首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
本文以吉林省辽源站为代表,并选取辽源市2008-2012年降水、高空和地面实况观测资料,分析研究吉林省中部半山区降水相态(指雨或雨夹雪转雪,下同)的影响系统及温度变化特征,结果表明:500h Pa低涡槽(包括低槽)、850h Pa切变或低涡槽、地面气旋(蒙古气旋、华北气旋)等影响系统共同作用是辽源市雨雪相变天气过程的典型形势,但低层系统对降水相态的影响较高层系统更为明显。分析降水相态的温度变化特征得出雨或雨夹雪转雪时的温度阈值和预报指标为:T700≤-5℃;T850≤-1℃;T地面≤1℃。  相似文献   

2.
对2013年2月的浙江两次雨转大到暴雪过程的环流背景、相态变化与地面气温及温度的垂直结构特征进行分析。结果表明,各种降水相态出现时的地面温度区间范围较大。850~700 h Pa有逆温层是降雪的有利条件,700 h Pa附近逆温层顶温度在零度以下,云顶高度较高或在925 h Pa有强干冷空气楔入时,即使地面温度高于2℃也有可能出现纯雪。反之700 h Pa附近有大于零度的暖层存在、凝结层高度较低时,地面温度低至-1℃以下也可以出现纯液态降水。  相似文献   

3.
利用1999—2014年11月至翌年3月安庆站逐日地面气象观测资料和探空资料,分析了安庆站不同降水相态的时空分布特征和雨雪转换过程中影响系统的配置及转变,选取雨雪转换、降雪和冰粒(包括冻雨)3种天气现象,研究不同降水相态与特性层温度及厚度层结的关系。结果表明:1999—2014年安庆市固态降水集中出现在11月至翌年3月;有降水相态转换的过程中,将850hPa及以下各层温度与地面温度结合对降水相态转变的识别具有更好的效果,当T_(850hPa)≥-4℃、T_(925hPa)≥-4℃、T_(1000hPa)≥-1℃、T_(地面温度)≥1℃时可以判定降水相态为降雨,各层温度继续降低将出现雨转雪,直接降雪在以上指标的基础上需要850hPa的温度降至-6℃及以下;H_(850—700hPa)和H_(1000—850hPa)厚度层结雨雪转换的临界值分别为154dagpm、129dagpm,低于此值则为雪,反之为雨;0℃层高度也可以作为降水相态转换的指标之一,当0℃层高度下降至1000hPa左右时为雨转雪;降水过程中逆温层普遍存在,各种降水类型的区别在于冰粒(冻雨)在850—700hPa之间存在一个0℃以上的暖层,而降雪需要逆温层温度小于0℃。  相似文献   

4.
利用2000—2015年10月至次年4月天津地区逐日常规气象观测资料和ERA-Interim再分析资料(0.125°×0.125°),对天津地区发生的3种降水相态转换(雨转雨夹雪再转雪)的天气过程进行统计,分析降水相态转换过程中温度、湿度和不同等压面厚度特征,得到与降水相态转换关系密切的9种判别因子:850 hPa温度(T 850)、925 hPa温度(T 925)、1000 hPa温度(T 1000)、地面温度(T s)、1000~850 hPa位势厚度(H 1000-850)、850~700 hPa位势厚度(H 850-700)、0℃层高度、-4℃层高度和925 hPa相对湿度,给出每种因子对应不同降水相态的阈值,并通过3次天气个例进一步验证指标的可用性。在此基础上,综合利用9个判别因子和阈值指标建立降水相态判别方程,经检验发现雨和雪回代检验判别准确率达80%以上。  相似文献   

5.
利用2005—2014年春秋两季月降水资料,统计分析了近10 a新疆北部4个站点的雨雪天气;利用同时期的高空资料,选取了500 hPa和850 hPa高度差(H_(500-850))、700 hPa和850 hPa高度差(H_(700-850))、850 h Pa和925 hPa高度差(H_(850-925))、700 hPa和925 hPa高度差(H_(700-925))、500 hPa温度(T500)、700 hPa温度(T700)、850 hPa温度(T850)、925 hPa温度(T925)共8个指标参与统计,得出4个站点的主要影响因子及降水相态判别指标;并利用判别指标对2015年3—4月、10—11月伊宁及乌鲁木齐站点出现的降水相态进行检验。研究表明:(1)伊宁T925、T850分别为2.5℃、-2.5℃时;塔城站点T925、T850分别为1.8℃、-1.5℃时可作为雨雪分界指标;伊宁、塔城两站T700对降水相态的指示意义不大;阿勒泰T850、T700、T500分别为-2℃、-8.5℃、-25.3℃时;乌鲁木齐T850、T700分别为-1.75℃、-9.3℃时,可作为雨雪分界,T500对乌鲁木齐降水相态的指示意义不大。(2)伊宁H_(700-925)、H_(850-925)分别为2220 m、680 m时;塔城H_(700-925)、H_(850-925)分别为2 207.5 m、675 m时;阿勒泰H_(700-850)、H_(500-850)分别为1522 m、4 052.5 m时;乌鲁木齐H_(700-850)、H_(500-850)分别为1520 m、4 067.5 m时,可作为雨雪的简单分界。(3)通过检验,总结出的雨雪判别指标可为新疆北部降水相态客观预报提供较好的参考。  相似文献   

6.
江苏冬季降水相态气候分布特征及预报方法探讨   总被引:7,自引:4,他引:3  
利用1981-2010年南京、徐州、射阳逐日探空资料和地面观测资料,在分析冬季雨日、雪日、雨夹雪日气候特点的基础上,运用厚度分析的方法进一步研究江苏冬季不同降水相态的预报指标.结果表明:厚度分析能被用来识别降水相态(雨、雪),1 000~850 hPa厚度阈值1 292 gpm可以作为江苏冬季区分雨、雪的一个重要参考指标.同时结合地面温度和850 hPa温度可以较准确的判定降水的相态,即1 000~ 850 hPa厚度≤1 292 gpm,且T850≤-3℃,T≤2℃时,判定为雪;反之,则为雨.另外,地面湿球温度在雨雪区分上也是一个很有参考价值的指标.  相似文献   

7.
对浙江省2011—2014年4年冬季8次雨雪转化过程中共157个样本的探空资料和地面降水观测资料进行分析。选取了500 h Pa和850 h Pa高度差、700 h Pa和850 h Pa高度差、850 h Pa和1000 h Pa高度差、零度层高度、850 h Pa温度、925 h Pa温度、1000 h Pa温度、地面2 m温度、1000 h Pa露点共9个指标参与统计。得到最适合浙江省冬季降水相态判别的指标是2 m温度、1000 h Pa温度、零度层高度和850 h Pa和1000 h Pa高度差。通过计算各指标的空报率、漏报率和TS评分,得到了最佳阈值,预报雨和雪最佳阈值的TS评分都可达到0.8以上。对雨夹雪的判断,这些表征低层温度的判别指标判别效果都不理想,结合中层暖层指标,可以使判别准确率明显提高。本文研究结果可以为冬季降水相态预报业务提供支持。  相似文献   

8.
利用2000-2013年冬季回流形势36次降水个例的高空、地面观测资料及济南、青岛的降水资料,研究了山东回流形势的环流特征,并按中间暖层和低层冷层的厚度进行了分型。在分型的基础上,探讨了不同形势下温度、厚度的垂直变化特征,获得了不同降水相态下的温度和厚度预报指标。结果表明:(1)回流形势可分为3种,即:回流Ⅰ型、回流Ⅱ型和浅回流型,其中浅回流型又可分为冷层薄浅回流与暖层薄浅回流。(2)直接降雪时,内陆地区各层的温度阈值为T_(850)≤-4℃,T_(925)≤-2℃,T_(1000)≤0℃或T地面≤1℃;但是沿海地区更要确保地面温度0℃。(3)无论内陆还是沿海,当T_(850)≤-3℃,T_(925)≤-1℃,T_(1000)≤0℃或T地面≤1℃时,要考虑降水相态由雨转为雨夹雪或雪;(4)直接降雪的厚度指标:回流Ⅰ型与回流Ⅱ型,冷层H_(850-1000)为127~130 dagpm,暖层H_(500-700)为252~256 dagpm;冷层薄浅回流,冷层H_(925-1000)为61~64 dagpm,暖层H_(500-850)为403~413 dagpm;暖层薄浅回流,冷层H_(700-1000)为279~284 dagpm,暖层H_(500-700)为250~260 dagpm。雨转雪时,回流Ⅰ型与回流Ⅱ型,冷层H_(850-1000)为127~130 dagpm,暖层H_(500-700)为255~264 dagpm,浅回流型雨转雪过程个例太少,厚度指标有待以后关注。  相似文献   

9.
2018年1月下旬,江西省中北部出现严重雨雪冰冻灾害天气,覆冰和积雪持续时间长达7 d,其间多次出现罕见的雨雪相态转换,先后经历了雨、冻雨、雪、冻雨、雪5个复杂过程。文中对此次天气过程的相态转换特征及成因进行了分析。结果表明: 1) 在有利的环流背景下,西风带小槽发展东移并携带冷空气南下,破坏850 hPa高度层附近的暖性逆温层,是冻雨转雪的重要因素,而700 hPa高度层上西南急流的脉动、偏南风增强为雪转冻雨提供了动力和热力条件。2) 冻雨发生时最强风切变出现在925—850 hPa高度层,降雪发生时出现在850—700 hPa高度层。两次冻雨转降雪过程中,上升运动均增强,降雪时低层辐合、高层辐散强度较冻雨时强。3) 近地面气温接近05 ℃时,850 hPa高度层冷暖平流对中低层大气的降温和升温作用至关重要,冷平流的降温作用剧烈,而暖平流的升温作用需要持续输送。暖层消失,冻雨即可转降雪;雪转冻雨时850 hPa和700 hPa高度层温度升至1 ℃,暖层内最高温度达2 ℃,相态的转变落后于暖性逆温层的形成。4) 此次过程中,九江地区发生雨转冻雨以及冻雨转雪过程,地面气温下降明显。雨转冻雨时,气温≤-05 ℃;冻雨转降雪时,气温≤-1 ℃。雪转冻雨时,地面温度略有上升,仍在-1 ℃以下。高山站气温的持续上升,对雪转冻雨天气有指示意义。  相似文献   

10.
山东冬半年降水相态的温度特征统计分析   总被引:11,自引:4,他引:7  
杨成芳  姜鹏  张少林  张磊 《气象》2013,39(3):355-361
采用济南和青岛1999-2011年的降水、高空和地面观测资料,研究了山东冬半年降水相态与影响系统的关系及温度垂直变化特征,获得不同降水相态的温度预报指标.结果表明:(1)降水相态变化与影响系统有关,江淮气旋和回流形势产生的大雪以上强降雪存在雨雪转换,低槽冷锋、黄河气旋和切变线(低涡)多产生中雪以下直接降雪.(2)无相态变化的降雪过程一般发生在温度较低、垂直变化单一的条件下,850 hPa以下各层均有明显温度阈值.(3)有相态转换的降雪过程中,850和925 hPa的温度对于雨、雪、雨夹雪的识别没有明显指示性,1000 hPa以下的温度最为关键,将925 hPa以下各层与地面的温度结合起来判别相态,较使用单一特性层温度更为可靠;冰粒区别于其他降水类型,在温度场上的显著特征为700 hPa的温度较高.(4)0℃层高度可用于雨雪转换指标:降雨时0℃层高于925 hPa或在925 hPa上下,当0℃层的高度降至1000 hPa上下时转为降雪.(5)雨夹雪和冰粒发生在有雨雪相态转换的降水过程中,为过渡形态,不会单独出现.  相似文献   

11.
北疆春季降水相态转换判识和成因分析   总被引:1,自引:0,他引:1  
2014年4月13-15日北疆出现了大范围雨转雪天气和强降雪过程,给当地工农牧业及人民生活造成严重影响。对这次过程,利用天气学诊断方法,分析了其发生发展过程,并得到此次灾害性天气过程中雨雪相态转换和降水强度的预报指标。结果显示:(1)此次天气过程是在中亚低涡两次生成、发展和减弱过程中出现的。(2)中低层温度变化是预报北疆春季降水相态转换的关键因子和指标,中层温度可区分雪和雨夹雪,T_(500)-25℃、T_(700)-12℃可判定为雨夹雪转雪;低层温度可区分雨和雨夹雪,T_(850)-2℃和T_(925)2℃时雨转雨夹雪,T_(850)-4.5℃用来判别雨夹雪转雪。(3)春季北疆沿天山一带和天山山区的降水中水汽凝结起主要作用,中低层水汽冷凝结是影响降水强度的重要因子,水汽条件越好、冷空气越强、凝结厚度越厚、持续时间越长,则降水强度越强,水汽冷凝结强度决定了降水强度的大小。  相似文献   

12.
利用1999—2017年石家庄国家基本气象观测站的降水实况资料,统计出暴雪天气过程,在分析其地面和高空影响系统的基础上,着重分析暴雪天气过程中温度场的变化特征。结果表明:暴雪天气过程的地面影响系统为冷高压和低压倒槽共存的形势,但高空系统存在差异;没有相态转变而以固态雪的形式出现的暴雪天气过程中,对流层中没有逆温层,整个对流层温度小于0 ℃,且700 hPa高度以下的中低空温度小于-5 ℃;有相态转变的暴雪天气过程中,925—700 hPa多存在逆温层,其存在有利于降水的维持和发展,850 hPa和925 hPa可视为特性层,850 hPa温度小于-4 ℃,925 hPa温度小于等于-2 ℃,0 ℃层的高度位于950 hPa以下,可作为预报雨或雨夹雪转雪的参考指标;地面气温大于0 ℃且小于1 ℃可视为过渡相态雨夹雪的地面气温临界值。  相似文献   

13.
利用Micaps常规资料,对2014年10月10-13日青海东部地区出现的一次历史同期少见的寒潮背景下雨转暴雪天气过程的环流形势、水汽输送以及雨转雪过程中温度的垂直结构特征等方面进行了分析,结果表明:前期特别是近地面层气温背景与不同相态降水的发生与转换关系密切,青海东部地面气温大于3℃时,降水性质以雨为主;当地面气温介与2~3℃之间,降水性质为雨夹雪;气温小于2℃,降水性质为雪;降水相态变化与700h Pa 0℃线位置存在相关。  相似文献   

14.
通过对2006—2015年青岛冬半年不同相态降水的统计分析得出,青岛冬半年纯雨日数1月最少,纯雪日数2月最多,12月和1月是雨夹雪及雨雪转换日数占当月降水日数比例最高的两个月。通过个例分析表明,雨雪转换过程多与冷空气入侵相联系。温度场和风场条件能较好地反映出雨雪转换的特征,降温和风向转换在850 hPa以下层更为明显。探空资料分析表明,850 hPa、925 hPa、1 000 hPa和地面气温对不同相态降水都有很好的指示意义,越低层指示性越好。0 ℃层高度对不同相态降水同样具有指示意义,100~500 m高度是雨雪转换的关键高度层;以不同高度层气温为指标确定出青岛冬半年降水相态预报判别指标。  相似文献   

15.
利用冬奥会气象观测站网资料、ERA5的0.25°×0.25°高分辨率再分析资料、常规探空资料以及激光雷达和风廓线雷达资料,从环流形势、温湿度和微物理特征以及雷达特征等方面对2020年11月17-19日冬奥会张家口赛区一次明显的雨转雪天气过程进行分析。结果表明:低层前期的暖湿西南气流,为降水提供好的水汽和能量条件,后期强的干冷平流为相态转换提供有利条件。赛区出现雨转雪时,700 hPa温度低于-2℃,同时850 hPa温度低于2℃。零度层高度的快速下降是相态转换的重要温度判据,0℃线降到距地面400 m左右赛区降水相态已经转变为纯雪,低层风向的转向对赛场的雨雪相态转换有一定的指示意义。随着高空云冰和雪水含量逐渐增加,其出现最大值后,雨雪相态开始转换。降雪时激光雷达最大探测高度比降雨时有明显的降低,风廓线雷达低层风场的变化和雨雪相态关系密切,风廓线雷达探测的垂直速度变化也能反映雨雪相态的转换。  相似文献   

16.
董伟  杨光武  马梁臣  朱丹 《干旱气象》2019,37(3):363-369
采用2005-2014年长春市地面和高空常规气象观测资料,研究冬半年地面和高空不同高度层气温对降水相态变化的影响。结果表明:地面气温对降水相态变化影响程度最大,以1.7℃作为雨和雨夹雪的相态转换指标、以-0.1℃作为雪和雨夹雪的相态转换指标可以较好地判断降水相态;将地面气温与925 hPa温度相结合来判断降水相态更加准确;地面气温在0℃附近上升或下降的变化速度越快,雨夹雪持续时间越短。  相似文献   

17.
利用2008—2018年逐年11月至翌年3月常规气象观测资料,从天气形势配置、降水相态与特征层气温、0 ℃层高度和层结厚度的关系等进行分析,归纳了黄山地区冬半年雨、冻雨、雨夹雪和雪四类降水相态的判别依据,并利用一次雨雪转换天气过程对判据进行了检验。结果表明,黄山地区固态降水和固液混合型降水主要发生在1—2月。850 hPa高度层及以下各层气温对雨雪转换的判别效果较好,当850、925、1 000 hPa特征层气温和地面气温分别大于等于-3.9、-2.6、0.5、1 ℃时可判定为雨,各层气温继续降低将出现雨夹雪或雪。当0 ℃层高度在1 000 hPa高度层以上时可能出现雨,反之出现雨夹雪或雪。此外,厚度层结也能较好地区分雨和雨夹雪或雪。冻雨(冰粒)的判据与其他降水相态的判据不同之处是在700 hPa高度层附近存在融化层。判据能较好地区分黄山地区不同降水相态,但对冻雨和冰粒的识别能力相对较弱。  相似文献   

18.
利用常规气象观测资料、地面自动站资料、欧洲再分析资料(ERA5 025°×025°),对2020年1月5—7日河南省强雨雪过程中雨雪相态多次转换成因进行分析。结果表明:500 hPa高空低槽、中低层切变线、西南(东南)暖湿急流与低层冷空气在强雨雪区交汇为强雨雪提供了动力、水汽条件,亦为雨雪相态转换提供了有利的温度条件。冷空气分别从东路和中路南下影响河南,导致近地层明显降温是雨转雨夹雪或雪的主要原因之一,而冷空气的强度和厚度是决定降水相态的关键因子。中层和近地面暖层厚度对降水相态至关重要。本次过程降水相态为纯雪时,冰雪层和冰水混合层厚度超过2 980 gpm,中层无暖层,近地面0 ℃线低于975 hPa;降水相态为雨夹雪时,有时无冰雪层,冰水混合层厚度超过1 400 gpm,中层有时有暖层,但整层暖层厚度在900~1 330 gpm;雨转雨夹雪发生在地面气温低于21 ℃时,雨夹雪出现在地面气温11~21 ℃时;纯雪发生在地面气温≤11 ℃时。  相似文献   

19.
本文利用MICAP3.2资料、常规观测资料、自动站资料和多普勒天气雷达资料分析2014年5月2日一次寒潮天气背景下降水相态的成因。结果表明:此过程是高空较强冷空气与南部低压系统共同作用产生的由雨转为雨夹雪后转雪的降水相态的变化。从高空形式场分析,0℃层迅速下降,850 h Pa已达-2℃以上及地面气温在0℃左右是产生降雪的指标。  相似文献   

20.
利用micaps常规气象资料分析2011年2月26-27日雨雪天气过程的天气形势,分析雨雪相态转换时间与850hPa温度以及自动站气象要素的关系,对欧洲中心和日本数值预报与实况进行对比分析。结果表明:雨雪天气过程发生在低层切变线和地面倒槽影响时段,降水相态由雨转化为雪时,符合850hPa温度三一4℃统计规律;对于雨雪时间转换可用自动站资料做进一步补充,当气温下降到O°C以下,且地面Ocm温度维持在O°C左右时,降水相态转变为雪。对比分析欧洲中心、日本数值预报结果,两者均准确预报低层切变线和地面倒槽影响时间和主要影响位置,日本降水量预报和实况相当,自南向北呈减小特征;欧洲中心和日本数值预报850hPa温度场影响时间相当,欧洲中心预报温度偏高约5℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号