首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of cloud cover amount and the height of cloud base on nighttime thermally induced downslope flow were investigated using analytical and numerical model approaches. The conclusions obtained with the analytical and the numerical model evaluations agreed. It was concluded that, (i) as cloud cover increases and/or the height of cloud base decreases, the depth and the intensity of nighttime thermally-induced downslope flows may decrease by a factor reaching one sixth and one tenth, respectively, in the case of overcast low cloud; (ii) when skies suddenly cloud over around midnight, the development of the downslope flow is altered in different ways: a reduction in intensity; or a cessation of further development, depending on the fraction of cloud coverage, and (iii) with a sudden clearing of overcast low cloud around midnight, the depth and the intensity of the downslope flow increases significantly.On leave from the Institute of Atmospheric Physics, Academia Sinica, Beijing, China.On leave from CSIRO, Division of Atmospheric Research, Private Bag No. 1, Mordialloc, Victoria 3195, Australia.  相似文献   

2.
Summary Variability of atmospheric turbidity calculated from direct beam solar radiation measurements and the transverse coherence length,r 0, derived from differential image motion of stellar sources show pronounced fluctuations on the order of a few minutes under convectively unstable conditions in a desert environment. The quiescent periods, neutral events, when local near surface adiabatic conditions occur show substantial reductions in the fluctuations of the same quantities. Image motion results for nighttime (stable) conditions display slowing varying patterns with reduced short term (few minutes) variations.The measurements were taken using a suite of instrumentation probing the same volume of atmosphere. The instrumentation used includes a pyrheliometer, Atmospheric Turbulence Measurement and Observation System (ATMOS), a sodar, a scintillometer, and tower- mounted sensors. A time-height display of sodar data calibrated for the refractive index structure parameter,C n 2 , coupled with scintillometer measurements show the diurnal evolution of the boundary layer responding to the local heating-cooling cycle and drainage flows from the surrounding mountains. Several atmospheric features are seen and discussed in these results as they affect the nature of the patterns of turbidity andr 0. Of particular interests are the development of convection, changes in the capping inversion, thermal plume structures, neutral events, and wave-turbulence interactions. Sinusoidal oscillations, identified as internal gravity waves, are seen in the nighttime laminated structures.With 10 Figures  相似文献   

3.
In this paper, the analytical model coupling the convective boundary layer (CBL) with the free atmosphere developed by Qi and Fu (1992) is improved. And by this improved model, the interaction between airflow over a mountain and the CBL is further discussed. The conclusions demonstrate: (1) The perturbation potential temperatures in the free atmosphere can counteract the effect of orographic thermal forcing through entraining and mixing in the CBL. If M > F , the feedback of the perturbation potential temperatures in the free atmosphere is more important than orographic thermal forcing, which promotes the effect of interfacial waves. If M < F , orographic thermal forcing is more important, which makes the interfacial height and the topographic height identical in phase, and the horizontal speeds are a maximum at the top of the mountain. (2) The internal gravity waves propagating vertically in the free atmosphere cause a strong downslope wind to become established above the lee slope in the CBL and result in the hydraulic jump at the top of the CBL. (3) With the CBL deepening, the interfacial gravity waves induced by the potential temperature jump at the top of the CBL cause the airflow in the CBL to be subcritical.  相似文献   

4.
The effect of topographical slope angle and atmospheric stratification on turbulence intensities in the unstably stratified surface layer have been parameterized using observations obtained from a three-dimensional sonic anemometer installed at 8 m height above the ground at the Seoul National University (SNU) campus site in Korea for the years 1999–2001. Winds obtained from the sonic anemometer are analyzed according to the mean wind direction, since the topographical slope angle changes significantly along the azimuthal direction. The effects of the topographical slope angle and atmospheric stratification on surface-layer turbulence intensity are examined with these data. It is found that both the friction velocity and the variance for each component of wind normalized by the mean wind speed decrease with increase of the topographical slope angle, having a maximum decreasing rate at very unstable stratification. The decreasing rate of the normalized friction velocity (u * /U) is found to be much larger than that of the turbulence intensity of each wind component due to the reduction of wind shear with increase in slope angle under unstable stratification. The decreasing rate of the w component of turbulence intensity (σ w /U) is the smallest over the downslope surface whereas that of the u component (σ u /U) has a minimum over the upslope surface. Consequently, σ w /u * has a maximum increasing rate with increase in slope angle for the downslope wind, whereas σ u /u * has its maximum for the upslope wind. The sloping terrain is found to reduce both the friction velocity and turbulence intensity compared with those on a flat surface. However, the reduction of the friction velocity over the sloping terrain is larger than that of the turbulence intensity, thereby enhancing the turbulence intensity normalized by the friction velocity over sloping terrain compared with that over a flat surface.  相似文献   

5.
Summary Frontogenesis is frequently described by theQ-vector (Hoskins et al., 1978), a term being composed of several derivatives of basic meteorological parameters and their products. Its distribution and especially the H ·Q-fields are highly important to estimate frontogenesis and cross frontal circulation. Although theQ-vector (Hoskins et al., 1978) allows an easier assessment of the vertical wind forcing than the original omega equation of the quasi-geostrophic theory, it is still difficul to imagine the three-dimensional (3-d) spatial distribution ofQ and H ·Q even for standard atmospheric fields. Thus there is a need to shed more light in theQ and H ·Q-fields for special synoptic situations.This is done here by constructing analytical 3-d geostrophically balanced wind-and temperature fields, for which theQ-forcing (Qformed with the geostrophic wind) can easily be computed and presented. Three examples (see Sections 3 to 5) are discussed yielding typical and realistic (compared to known pattern) 3-d forcing distributions ofQ and H ·Q. Within the simple analytical scheme used here their origin can casily be understood. These fields of a 2000×2000 km2 horizontal domain ranging up to 250 hPa are: A modified Bergeron deformation field containing a cold front (case I a) and a warm front (case I b); an upper tropospheric jet including a jet-parallel transition zone between warm and cold air (case II); and a circular low pressure circulation pattern with two fronts (case III).The paper presents these 3-d fields with the advantage that the analytical method is not affected by any kind of limited numerical resolution. It also shows how these fields degenerate with decreasing resolution if the analytical data are used in descrete form. This simulates working with discrete numerical data and demonstrates how narrow frontal zones of structure elements ofQ and H ·Q considerably smooth out with increasing grid distances.With 17 Figures  相似文献   

6.
Evapotranspiration is a major component of both the energy and water balances of wetland tundra environments during the thaw season. Reliable estimates of evapotranspiration are required in the analysis of climatological and hydrological processes occurring within a wetland and in interfacing the surface climate with atmospheric processes. Where direct measurements are unavailable, models designed to accurately predict evapotranspiration for a particular wetland are used.This paper evaluates the performance, sensitivity and limitations of three physically-based, one-dimensional models in the simulation of evaporation from a wetland sedge tundra in the Hudson Bay Lowland near Churchill, Manitoba. The surface of the study site consists of near-saturated peat soil with a sparse sedge canopy and a constantly varying coverage of standing water. Measured evaporation used the Bowen ratio energy balance approach, to which the model results were compared. The comparisons were conducted with hourly and daily simulations.The three models are the Penman-Monteith model, the Shuttleworth-Wallace sparse canopy model and a modified Penman-Monteith model which is weighted for surface area of the evaporation sources.Results from the study suggest that the weighted Penman-Monteith model has the highest potential for use as a predictive tool. In all three cases, the importance of accurately measuring the surface area of each evaporation source is recognized. The difficulty in determining a representative surface resistance for each source and the associated problems in modelling without it are discussed.

List of Symbols

Models BREB Bowen ratio energy balance - P-M Penman-Monteith combination - S-W Shuttleworth-Wallace combination - W-P-M Weighted Penman-Monteith combination Other AE Available energy-all surfaces - AE c Available energy-canopy (S-W, W-P-M) - AE s Available energy-bare soil (S-W, W-P-M) - AE w Available energy-open water (W-P-M) - C p Specific heat of air - D Vapor pressure deficit - DAI Dead area index - FAI Foliage area index - LAI Leaf area index - Q * Net radiation - Q e Latent heat flux-total - Q ec Latent heat flux-canopy (S-W, W-P-M) - Q es Latent heat flux-bare soil (S-W, W-P-M) - Q ew Latent heat flux-open water (W-P-M) - Q g ground heat flux - Q h Sensible heat flux - S Proportion of area in bare soil - W Proportion of surface in open water - r a Aerodynamic resistance (P-M, W-P-M) - r c Canopy resistance - r s Generalized optimized surface resistance - r st Stomatal resistance - r c a Bulk boundary layer resistance (S-W) - r s a Aerodynamic resistance below mean canopy level (S-W) - r s s Soil surface resistance (S-W, W-P-M) Greek Bowen ratio - Psychrometer constant - Air density - Slope of saturation vapour pressure vs temperature curve  相似文献   

7.
The influence of the main large-scale wind directions on thermally driven mesoscale circulations at the Baltic southwest coast, southeast of Sweden, is examined. The aim of the study is to highlight small-scale alterations in the coastal atmospheric boundary layer. A numerical three-dimensional mesoscale model is used in this study, which is focused on an overall behaviour of the coastal jets, drainage flows, sea breezes, and a low-level eddy-type flow in particular. It is shown that synoptic conditions, together with the moderate terrain of the southeast of Sweden (max. height h0 206 m), governs the coastal mesoscale dynamics triggered by the land-sea temperature difference T. The subtle nature of coastal low-level jets and sea breezes is revealed; their patterns are dictated by the interplay between synoptic airflow, coastline orientation, and T.The simulations show that coastal jets typically occur during nighttime and vary in height, intensity and position with respect to the coast; they interact with downslope flows and the background wind. For the assigned land surface temperature (varying ±8 K from the sea temperature) and the opposing constant geostrophic wind 8 m s-1, the drainage flow is more robust to the opposing ambient flow than the sea breeze later on. Depending on the part of the coast under consideration, and the prevailing ambient wind, the sea breeze can be suppressed or enhanced, stationary at the coast or rapidly penetrating inland, locked up in phase with another dynamic system or almost independently self-evolving. A low-level eddy structure is analyzed. It is governed by tilting, divergence and horizontal advection terms. The horizontal extent of the coastal effects agrees roughly with the Rossby radius of deformation.  相似文献   

8.
An analogy has been established between a plane mixing layer and the atmospheric flow near the top of a vegetation canopy. It is based on a common feature, a strong inflection in the mean velocity profile, responsible for hydrodynamical instabilities that set the pattern for the coherent eddies and determine the turbulence length scales. In an earlier study, this analogy was tested using a small data set from thirteen experiments, all in near-neutral conditions. It provided a good prediction of the streamwise spacing w of the dominant canopy eddies (evaluated from time series of vertical velocity) that appears to depend on a shear length scale Ls = U(h)/U'(h), where h is canopy height, U is mean velocity and U' the vertical gradient dU/dz. The present analysis utilizes an extensive data set of approximately 700 thirty-minute runs, from six experiments on two forest sites and a maize crop, with a large range of stability conditions. w was estimated for each run using the wavelet transform as an objective, automated detection method. First, the variations of w and Ls with atmospheric stability are discussed. Neutral and unstable values exhibit a large scatter whereas in stable conditions both variables decrease with increasing stability. It is subsequently found that w is directly related to Ls, in a way close to the neutral prediction w /h = 8.1Ls/h.The Strouhal number Str = Ls /w is then shown to vary with atmospheric stability, weakly in unstable conditions, more significantly in stable conditions. Altogether these results suggest that, to some extent, the plane mixing-layer analogy can be extended to non-neutral conditions. It is argued that the primary effect of atmospheric stability, at least in stable conditions, is to modify the shear length scale Ls through changes in U(h) and U'(h), which in turn determines the streamwise spacing of the active, coherent motions.  相似文献   

9.
Wind speed profiles above a forest canopy relate to scalar exchange between the forest canopy and the atmosphere. Many studies have reported that vertical wind speed profiles above a relatively flat forest can be classified by a stability index developed assuming wind flow above a flat plane. However, can such a stability index be used to classify vertical wind speed profiles observed above a sloping forest at nighttime, where drainage flow often occurs? This paper examines the use of the bulk Richardson number to classify wind speed profiles observed above a sloping forest at nighttime. Wind speed profiles above a sloping forest were classified by the bulk Richardson number Ri B . Use of Ri B distinguished between drainage flow, shear flow, and transitional flow from drainage flow to shear flow. These results suggest that Ri B is useful to interpret nighttime CO2 and energy fluxes above a sloping forest. Through clear observational evidence, we also show that the reference height should be high enough to avoid drainage-flow effects when calculating Ri B .  相似文献   

10.
The formation of longitudinal vortex rolls in the planetary boundary layer (PBL) is investigated by means of perturbation analysis. The method is the same as that used by previous authors who have investigated the instability of a laminar Ekman layer. To study the instability of the turbulent boundary layer of the atmosphere, vertical profiles are needed of the eddy viscosity and of the two components of the basic flow. These profiles have been obtained by a numerical PBL-model; they are universal for zz 0. (However, the stability equations are not completely universal, i.e., independent of the external parameters). For each thermal stratification, expressed by the internal stratification parameter , one has a set of three consistent profiles.The numerical solution of the stability equations gives the critical values and the perturbation growth rates as functions of thermal stratification and of the surface Rossby number Ro0. This is in contrast to the case of a laminar Ekman layer, where the instability depends on a Reynolds number only, which makes atmospheric applications difficult. The most unstable perturbations are found for Ro0 = 1 × 106 approximately, which is in the range of surface Rossby numbers observed in the atmosphere. However, considering vortex rolls oriented in the direction of the surface stress, the instability is found to be universal, i.e., independent of the external parameters combined in the surface Rossby number. With respect to thermal stratification, the results show that the instability of the perturbations increases with increasing static stability.  相似文献   

11.
Predictions of the surface drag in turbulent boundary-layer flow over two-dimensional sinusoidal topography from various numerical models are compared. For simple 2D terrain, the model results show that the drag increases associated with topography are essentially proportional to (slope)2 up to the steepness at which the flow separates. For the purposes of boundary-layer parameterisation within larger-scale models, we propose a representation of the effects of simple 2D topography via an effective roughness length, z 0 eff. The form of the varation of z 0 eff with terrain slope and topographic wavelength is established for small slopes from the model results and a semi-empirical formula is proposed.  相似文献   

12.
Mesoscale surface turbulent fluxes over a complex terrain surrounded by oceans have been investigated using a 3-D numerical mesoscale model, under conditions with and without synoptic flows. The study indicated that under synoptically calm condition, the allocation and intensity of mesoscale surface turbulent fluxes (MSTFs) were greatly impacted by the thermally forced mesoscale circulation (TFMC) over mesoscale heterogeneous landscape. The max-imum values of sensible (Hs) and latent (LE) heat fluxes were located over the convergent zones and considerably im-pacted by the soil wetness (M), but did not depend strongly on the atmospheric background thermal stability (β0). The simulated results suggested that the sensible heat flux was closely proportional to the square of wind speed in the surface layer. By the action of synoptic flow, the allocation of LE was shifted to downwind, its intensity increased.  相似文献   

13.
During the last two decades, different scalings for convective boundary layer (CBL) turbulence have been proposed. For the shear-free regime, Deardorff (1970) introduced convective velocity and temperature scales based on the surface potential temperature flux,Q s , the buoyancy parameter, , and the time-dependent boundary-layer depth,h. Wyngaard (1983) has proposed decomposition of turbulence into two components, bottom-up (b) and top-down (t), the former characterized byQ s , the latter, by the potential temperature flux due to entrainment,Q h . Sorbjan (1988) has devised height-dependent velocity and temperature scales for both b- and t-components of turbulence.Incorporating velocity shear, the well known similarity theory of Monin and Obukhov (1954) has been developed for the atmospheric surface layer. Zilitinkevich (1971, 1973) and Betchov and Yaglom (1971) have elaborated this theory with the aid of directional dimensional analysis for a particular case when different statistical moments of turbulence can be alternatively attributed as being of either convective or mechanical origin.In the present paper, we attempt to create a bridge between the two approaches pointed out above. A new scaling is proposed on the basis of, first, decomposition of statistical moments of turbulence into convective (c), mechanical (m) and covariance (c&m) contributions using directional dimensional analysis and, second, decomposition of these contributions into bottom-up and top-down components using height-dependent velocity and temperature scales. In addition to the statistical problem, the scaling suggests a new approach of determination of mean temperature and velocity profiles with the aid of the budget equations for the mean square fluctuations.Notation ATL alternative turbulence layer - CBL convective boundary layer - CML convective and mechanical layer - FCL free convection layer - MTL mechanical turbulence layer  相似文献   

14.
The present study involved determination of the experimental energy receipt partitioning over the tropical Amazon forest. Diurnal variation of net radiation (Q *), sensible heat flux (Q H) and latent heat flux (Q E) is presented. The daytimeQ E is in phase withQ * and it is always an important term in the energy balance. The daily averagedQ E is 59 to 100% of the dailyQ * whereasQ H is 5 to 28% at the Amazon forest site (2° 57 S; 59° 57 W) for the sample periods. The results present evidence thatQ E over the Amazon forest is greater thanQ * in the afternoon hours. The role of sensible heat advection in maintaining largeQ E over the forest surface is discussed. Hourly Bowen ratio () values for two campaigns of the Amazon forest micrometeorological experiment are presented. During daylight hours, the differences in are not significant, and exhibit a systematic pattern. The only time that the variation in Bowen ratio increased significantly was at sunrise and sunset when the thermal structure of the air was changing from a strong inversion to lapse and vice versa. The diurnal values changed from –3.50 to 0.85. The mean hourly calculated from values from 07.00 to 16.00 h, varied from 0.05 to 0.85.Diese Studie beschäftigt sich mit der Aufteilung der empfangenen Energie über dem tropischen Amazonasurwald. Es wird der Tagesgang der Strahlungsbilanz (Q *), des fühlbaren (Q H) und des latenten Wärmestromes (Q E) vorgestellt. Während der Tagesstunden istQ E in Phase mitQ * und ist immer ein wichtiger Term der Energiebilanz. Das Tagesmittel vonQ E beträgt 59 bis 100%,Q H 5 bis 28% des täglichenQ * an den Meßtagen bei der Amazonasurwaldstation (2° 57 S; 59° 57 W). Die Ergebnisse legen nahe, daß in den NachmittagsstundenQ E über dem Amazonasurwald größer ist alsQ *. Die Rolle der Advektion von fühlbarer Wärme zur Aufrechterhaltung des großenQ E über der Waldoberfläche wird diskutiert. Für zwei Meßkampagnen wurden die stündlichen Bowenverhältnisse () vorgestellt. Während der Tagesstunden ergaben sich keine signifikanten Änderungen von, während bei Sonnenaufgang und -untergang, wenn der thermische Aufbau der Luft von einer starken Inversion zu neutral und umgekehrt wechselt, die Unterschiede deutlich anstiegen. Die Tageswerte von lagen zwischen –3.50 und 0.85. Die Stundenmittel von 7.00 bis 16.00 Uhr schwankten zwischen 0.05 und 0.85.
With 3 Figures  相似文献   

15.
The daytime boundary-layer heating process and the air-land heat budget were investigated over the coastal sea-breeze region by means of observations over the Sendai plain in Japan during the summer. In this area, the onset of the sea breeze begins at the coast around 0900 LST, intruding about 35 km inland by late afternoon. The cold sea breeze creates a temperature difference of over 10°C between the coastal and inland areas in the afternoon. On the other hand, warm air advection due to the combination of the counter-sea breeze and land-to-sea synoptic wind occurs in the layer above the cold sea breeze in the coastal region. Owing to this local warm air advection, there is no significant difference in the daytime heating rate over the entire atmospheric boundary layer between the coastal and inland areas. The sensible heat flux from the land surface gradually decreases as distance from the coastline increases, being mainly attributed to the cold sea breeze. The daytime mean cold air advection due to the sea breeze is estimated asQ adv local =–29 W m–2 averaged over the sea breeze region (035 km from the coastline). This value is 17% of the surface sensible heat fluxH over the same region. The results of a two-dimensional numerical model show that the value ofQ adv local /H is strongly affected by the upper-level synoptic wind direction. The absolute value ofQ adv local /H becomes smaller when the synoptic wind has the opposite direction of the sea breeze. This condition occurred during the observations used in the present study.  相似文献   

16.
Nine profiles of the temperature structure parameter C T 2 and the standard deviation of vertical velocity fluctuations ( w) in the convective boundary layer (CBL) were obtained with a monostatic Doppler sodar during the second intensive field campaign of the First ISLSCP Field Experiment in 1987. The results were analyzed by using local similarity theory. Local similarity curves depend on four parameters: the height of the mixed layer (z i ), the depth of the interfacial layer (), and the temperature fluxes at the top of the mixed layer (Q i ) and the surface (Q o). Values of these parameters were inferred from sodar data by using the similarity curve for C T 2 and observations at three points in its profile. The effects of entrainment processes on the profiles of C T 2 and wnear the top of the CBL appeared to be described well by local similarity theory. Inferred estimates of surface temperature flux, however, were underestimated in comparison to fluxes measured by eddy correlation. The measured values of wappeared to be slightly smaller than estimates based on available parmeterizations. These discrepancies might have been caused by experimental error or, more likely, by the distortion of turbulence structure above the site by flow over the nonuniform terrain at the observation site.  相似文献   

17.
We present turbulence spectra and cospectra derived from long-term eddy-covariancemeasurements (nearly 40,000 hourly data over three to four years) and the transferfunctions of closed-path infrared gas analyzers over two mixed hardwood forests inthe mid-western U.S.A. The measurement heights ranged from 1.3 to 2.1 times themean tree height, and peak vegetation area index (VAI) was 3.5 to 4.7; the topographyat both sites deviates from ideal flat terrain. The analysis follows the approach ofKaimal et al. (Quart. J. Roy. Meteorol. Soc. 98, 563–589, 1972) whose results were based upon 15 hours of measurements atthree heights in the Kansas experiment over flatter and smoother terrain. Both thespectral and cospectral constants and stability functions for normalizing and collapsingspectra and cospectra in the inertial subrange were found to be different from those ofKaimal et al. In unstable conditions, we found that an appropriate stabilityfunction for the non-dimensional dissipation of turbulent kinetic energy is of the form () = (1 - b-)-1/4 - c-, where representsthe non-dimensional stability parameter. In stable conditions, a non-linear functionGxy() = 1 + bxyc xy (cxy < 1) was found to benecessary to collapse cospectra in the inertial subrange. The empirical cospectralmodels of Kaimal et al. were modified to fit the somewhat more (neutraland unstable) or less (stable) sharply peaked scalar cospectra observed over forestsusing the appropriate cospectral constants and non-linear stability functions. Theempirical coefficients in the stability functions and in the cospectral models varywith measurement height and seasonal changes in VAI. The seasonal differencesare generally larger at the Morgan Monroe State Forest site (greater peak VAI) andcloser to the canopy.The characteristics of transfer functions of the closed-path infrared gas analysersthrough long-tubes for CO2 and water vapour fluxes were studied empirically. This was done by fitting the ratio between normalized cospectra of CO2 or watervapour fluxes and those of sensible heat to the transfer function of a first-order sensor.The characteristic time constant for CO2 is much smaller than that for water vapour. The time constant for water vapour increases greatly with aging tubes. Three methods were used to estimate the flux attenuations and corrections; from June through August, the attenuations of CO2 fluxes are about 3–4% during the daytime and 6–10% at night on average. For the daytime latent heat flux (QE), the attenuations are foundto vary from less than 10% for newer tubes to over 20% for aged tubes. Correctionsto QE led to increases in the ratio (QH + QE)/(Q* - QG) by about 0.05 to0.19 (QH is sensible heat flux, Q* is net radiation and QG is soil heat flux),and thus are expected to have an important impact on the assessment of energy balanceclosure.  相似文献   

18.
Summary The broadband solar absorptivity concept is employed to parameterize the aerosol absorption effect. The solar radiation model developed by Liou and his associates was modified to incorporate the parameterization of solar radiative transfer in an aerosol layer. Comparison of the results from this method with other schemes exhibits close agreement. A Sahara dust storm case was also chosen to test the performance of the present model, and the computed heating rate profiles agree well with calculations based on optical properties derived from observations for both clear and dust cases. In general, enhanced heating due to aerosol absorption of solar flux occurs particularly in the lower troposphere (below 5 km). The heating rate is independent of the scattering partition factor (), but the planetary albedo increases with . Further study shows that the aerosol heating is sensitive to the surface albedo (r s ) and to the cosine of the solar zenith angle (µ 0). The decrease inr s and/or increase inµ 0 lower the solar heating rate, the planetary albedo and the atmospheric absorptivity, but raise the surface absorptivity due to reduced multiple reflection between the atmosphere and surface.With 9 Figures  相似文献   

19.
We present a new model of the structure of turbulence in the unstable atmospheric surface layer, and of the structural transition between this and the outer layer. The archetypal element of wall-bounded shear turbulence is the Theodorsen ejection amplifier (TEA) structure, in which an initial ejection of air from near the ground into an ideal laminar and logarithmic flow induces vortical motion about a hairpin-shaped core, which then creates a second ejection that is similar to, but larger than, the first. A series of TEA structures form a TEA cascade. In real turbulent flows TEA structures occur in distorted forms as TEA-like (TEAL) structures. Distortion terminates many TEAL cascades and only the best-formed TEAL structures initiate new cycles. In an extended log layer the resulting shear turbulence is a complex, self-organizing, dissipative system exhibiting self-similar behaviour under inner scaling. Spectral results show that this structure is insensitive to instability. This is contrary to the fundamental hypothesis of Monin--Obukhov similarity theory. All TEAL cascades terminate at the top of the surface layer where they encounter, and are severely distorted by, powerful eddies of similar size from the outer layer. These eddies are products of the breakdown of the large eddies produced by buoyancy in the outer layer. When the outer layer is much deeper than the surface layer the interacting eddies are from the inertial subrange of the outer Richardson cascade. The scale height of the surface layer, z s, is then found by matching the powers delivered to the creation of emerging TEAL structures to the power passing down the Richardson cascade in the outer layer. It is z s = u * 3 /ks, where u * is friction velocity, k is the von Kármán constant and s is the rate of dissipation of turbulence kinetic energy in the outer layer immediately above the surface layer. This height is comparable to the Obukhov length in the fully convective boundary layer. Aircraft and tower observations confirm a strong qualitative change in the structure of the turbulence at about that height. The tallest eddies within the surface layer have height z s, so z s is a new basis parameter for similarity models of the surface layer.  相似文献   

20.
The measurements of the photosynthetic photon flux density (Qp) and other solar components have been in Beijing for 2-year period. The Qp, broadband solar radiation (Rs) and the PAR fraction (Qp / Rs) showed similar seasonal features that peaked in value during the Summer and reached their lowest value during the Winter. The PAR fraction ranged from 1.68 E M J− 1 (Winter) to 1.98 E M J− 1 (Summer) with an annual mean value of 1.83 E M J− 1. The analysis of the hourly values also revealed a diurnal pattern, with higher values of Qp and Rs being observed around noon. The PAR fraction increased from 1.78 to 1.89 μE J− 1 (hourly values), as the sky conditions changed from clear to cloudy. The monthly mean hourly PAR fraction also revealed a diurnal variation, however, with lower values being observed around noon during most months. In November, the diurnal variations showed an opposite feature in comparison with other months. This is mainly attributed to the diurnal variations in the water vapor concentration.Two models were developed to estimate Qp from Rs. The models consisted of atmospheric parameters that were found to cause substantial changes to the PAR fraction, such as sky clearness, brightness and path length. The estimated Qp obtained via different equations was much closer to the observed values, with relative errors below 20% in Beijing. The Qp and Rs data collected at three stations with featuring different climate types from within Beijing were used for verifying the transferability of the models. The correlation coefficients between the measured and estimated Qp values decreased at these stations, and the relative error increased. This indicates that the estimation models need to be modified accordingly for the local climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号