首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
本文主要研究了黏弹性HTI和EDA介质中地震波的波动参数(包括相速度、慢度、偏振向量和群速度),并基于摄法,推导了P、SV、SH波波动参数的弱各向异性近似公式.文章提出了慢度向量的三种定义形式,分析对比了各种定义方法在求解christo-ffel方程时的具体方法,指出特殊分量法为各向异性黏弹性介质提供了一种研究均匀和非均匀波的更简单、使用更普遍的方法.基于特殊分量法,通过求解christoffel方程,推导出黏弹性HTI介质中均匀、非均匀波的精确相速度、慢度和群速度计算公式,并通过模型计算研究了SH波的相速度特征及其随相角和不均匀参数D的变化规律,结果表明参数D对地震波的相速度大小有一定影响,但对其方位特性无影响,在EDA介质中相速度随方位角变化的规律仍然可指示介质的对称轴方向和裂隙的走向.基于摄动法,以弹性EDA介质为背景介质,通过模型计算对均匀SH波的近似公式的正确性和精度进行验证,结果证明其最大相对误差为1.15%.  相似文献   

2.
地球介质基本为黏弹性各向异性介质,研究黏弹性各向异性介质中地震波的传播特征对提高地震勘探精度及准确性有着重要意义.相速度与群速度是认识黏弹性各向异性地震波传播规律的主要参数,对地震数据解释具有重要意义.本文基于特殊分量法,通过求解christoffel方程,推导出黏弹性EDA介质中均匀、非均匀波的精确相速度、慢度和群速度公式,并通过模型计算研究了SH波的相速度特征及其随相角和不均匀参数D的变化规律.结果表明D影响了地震波的相速度大小,但对其方位特性无影响,在EDA介质中相速度随方位角变化的规律仍然可指示介质的对称轴方向和裂隙的走向.  相似文献   

3.
本文首先由Christoffel方程推导出黏弹性EDA介质中均匀、 非均匀P波、 SV波和SH波的相速度表达式, 然后参照极端各向异性介质的相关计算方法, 推导出EDA介质中均匀、 非均匀地震波相衰减系数和群衰减系数的表达式, 并通过数值计算分析了相速度、 相衰减系数、 群衰减系数与裂隙方位的关系. 结果表明: 均匀介质中SH波的相速度和相衰减系数均可指示裂隙的走向; 非均匀介质中SH波相衰减系数随非均匀角的增大而增大, 且其对称轴与介质对称轴的夹角也相应增加; 由于地震波振幅的衰减随岩石物理性质的变化比地震波速度的变化更为灵敏, 而且携带了更多的岩石物理性质信息, 因此可用来探明裂隙走向、 密度及含水特性, 进而应用于预测、 预防地下工程地质灾害事故.   相似文献   

4.
三维TTI介质相速度和群速度   总被引:2,自引:0,他引:2       下载免费PDF全文
相速度和群速度是研究地震波传播规律和描述介质特性的重要参数,是弹性波传播理论中的核心内容,在理论研究和实际应用中有重要作用.本文根据VTI介质的刚度矩阵,利用Bond变换建立了TTI介质刚度矩阵.再利用TTI介质刚度矩阵,结合弹性动力学的本构方程、牛顿运动微分方程和几何方程,得到了三维TTI介质弹性波波动方程和Christoffel方程.通过本征值方法求解Christoffel方程,推导了三维TTI介质弹性波相速度的解析表达式.利用Berryman和Crampin推导各向异性介质群速度公式,根据三维TTI介质的相速度解析式推导了三维TTI介质群速度解析表达式.数值试例表明,随着各向异性介质参数改变,TI介质弹性波相速度变化较为平缓,群速度变化较为剧烈,qP波和SH波速度变化较为平缓,qSV波速度变化较为剧烈.  相似文献   

5.
煤层中存在的裂隙会导致介质表现为各向异性,本文以HTI型煤层为例,结合各向异性介质弹性矩阵和各向异性裂隙理论,推导出不同充填物的垂直裂隙中各向异性参数表达式,将其应用于地震波响应分析;通过改进的交错网格差分法和各向异性Christoffel方程波场分解法,得到地震波合成记录和分解后的P波和SV波记录;将Thomsen群速度与相速度公式,经过坐标轴旋转变换,得到HTI型煤层中不同各向异性参数的地震波速度响应表达式;建立不同类型煤层地质模型,分析了裂隙密度、裂隙充填物以及煤层厚度等参数变化时的地震波响应特征.研究结果为分析垂向裂隙各向异性薄煤层地震波传播规律提供工具,为选用相应地震数据进行地震波各向异性参数反演提供依据.  相似文献   

6.
任意空间取向TI介质中体波速度特征分析   总被引:2,自引:0,他引:2       下载免费PDF全文
郝重涛  姚陈  王迅 《地震地质》2005,27(2):252-259
基于任意空间取向TI介质(简称ATI)中体波速度和偏振解析解,通过模型数值计算给出ATI介质中体波群速度和相速度的变化特征,说明TI空间取向与测线方位对速度的影响。研究表明,体波群速度图案和相速度图案相对TI对称轴固定,随TI对称轴倾角及其相对测线方位角的变化呈现出一定的对称性和重复性;可以针对ATI地区的地质情况,给出体波群速度和相速度变化图案,为进一步的理论研究提供便捷。此结果也可以直接用于VSP(垂直地震剖面)和井间地震资料的分析研究  相似文献   

7.
本文通过理论计算、数值模拟与穹窿物理模型三维数据对比分析的方法,对HTI介质中纵波方位各向异性现象进行研究.主要是进行目的层动校正速度以及走时的分析.结果显示,理论数值与实验数值耦合较好,HTI介质会引起动校正速度以及走时随方位角呈现椭圆形的变化;同时发现,观测系统中最大偏移距与目的层深度的比值以及方位角分布对各向异性分析有较大影响. 三维纵波方位各向异性分析对于数据的观测系统设计以及数据质量有较高的要求.  相似文献   

8.
双相各向异性介质中弹性波传播特征研究   总被引:11,自引:4,他引:7       下载免费PDF全文
刘洋  李承楚 《地震学报》1999,21(4):367-373
随着地震工程和能源地震勘探的深入发展,人们所遇到的地下介质愈来愈复杂.常规的各向异性介质理论或双相各向同性介质理论难以精确描述含流体的各向异性介质,如裂缝性气藏、含水页岩等.本文以Biot双相各向异性介质理论为基础,利用弹性平面波方程,推导出了任意双相各向异性介质中弹性波的Christoffel方程.根据Christoffel方程,计算并分析了频率对双相横向各向同性介质中弹性波的相速度、衰减、双相振幅比和偏振特征的影响.结果表明,在4类波(快纵波、慢纵波、快横波和慢横波)中,频率对慢纵波影响最大;当耗散很大时,快纵波、快横波和慢横波的流固相振幅比值近似为1.对偏振特征分析的结果表明,在双相各向异性介质中,弹性波的固相位移偏振方向与流相位移偏振方向将不再保持同向或反向,而是呈不同大小的夹角.   相似文献   

9.
任意空间取向TI介质中速度随方位变化特征   总被引:6,自引:0,他引:6       下载免费PDF全文
本文基于任意空间取向TI介质中坐标变换的方法,扩展研究了任意强弱、具有任意空间取向对称轴的TI介质中体波相速度和群速度的方位变化;通过模型数值计算,获得了相速度与群速度方位变化图案,并比较了二者偏差.研究发现,各向异性越强群速度与相速度的偏差越大;并且,TI对称轴的空间取向和测线方位影响速度方位变化.相对于TI对称轴,速度方位变化图案不变;但是,随着TI对称轴空间取向和测线方位的改变,其速度方位变化呈现一定的规律性.研究结果可以精确地预测任意空间取向TI介质中速度方位变化,有利于地震各向异性数据处理与解释.  相似文献   

10.
VTI介质中地震波反射波合成记录的方法研究   总被引:1,自引:1,他引:1  
在向向异性介质中,由于地震波的相速度和群速度有较大差异,相角和群角不同,相速度、群速度及群角相与角之间的关系比较复杂,因此与各同性相比较,计算地震波相速度,群速度及群角就更加困难,其合成地震记录的难度也就之增大,本文根据VTI(具有垂直对称轴的横向各向同性)介质中地震波的运动学特征,应用射线追踪方法,计算了VTI介质中的地震波的旅行时,并合成了反 地震记录,这为反射地震波的旅行时及速度分析提供了基础。  相似文献   

11.
Anisotropy in subsurface geological models is primarily caused by two factors: sedimentation in shale/sand layers and fractures. The sedimentation factor is mainly modelled by vertical transverse isotropy (VTI), whereas the fractures are modelled by a horizontal transversely isotropic medium (HTI). In this paper we study hyperbolic and non‐hyperbolic normal reflection moveout for a package of HTI/VTI layers, considering arbitrary azimuthal orientation of the symmetry axis at each HTI layer. We consider a local 1D medium, whose properties change vertically, with flat interfaces between the layers. In this case, the horizontal slowness is preserved; thus, the azimuth of the phase velocity is the same for all layers of the package. In general, however, the azimuth of the ray velocity differs from the azimuth of the phase velocity. The ray azimuth depends on the layer properties and may be different for each layer. In this case, the use of the Dix equation requires projection of the moveout velocity of each layer on the phase plane. We derive an accurate equation for hyperbolic and high‐order terms of the normal moveout, relating the traveltime to the surface offset, or alternatively, to the subsurface reflection angle. We relate the azimuth of the surface offset to its magnitude (or to the reflection angle), considering short and long offsets. We compare the derived approximations with analytical ray tracing.  相似文献   

12.
推导了二维TTI介质的相速度表达式,并且依据推导出来的相速度表达式,模拟并分析了二维TTI介质相速度的传播快照以及TI介质相速度的传播快照;对比并分析了TTI介质和TI介质模型的相速度理论计算值的X分量特征的差异。TTI介质的相速度研究具有较高的理论研究价值和实际应用价值.  相似文献   

13.
To investigate the characteristics of the anisotropic stratum, a multi‐azimuth seismic refraction technique is proposed in this study since the travel time anomaly of the refraction wave induced by this anisotropic stratum will be large for a far offset receiver. To simplify the problem, a two‐layer (isotropy–horizontal transverse isotropy) model is considered. A new travel time equation of the refracted P‐wave propagation in this two‐layer model is derived, which is the function of the phase and group velocities of the horizontal transverse isotropic stratum. In addition, the measured refraction wave velocity in the physical model experiment is the group velocity. The isotropic intercept time equation of a refraction wave can be directly used to estimate the thickness of the top (isotropic) layer of the two‐layer model because the contrast between the phase and group velocities of the horizontal transverse isotropic medium is seldom greater than 10% in the Earth. If the contrast between the phase and group velocities of an anisotropic medium is small, the approximated travel time equation of a refraction wave is obtained. This equation is only dependent on the group velocity of the horizontal transverse isotropic stratum. The elastic constants A11, A13, and A33 and the Thomsen anisotropic parameter ε of the horizontal transverse isotropic stratum can be estimated using this multi‐azimuth seismic refraction technique. Furthermore, under a condition of weak anisotropy, the Thomsen anisotropic parameter δ of the horizontal transverse isotropic stratum can be estimated by this technique as well.  相似文献   

14.
Existing and commonly used in industry nowadays, closed‐form approximations for a P‐wave reflection coefficient in transversely isotropic media are restricted to cases of a vertical and a horizontal transverse isotropy. However, field observations confirm the widespread presence of rock beds and fracture sets tilted with respect to a reflection boundary. These situations can be described by means of the transverse isotropy with an arbitrary orientation of the symmetry axis, known as tilted transversely isotropic media. In order to study the influence of the anisotropy parameters and the orientation of the symmetry axis on P‐wave reflection amplitudes, a linearised 3D P‐wave reflection coefficient at a planar weak‐contrast interface separating two weakly anisotropic tilted tranversely isotropic half‐spaces is derived. The approximation is a function of the incidence phase angle, the anisotropy parameters, and symmetry axes tilt and azimuth angles in both media above and below the interface. The expression takes the form of the well‐known amplitude‐versus‐offset “Shuey‐type” equation and confirms that the influence of the tilt and the azimuth of the symmetry axis on the P‐wave reflection coefficient even for a weakly anisotropic medium is strong and cannot be neglected. There are no assumptions made on the symmetry‐axis orientation angles in both half‐spaces above and below the interface. The proposed approximation can be used for inversion for the model parameters, including the orientation of the symmetry axes. Obtained amplitude‐versus‐offset attributes converge to well‐known approximations for vertical and horizontal transverse isotropic media derived by Rüger in corresponding limits. Comparison with numerical solution demonstrates good accuracy.  相似文献   

15.
由所建立的三维qP波相速度表示式出发,导出并解析求解各向异性介质中的频散方程,得到三维各向异性介质中的相移算子,进而将以相移算子为基础的对称非平稳相移方法推广到各向异性介质,发展了一个三维各向异性介质的深度偏移方法. 文中使用的各向异性介质的速度模型与现行的各向异性构造的速度估计方法一致,将各向同性、弱各向异性及强各向异性统一在一个模型中. 所建立的各向异性介质对称非平稳相移波场延拓算子可以同时适应速度及各向异性参数横向变化;文中给出的算例虽然是针对二维VTI介质的,但所提出的算法同样适用于三维TI介质.  相似文献   

16.
Subsurface rocks (e.g. shale) may induce seismic anisotropy, such as transverse isotropy. Traveltime computation is an essential component of depth imaging and tomography in transversely isotropic media. It is natural to compute the traveltime using the wavefront marching method. However, tracking the 3D wavefront is expensive, especially in anisotropic media. Besides, the wavefront marching method usually computes the traveltime using the eikonal equation. However, the anisotropic eikonal equation is highly non‐linear and it is challenging to solve. To address these issues, we present a layer‐by‐layer wavefront marching method to compute the P‐wave traveltime in 3D transversely isotropic media. To simplify the wavefront tracking, it uses the traveltime of the previous depth as the boundary condition to compute that of the next depth based on the wavefront marching. A strategy of traveltime computation is designed to guarantee the causality of wave propagation. To avoid solving the non‐linear eikonal equation, it updates traveltime along the expanding wavefront by Fermat's principle. To compute the traveltime using Fermat's principle, an approximate group velocity with high accuracy in transversely isotropic media is adopted to describe the ray propagation. Numerical examples on 3D vertical transverse isotropy and tilted transverse isotropy models show that the proposed method computes the traveltime with high accuracy. It can find applications in modelling and depth migration.  相似文献   

17.
裂隙各向异性介质中的NMO速度   总被引:5,自引:4,他引:1       下载免费PDF全文
推导了各向异性介质中由弹性系数表示的方位动校NMO速度的具体表达式,表明各向异性介质中方位NMO速度程椭圆形状,并分别对具水平对称轴的横向各向同性介质(HTI)、正交介质和单斜各向异性介质及在不同的裂隙填充物的性质下方位NMO速度进行了计算,结果表明裂隙的存在对NMO速度的影响不仅与裂隙密度有关,还取决于裂隙填充物的性质.同时,研究表明对于裂隙型单斜各向异性介质,其方位NMO速度椭圆轴向并不象HTI介质和正交介质中的那样与自然坐标系的坐标轴一致,而是发生了一定角度的偏离,其大小与裂隙填充物的性质、两组裂隙密度的比值及裂隙间的夹角等因素有关,研究结果为进一步区分裂隙介质的类型及裂隙填充物的性质提供依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号