, had different characteristics that showed up in thein situ observations. Yet, with the important exception of the Grigg-Skjellerup encounter, the interpretation of the wave activity measurements could be made in terms of common basic generation mechanisms adapted to the relevant properties of the appropriate plasma environment. New aspects emerged in the last Giotto cometary mission: the smaller gas production rates yield a scale length for the neutral gas density that is not (much) larger than the gyration distance of a heavy newborn ion (estimated by the product of the solar wind speed and the ion cyclotron period). As a consequence of this inhomogeneity, the velocity distribution of the heavy newborn ions exhibits gyrophase organization, i.e. nongyrotropy. This new source of free energy, albeit briefly mentioned in a few studies preceding the Grigg-Skjellerup mission, was not investigated in the context of the Giacobini-Zinner and Halley encounters. Since the last Giotto observations strongly suggest that nongyrotropy plays a prominent role in wave generation as the comet Gigg-Skjellerup nucleus is approached and its stability characteristics have only seldomly been analyzed, the review shall emphasize the wave generation capabilities of particle populations with gyrophase organization.  相似文献   

14.
During the formation of the solar nebula interstellar grains were fallling into the nebula with velocities of the order of 10 km/s at the radial distance where the meteorites were to form. This kinetic energy is 20 times the amount of thermal energy needed to melt the grains. The grains were decelerated by aerodynamic drag in the nebula. Where grain-rich parcels of interstellar material fell into the nebula, heat generated by drag could not be radiated away because of the opacity imparted to the system by the grains, and high temperatures were reached. In this situation presolar aggregations of grains would melt to form chondrules. Many of the properties of chondrules (and also CAI's) are consistent with their formation by this means. The infall heating concept provides a new framework in which the formation and significance of chondritic meteorites can be understood.  相似文献   

15.
The general features of the region of interaction of the solar wind with the ionosphere of Venus and Mars are compared using data obtained with the Mariner 5 and the Pioneer Venus Orbiter (PVO) spacecraft for Venus and with the Phobos II, the Mars Global Surveyor (MGS) and the Mars Express spacecraft for Mars. Despite the overall weak intrinsic global magnetic field that is present in both planets there are significant differences in the manner in which the interplanetary magnetic field accumulates and is organized around and within their ionosphere. Such differences are unrelated to the crustal magnetic field remnants inferred from the MGS measurements around Mars. In fact, while in Venus and Mars there is a region in which the magnetic field becomes enhanced as it piles up in their plasma environment it is shown that such a region exhibits different regimes with respect to changes in the ion composition measured outside and within the ionosphere. At Venus the region of enhanced magnetic field intensity occurs in general above the ionopause which represents the boundary across which there is a change in the ion composition with dominant solar wind protons above and planetary O+ ions below. At Mars the region of enhanced magnetic field is located below a magnetic pileup boundary across which there is also a comparable change in the ion composition (solar wind protons above and planetary O+ ions below). It is argued that this difference in the relative position of the region of enhanced magnetic field with respect to that of a plasma boundary that separates different ion populations results from the peculiar response of the ionosphere of each planet to the oncoming solar wind dynamic pressure. While at Venus the peak ionospheric thermal pressure is in general sufficient to withhold the incident solar wind kinetic pressure there is a different response in Mars where the peak ionospheric thermal pressure is in general not large enough to deviate the solar wind. In this latter case the ionosphere is unable to force the solar wind to move around the ionosphere and as a result the oncoming electron population can reach low altitudes where it is influenced by neutral atmospheric particles (the solar wind proton population is replaced at the magnetic pileup boundary which marks the upper extent of the region where the interplanetary magnetic field becomes enhanced). Peculiar conditions are expected near the magnetic polar regions and over the terminator plane where the solar wind is directed along the sides of the planet.  相似文献   

16.
Solid-recovery impact-induced volatile loss experiments on the Murchison C2M meteorite indicate that for an impact of a given velocity, H2O and total volatiles are driven from the sample in the same proportion as present initially. We infer that the volatiles other than H2O driven from the meteorite also have the same bulk composition as those of the starting material. Thus, the early bulk composition of an impact-induced atmosphere of a planet growing by accretion from material like Murchison would be the same as the volatile composition of the incident planetesimals. Incipient devolatilization of Murchison occurs at an initial shock pressure of about 11 GPa and complete devolatilization occurs at a pressure of about 30 GPa. If an Earth-sized planet were formed from the infall of planetesimals of Murchison composition, incipient and complete devolatilization of accreting planetesimals would occur when the planet reached approximately 12% and 27%, respectively, of its final radius. Thus, impact-induced devolatilization of accreting planetesimals and of the hydrated surface would profoundly affect the distribution of volatiles within the accreting planet. For example, for a cold, homogeneous accretion of a planet, prior to metallic core formation and internal differentiation, the growing planet would have a very small core with the same volatile content as the incident material, a volatile-depleted “mantle”, and an extremely volatile-rich surface.  相似文献   

17.
The cooling water discharged from a power station may contain dissolved material, in addition to the heat rejected from the station turbines, which must be dispersed away from the power station in a manner which is environmentally acceptable. Mathematical methods are presented for use in the calculation of the rises in background concentration arising from the discharge of such material into lakes, rivers, estuaries or the sea. The calculations take account of factors including the replacement of the receiving water by freshwater, the available volume of water in the system, the rate at which the material may be degraded in the receiving water and some aspects of the design of the cooling water system. Particular calculations emphasize the different levels of concentration which may be expected from similar discharges into the different types of receiving water body. These examples suggest that for conditions representative of some present power station sites the concentration in a lake may be ten times that in an estuary, and that in an estuary may be ten times that in the sea. Of course, this is not a general result and the concentration level must be calculated for each particular case. The analyses also suggest what hydrographic factors must be measured during field surveys at a particular site if the mathematical methods presented here are to be used for the calculation of concentrations of any discharged material.  相似文献   

18.
Important though indirect information about the internal structure of Venus is provided by its topography and geoid. In the last decades this information has been used to constrain the Venus mantle viscosity structure and its dynamic regime. Recently, the geodynamic inversion of the Venus?? geoid and topography resulted in a group of best fitting viscosity profiles. We use these viscosity models here as an input to our mantle convection code. We carry out simulations of the Venus?? mantle evolution in a 3D spherical shell with depth dependent viscosity and check whether the character of the dynamic topography and the geoid represented by their power spectra fits the observed quantities. We compare the results with several other models obtained for different viscosity stratifications (constant, constant with highly viscous lithosphere, linear increase of viscosity). Further, we estimate the effect of other factors such as internal heating and varying Rayleigh number. We use a 2D spherical axisymmetric convection code to study the effect of lateral viscosity variations. In these 2D models we monitor the topography and the geoid developing above the axisymmetric plume and compare them with the observed elevations of Venus?? geoid and topography in several Regia. Though none of the models fits observed data perfectly, we can generally conclude, that the best fit between the observed and predicted quantities is reached for viscosity profiles with 200 km thick lithosphere followed by a gradual increase of viscosity with depth and with the upper mantle viscosity of 2 × 10 21 Pa s. For all viscosity profiles the predicted geoid and topography spectra match the observed ones only up to the degree 40, thus indicating other than dynamic origin of these quantities for higher degrees.  相似文献   

19.
This study presents the results of numerical simulations of a model for lithospheremantle coupling in a terrestrial type planet. To first order, a geologically active terrestrial type planet may consist of a metallic core, silicate mantle and lithosphere, with the lithosphere being rheologically different from the mantle. Therefore we have developed a numerical model consisting of a thin non-Newtonian fluid hoop that is dynamically coupled to a thick Newtonian fluid cylindrical annulus. Thus the rheological dichotomy between mantle and lithosphere is built into the model. Time-dependent calculations show the existence of at least two regimes of behaviors. In one regime, the behavior of the hoop switches between periods characterized by low or high speeds, in response to changes in convective vigor and planform. This regime may apply to the planet Venus where the available evidence indicates that prior to 500 myr ago, the planet was resurfaced on a time scale of <100 myr. Since that time, large-scale tectonic activity on Venus has been sharply curtailed. In the other regime, which is more like plate tectonics on Earth, the hoop speeds rise and fall on short time scales.  相似文献   

20.
热和组分密度异常共同驱动的动态金幔柱解析模式给出金幔柱在金幔中上升的历史.当金幔柱到达岩石层底时其头部的特征量是5个独立变量的函数:(1)金幔柱起源的深度;(2)金幔粘性系数;(3)源温度异常值;(4)源组分与热密度异常之比;(5)金幔柱的浮力通量.基于新的Mapellan数据,金星表面上有360多个冠状和类冠状构造已被发现,其中65%直径小于300km.这类小型冠状构造被认为是由具有下述特征的较小的金幔柱所形成:(1)最大直径小于300km;(2)当其头部到达岩石层底时,过剩温度足以产生部分熔融层,应高于150K;(3)被冠状构造下面的金幔柱带上来的总浮力有能力支撑冠状构造隆起的总质量.用这3个条件分析数值结果并约束金幔柱的源参数,根据本文的数值实验结果,金星上的小型冠状构造可能是起源于上金幔小于1000km深度的动态金幔柱形成的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号