首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
典型梅雨暴雨系统的云系及其相互作用   总被引:4,自引:3,他引:4  
利用GOES-9红外云图和NCEP/NCAR 1°×1°再分析资料,分析了2003年6月29日~7月12日长江中下游一次典型梅雨期间暴雨系统的云系成员及其相互作用.结果表明:(1)梅雨暴雨系统的云系成员主要有四个,它们是梅雨锋云系、西风带短波槽云系、青藏高原东移扰动云系和季风云涌.这些云系成员都可以影响到梅雨锋云系的形状和强度,对梅雨锋云系的建立或重建都起到重要的作用.(2)梅雨云系成员是相应的天气系统相互作用的产物,副热带高压决定梅雨锋云系的位置,因此也决定了暴雨发生的区域.适当强度的高空槽可以诱生梅雨气旋,产生锋面气旋暴雨.高原东移扰动云系如果受高原槽的引导可以移出高原,同时也诱生西南低涡并移出四川盆地,高空槽和低涡共同作用造成了沿途暴雨.季风云涌在副高东退的情况下,就有可能北上和梅雨锋云系连在一起.不同的云系成员和梅雨锋云系相互作用的结果形成不同的云系分布.  相似文献   

2.
基于加密自动站降水、葵花8卫星和ECMWF ERA5再分析等多种资料,本文对2018年6月17日08时至18日22时(协调世界时,下同)一次青藏高原(简称高原)中尺度对流系统(Mesoscale Convective System,简称MCS)东移与下游西南低涡作用并引起四川盆地强降水的典型事件进行了研究(四川盆地附近最大6小时降水量高达88.5 mm)。研究表明,本次事件四川盆地的强降水主要由高原东移MCS与西南低涡作用引起,高原MCS与西南低涡的耦合期是本次降水的强盛时段,暴雨区主要集中在高原东移MCS的冷云区。高原东移MCS整个生命史长达33 h,在其生命史中,它经历了强度起伏变化的数个阶段,总体而言,移出高原前后,高原MCS对流的重心显著降低,但对流强度大大增强。在高原MCS的演变过程中,四川盆地有西南低涡发展,该涡旋生命史约为21h,所在层次比较浅薄,主要位于对流层低层。西南低涡与高原MCS存在显著的作用,在高原MCS与西南低涡耦合阶段,两者的上升运动区相叠加直接造成了强降水。此后,由于高原MCS系统东移而西南低涡维持准静止,高原MCS与西南低涡解耦,西南低涡由此减弱消亡,东移高原MCS所伴随的降水也随之减弱。涡度收支表明,散度项是西南低涡发展和维持的最主导因子,此外,倾斜项是800 hPa以下正涡度制造的第二贡献项,而垂直输送项则是西南低涡800hPa以上正涡度增长的另一个主导项,这两项分别有利于西南低涡向下和向上的伸展。相关分析表明,在西南低涡发展期间,高原MCS中冷云面积(相当黑体亮度温度TBB≤?52°C)可以有效地指示西南低涡强度(涡度)的变化,超前两小时的相关最显著,相关系数可达0.83。  相似文献   

3.
青藏高原对1998年长江流域天气异常的影响   总被引:7,自引:3,他引:7  
张顺利  陶诗言 《气象学报》2002,60(4):442-452
利用NCEP再分析资料分析了青藏高原对 1998年夏季长江流域洪涝及天气异常的影响 ,并讨论了第 2段梅雨期的暴雨与长江流域洪涝灾害的关系。研究结果表明 :由于青藏高原的热力作用 ,夏季高原东北部斜压性强 ,多短波槽活动。 1998年长江流域两段梅雨期间 ,高原东移的短波槽加强了梅雨锋 ,并引起梅雨锋上强暴雨。 1998年长江流域的 8次洪峰均与高原东侧短波槽东移有关。由于梅雨期前面几场暴雨已使得土壤水份饱和 ,沿江各支流及湖泊水位很高 ,梅雨期的最后一场暴雨的大量雨水往往作为径流流入江河或湖泊 ,与长江洪峰汇合后易造成洪涝灾害  相似文献   

4.
近年来影响我国东部洪涝的高原东移涡环流场特征分析   总被引:3,自引:7,他引:3  
利用NECP再分析资料,对1998—2004年间5次影响我国东部地区严重暴雨的高原东移涡过程的对流层中上层环流场特征进行了分析,指出了影响高原低涡东移出高原的四种天气系统类型:北槽南涡型、切变线、切变流场及西风槽前部;揭示了高原低涡东移出高原与500 hPa上的冷空气、副热带高压位置、200 hPa上的南亚高压及西风急流之间的关系;获取了高原低涡东移出高原的强信号,为高原东移涡暴雨预报提供了科学依据。  相似文献   

5.
廖捷  谈哲敏 《气象学报》2005,63(5):771-789
2003年7月4~5日在江淮地区沿梅雨锋有一系列中尺度对流系统相继生成和强烈发展,导致了江淮地区特大暴雨的形成。该研究利用中尺度数值模式MM5对这次梅雨锋暴雨过程进行了数值模拟,在模拟结果的基础上重点分析了不同尺度天气系统相互作用对这次特大暴雨过程的影响作用。在这次特大暴雨过程中,位于梅雨锋北侧的东北—西南走向深厚、稳定的短波槽系统与槽前从西南移来的低涡系统相配合,加强了位于梅雨锋北侧的反气旋性扰动发展,从而导致梅雨锋北侧反气旋性涡旋的形成。该类反气旋性涡旋形成对江淮切变线的加强与维持起重要作用。中尺度对流系统的潜热释放首先导致梅雨锋低层切变线上的中尺度对流性涡旋(MCV)的形成,而中尺度对流性涡旋的形成进一步加强了切变线上的低层辐合,中尺度对流性涡旋消亡后,在切变线上形成低涡。梅雨锋附近主要存在4种不同垂直环流,它在降水的不同阶段具有不同的结构、配置与动力学作用。其中跨锋面、高层非地转两支垂直环流对锋区的对流扰动发展和暴雨形成最为重要,而降水发展可以调整锋区垂直环流的结构、配置,随降水的减弱,梅雨锋区的不同垂直环流系统又重新恢复到先前结构。梅雨锋上不同尺度、高度的天气系统之间的相互作用主要通过这些垂直环流系统调整实现。  相似文献   

6.
通过对四川盆地西部一次持续性暴雨过程的半理想数值模拟,研究了青藏高原热力作用对四川盆地持续性暴雨过程的影响。研究表明,高原的热力作用对于下游地区有着显著的影响,主要表现为:(1)关闭高原地面感热和潜热后,高原地区和四川盆地西部的降水明显减弱,而盆地中东部降水却有所加强,且四川盆地降水的日变化特征稍有减弱;(2)500 hPa青藏高原上的短波槽减弱,位于四川盆地中西部的背风槽强度、范围有所减弱,但低层盆地东部的气旋性涡旋加强;(3)涡度收支的定量分析发现,关闭高原热力作用后,盆地东部对流层低层垂直风切变的增强使得夜间倾斜项的正贡献增强,从而使该区域涡旋发展加强,盆地东部降水增强。  相似文献   

7.
利用自动站观测资料、探空资料及NCEP再分析资料,对2006年6月12日夜间和2008年5月27日夜间贵州南部局地大暴雨天气过程进行对比分析。结果表明,两次过程均发生在西高东低、东北低涡稳定维持的有利环流形势下,700 hPa巴塘低涡东移是造成贵州西南部强降水的主要影响系统,巴塘低涡和低空西南急流在贵州东南部维持对贵州西南部暴雨起重要作用,同时不稳定能量在贵州南部积聚为暴雨发生提供了有利条件,但相对于后一过程,前一过程在贵州水汽辐合区更大,其大雨量级以上降水范围更广;地面中尺度辐合线生成发展是两次局地大暴雨发生发展的可能触发原因,暴雨中心位于辐合线南侧暖区中;前一过程西太平洋副热带高压较强且位置偏西(西脊点到达110°E),南支槽东移有利于引导700 hPa低涡移动,弱冷空气与暖湿空气交汇形成能量锋锋生,引起低涡强烈发展、涡旋环流增强,而后一过程副高偏弱且位置偏南、偏东,500 hPa上无高原槽影响,以及地面贵州南部为低压控制且无冷空气影响,是前一过程比后一过程降水强度更大的原因。  相似文献   

8.
应用自动站雨量资料、常规观测资料和国家气象中心T213分析场资料,采用PSU/NCAR的高分辨率中尺度非静力数值模式MM5,模拟了2008年7月20日高原低涡东移引发的四川盆地暴雨过程。通过分析模式输出资料,结果得出高原涡东移影响四川盆地暴雨的一种物理触发机制:高原涡正涡度的东移促使四川盆地正涡度发展,正涡度的发展使得大气旋转上升加强,对流层高层强烈辐散,低层辐合,对流发展形成降水,大气凝结释放潜热加热大气,使得高层等压面升高,负涡度发展,低层降压,正涡度发展,这样就形成了一个正反馈的循环机制,从而导致了四川盆地强降水。   相似文献   

9.
四川盆地西部与东部持续性暴雨过程的对比分析   总被引:1,自引:0,他引:1  
利用常规观测资料、风云卫星资料和NCEP再分析资料等,探讨了四川盆地的盆西暴雨个例(2013年7月)和盆东暴雨个例(2007年7月)发生的环流背景条件、冷空气和水汽来源、高原对流和西南涡的特征及差异。结果表明:盆西与盆东暴雨过程相比,盆西暴雨200 hPa急流位置更偏北,西风槽位置偏西,副热带高压的位置偏北、强度偏强,西南涡位置也较偏西南;盆西暴雨过程对流层中层有来自青藏高原以西的中亚地区和青藏高原西部的冷空气,低层水汽输送以来自孟加拉湾的西南气流为主,盆东暴雨过程对流层中层只在前期有来自中高纬度的冷空气,中后期在对流层中层无中高纬度地区冷空气影响,主要以来自孟加拉湾和青藏高原南侧的偏西气流为主,低层水汽输送以来自南海的东南气流为主;盆西和盆东暴雨过程的对流活动都有明显的日变化,对流下午在川西高原发展,后半夜至早晨在盆地发展,区别在于盆西暴雨过程有川西高原对流东移与盆地对流合并发展的过程,而盆东暴雨过程中川西高原对流在东移过程中减弱,无与盆东对流合并发展的过程。  相似文献   

10.
2018年8月1~2日四川盆地西部出现了一次区域性暖区暴雨,利用常规气象观测、区域自动站、卫星云图和雷达产品等资料,分析了其环流背景、中尺度条件以及触发机制。结果表明:东移的高原低涡触发了暴雨天气,通过诱发使低层涡度增加,形成气旋性低涡中心,高原低涡与西南低涡耦合,加强了盆地西部的垂直上升运动;低层水汽和不稳定能量在迎风坡被强迫抬升,触发对流性降水,使降水增幅,造成盆地西南部降水强度大于西北部;高湿环境、深厚暖云,以及中等偏强且呈狭长的CAPE特征,形成了高降水效率;强降水时段与云团发展强盛时段对应,辐合风场以及逆风区的形成有利于强回波的长时间维持。  相似文献   

11.
Based on the previous statistical analysis of mesoscale convective systems(MCSs)over the second-step terrain along Yangtze-Huaihe River Valley,eight representative long-lived eastward-propagating MCSs are selected for model-based sensitivity testing to investigate the initiation and evolution of these types of MCSs as well as their impact on downstream areas.We subject each MCS to a semi-idealized(CNTL)simulation and a sensitivity(NOLH)simulation that neglects condensational heating in the formation region.The CNTL experiment reveals convection forms in the region downstream of a shortwave trough typified by persistent southwesterly winds in the low-to midtroposphere.Upon merging with other convective systems,moist convection develops into an MCS,which propagates eastward under the influence of mid-tropospheric westerlies,and moves out of the second-step terrain.The MCS then merges with pre-existing local convection over the plains;the merged convection reinforces the cyclonic wind perturbation into a mesoscale vortex at 850 hPa.While this vortex moves eastward to regions with local vortex at 850 hPa,another vortex at 925 hPa is also intensified.Finally,the vortices at 850 and 925 hPa merge together and develop into a mesoscale convective vortex(MCV).In contrast,MCSs fail to form and move eastward in the NOLH experiment.In the absence of eastward-propagating MCSs,moist convection and mesoscale vortices still appear in the plains,but the vortex strength and precipitation intensity are significantly weakened.It is suggested the eastward-propagating MCSs over the second-step terrain significantly impact the development and enhancement of moist convection and vortices in the downstream areas.  相似文献   

12.
高原东移对流系统对西南低涡形成的作用   总被引:2,自引:0,他引:2       下载免费PDF全文
Based on the temperature of the black body (TBB), station observed and NCEP reanalysis data, the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the southwest vortex (SWV) formation that occurred at 1800 UTC on 29 June 2003 are analyzed by using the Zwack-Okossi (Z-O) equation to diagnose the thermal and dynamic processes. It is found that, in summer, severe convective activities often occur over the Tibetan Plateau due to the abundant supply of moisture. The convective cloud near the east edge of the plateau could move eastward with a short-wave trough in the westerly. The divergent center that is induced by latent heat release, which is associated with severe convective activities, moves out with the convective cloud and contributes to the low level decompression which is favorable for the formation of plateau edge cyclogenesis (PEC). The Z-O equation indicates that, in this case, the latent heat release and convergence are the two most important factors for SWV formation, which amounts to about 42% and 15% of the term TOTAL, respectively. It is implied that the thermal process effect was more important than the dynamic process during SWV formation.  相似文献   

13.
高原低涡移出高原的观测事实分析   总被引:27,自引:0,他引:27  
郁淑华  高文良 《气象学报》2006,64(3):392-399
应用天气学、统计学原理,结合TRMM资料,分析了1998—2004年5—9月移出高原的低涡的活动特征。结果指出:6—8月是高原低涡移出高原影响中国东部天气的主要时段,它与高原低涡在高原上的活动特征及西南低涡移出高原特征均不同;移出高原的高原低涡的涡源主要在曲麻莱附近、德格附近,这与高原上产生低涡的涡源不同;移出高原的高原低涡的移动路径多数是随低槽的活动而向东、向东南移动,这与高原低涡在高原上多数是沿切变线移向东北不同,高原低涡移出高原后,不仅影响中国的范围广,还可能影响到朝鲜半岛、日本;高原低涡移出高原后涡的强度、性质会有变化,在高原以东活动时间长(≥36 h)的高原低涡,移出高原前多数为暖性低涡,移出高原后多数为斜压性低涡,低涡加强、多数可产生暴雨、大暴雨;高原低涡移出高原后移到海洋上,往往因下垫面不同而变化,出海后都有降水加强、多数位势高度下降的现象;移出高原后的高原低涡因东面海上热带气旋活动而少动,与其南面热带气旋活动相向而行,因季风低压少动而少动的现象。  相似文献   

14.
This study investigates influencing weather systems for and the effect of Tibetan Plateau (TP)’s surface heating on the heavy rainfall over southern China in June 2010, focusing on the four persistent heavy rainfall events during 14-24 June 2010. The ma jor weather systems include the South Asian high, midlatitude trough and ridge, western Pacific subtropical high in the middle troposphere, and shear lines and eastward-moving vortices in the lower troposphere. An ensemble of convection-permitting simulations (CTL) is carried out with the WRF model for these rainfall events, which successfully reproduce the observed evolution of precipitation and weather systems. Another ensemble of simulations (SEN) with the surface albedo over the TP and its southern slope changed artificially to one, i.e., the surface does not absorb any solar heating, otherwise it is identical to CTL, is also performed. Comparison between CTL and SEN suggests that the surface sensible heating of TP in CTL significantly affects the temperature distributions over the plateau and its surroundings, and the thermal wind adjustment consequently changes atmospheric circulations and properties of the synoptic systems, leading to intensified precipitation over southern China. Specifically, at 200 hPa, anticyclonic and cyclonic anomalies form over the western and eastern plateau, respectively, which enhances the southward cold air intrusion along the eastern TP and the divergence over southern China;at 500 hPa, the ridge over the northern plateau and the trough over eastern China are strengthened, the southwesterly flows along the northwestern side of the subtropical high are intensified, and the positive vorticity propagation from the plateau to its downstream is also enhanced significantly;at 850 hPa, the low-pressure vortices strongly develop and move eastward while the southwesterly low-level jet over southern China strengthens in CTL, leading to increased water vapor convergence and upward motion over the precipitation region.  相似文献   

15.
In this paper, we study a persistent heavy precipitation process caused by a special retracing plateau vortex in the eastern Tibetan Plateau during 21–26 July 2010 using tropical rainfall measuring mission (TRMM) data. Results show that during the whole heavy rainfall process, the precipitation rate of convective cloud is steady for all four phases of the plateau vortex movement. Compared with the convective precipitation clouds, the stratiform precipitation clouds have a higher fraction of area, a comparable ratio of contribution to the total precipitation, and a much lower precipitation rate. Precipitation increases substantially after the vortex moves out of the Tibetan Plateau, and Sichuan Province has the most extensive precipitation, which occurs when the vortex turns back westward. A number of strong convective precipitation cloud centers appear at 3–5 km. With strong upward motion, the highest rain top can reach up to 15 km. In various phases of the vortex evolution, there is always more precipitable ice than precipitable water, cloud ice water and cloud liquid water. The precipitating cloud particles increase significantly in the middle and lower troposphere when the vortex moves eastward, and cloud ice particles increase quickly at 6–8 km when the vortex retraces westward. The center of the latent heat release is always prior to the center of the vortex, and the vortex moves along the latent heat release areas. Moreover, high latent heat is released at 5–8 km with maximum at 7 km. Also, the latent heat release is more significant when the vortex moves out of the Tibetan Plateau than over the Tibetan Plateau.  相似文献   

16.
高原涡与西南涡相互作用暴雨天气过程的诊断分析   总被引:7,自引:1,他引:6  
利用动力诊断方法,对2008年7月20~22日高原低涡与低层西南低涡相互作用引发西南低涡强烈发展和四川大面积特大暴雨天气发生机理进行了诊断分析。分析表明:高原涡与西南涡涡心之间的纬向距离在5个纬度的时候,两者上升气流都在500 hPa以下,当两者继续东移,在经向上耦合的时候,二者同时得到发展,西南涡中心的上升气流达到300 hPa,而高原涡中心的上升气流突破200 hPa;西南涡在低层出现初期,在一定程度上制约了高原涡的发展,随着两者在经向方向发生耦合,上下涡度平流不同造成垂直差动,将激发500 hPa以下的上升运动与气旋性涡度加强,使得500 hPa与700 hPa涡心正涡度值的增大近1倍。并且涡前的正涡度变率使得高原涡发展并东移,待垂直耦合后,高原涡与盆地涡相互强迫作用促使气流上升运动加强也是导致高原低涡与西南低涡共同发展的一种机制。  相似文献   

17.
热力强迫的非线性奇异惯性重力内波与高原低涡的联系   总被引:4,自引:0,他引:4  
刘晓冉  李国平 《高原气象》2007,26(2):225-232
利用相平面分析法,由非绝热大气运动方程组导出了与非线性惯性重力内波有关的KdV方程,然后用直接积分法得到两类有天气意义的孤立波解,重点分析了与青藏高原暖性低涡有联系的一类具有间断点的奇异孤立波解的特征,进而讨论了高原非绝热加热对高原低涡生成、移动及高原低涡暖心结构的作用。  相似文献   

18.
2010年6月中国南方发生持续性强降水,其强度与2008年6月相当,超过近年来其他年份。但是,与2008年6月相比,2010年6月对流层中低层低值系统活动在青藏高原至长江中下游地区异常频繁,副热带高压(副高)位置异常偏西、强度偏强,导致低层异常风场辐合区及强降水区域相对偏北。分析2010年6月14—24日中国南方连续出现的4次持续性强降水过程,发现南亚高压、对流层中层的中纬度槽脊和西太平洋副高以及低层切变线和东移低涡是造成持续性强降水的主要天气系统。利用WRF模式对2010年6月强降水过程实施显式对流集合模拟试验,在控制试验重现观测到的地面降水和天气系统特征的基础上,在敏感性试验中将青藏高原的地表短波反照率修改为1.0,对比两组模拟试验的结果表明:控制试验中青藏高原的地表感热加热作用使得高原及其周边地区的大气温度发生变化,相应的热成风平衡调整使得对流层低层至高层大气环流和天气系统特征发生显著变化,增强了中国南方的持续性降水。200 hPa青藏高原西部形成反气旋性环流异常,东部形成气旋性环流异常,青藏高原东部南下的冷空气加强,中国南方辐散增强;500 hPa青藏高原北部的脊加强,中国东部的槽加深,副高西北侧的西南风明显增强,从青藏高原向下游传播的正涡度也显著加强;850 hPa的低涡强烈发展并逐步东移,华南沿海的西南低空急流更为强盛,导致降水区的水汽辐合、上升运动及降水强度都增强。  相似文献   

19.
夏季青藏高原对流系统移出高原的气象背景场分析   总被引:1,自引:0,他引:1  
胡亮  徐祥德  赵平 《气象学报》2018,76(6):944-954
利用1998-2004年6-8月共21个月的ISCCP对流路径集资料,结合NCEP/NCAR再分析资料和TRMM 3B42降水资料,采用合成统计分析方法,对夏季生成于青藏高原(高原)地区的对流系统进行了分类对比分析,目的在于研究各类高原对流系统动热力场的水平和垂直结构特征,探讨各类对流系统能否移出高原的气象背景场差异。结果表明,夏季高原对流系统主要生成于青藏高原中东部,存在两个高发中心。夏季高原对流系统按照对流系统的移动路径可以分为未移出高原、向南移出高原和向东移出高原3类。高原对流系统的移动、发展和生成源地没有直接关系,主要决定于气象背景场。当生成的高原对流系统上升运动强、水汽条件优越时,其强度不断增大,利于对流系统维持发展并移出高原,如果这类高原对流系统处于强西风气流控制下,容易向东移出高原,如受较强偏北风气流影响,则容易向南移出高原;而当生成的高原对流系统上升运动弱、水汽条件不理想时,其强度不断减弱,不利于对流系统发展移动,高原对流系统在高原区逐渐消亡。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号