首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
Batch wet grinding of zeolite was studied with emphasis on a kinetic study in a laboratory size steel ball mill of 200 mm diameter. The breakage parameters were determined by using the single sized feed fractions of − 850 + 600 µm, − 600 + 425 µm and − 425 + 300 µm for the zeolite samples. The Si (specific rate of breakage) and Bi,j (primary breakage distribution) values were obtained for those feed size fractions in order to predict the product size distributions by simulation for comparison to the experimental data. The specific rates of breakage values for wet grinding in the first-order breakage region were higher than the dry values reported previously by a factor 1.7 at the same experimental conditions, but the primary breakage distribution (Bi,j) values were approximately the same. The simulations of the product size distributions of zeolite were in good agreement with the experimental data using a standard ball mill simulation program. The wet grinding of zeolite was subjected to slowing-down effect in the mill at 2 min of grinding, corresponding to an 80% passing size of about 400 µm. On the other hand, the slowing down effect in the dry grinding of zeolite was also seen at 4 min of grinding. In addition, effects of some operational parameters on dry and wet grinding of zeolite were determined by simulation using the breakage parameters obtained experimentally.  相似文献   

2.
A centrifugal mill is a high-power intensity media mill that can be used for ultra-fine grinding, employing centrifugal forces generated by gyration of the axis of the mill tube in a circle. The mill charge motion is quite different depending on the ratio of the gyration diameter to the mill diameter (G / D ratio), varying from a motion similar to that of a conventional tumbling media mill to that of a vibration mill. In this study, a centrifugal mill was constructed with an arrangement where the gyration diameter could be readily adjusted. The batch grinding characteristics of three different minerals (limestone, talc and illite) in water with dispersing agent were investigated at various G / D ratios. It was found that the optimum G / D ratio in terms of the specific energy consumption to give a desired fineness of product was different for the three minerals. This was due to their different reactions to the breakage mechanisms provided by the mill charge motion at varying G / D ratios. The size distributions became progressively narrower at increased grinding times, and particles finer than about 0.1 μm were not detected even for prolonged grinding times. Measurement of specific surface areas indicated that this was not due to an artifact of the size measurements by laser diffractometry. This implies that there is a limitation in which particles finer than 0.1 μm are not produced under the conditions tested in this type of mill, but further investigation is needed for experimental verification of this limit of comminution.  相似文献   

3.
Hematite concentrate was mechanically treated using different milling machines and experimental conditions in air atmosphere. The changes in phase constitution, particles size, specific surface area, lattice parameters and X-ray amorphous phase fraction of activated hematite were determined. It was found that the agglomeration of the particles take place during extended milling with accessible pores for Nitrogen gas. The higher media surface brought about the largest specific surface area whatever milling devices used. After 9 h of grinding with higher media surface, the maximum and minimum specific surface area resulted from the grinding in the tumbling and vibratory mills, accounting for 6.83 m2/g and 18.42 m2/g, respectively. For the same grinding condition, tumbling mill produced the lowest X-ray amorphous phase. The maximum X-ray amorphous material estimated around 85% from the grinding in the planetary mill with higher media surface for 9 h of milling.  相似文献   

4.
We investigate the performance of sample preparation of gold ores using vibratory (bowl, ring and puck type) mills in common use in mineral analytical laboratories. The main criteria for effective grinding are using reduced grinding charge masses ≤ ca. 50% of nominal bowl capacity and using a grinding aid to prevent caking. We show that gold particles of millimetre scale can be comminuted to ≤ 100 µm by grinding in silica flour, bauxite, synthetic carborundum, or mixtures of silica and these materials using times of up to 5 min and that 95% < 50 µm is achievable with extended grinding. This suggests that modified grinding techniques can be used to make sample masses ≤ 5 g viable for routine determination of gold in geological samples. We also demonstrate homogenisation of a gold‐bearing copper sulfide mineral flotation concentrate alone and in mixtures with silica by extended grinding at reduced charge masses. To support this work, we develop a convenient new benchmark of gold ore sample preparation performance ‘G’, an apparent maximum gold particle size interpolated from replicate analytical variance in order to overcome the limitations of laborious sieve fraction analysis of gold particle size. We show useful agreement between G and sieve fraction analysis of gold particle size in samples and test the viability of G experimentally and by analysis of literature data.  相似文献   

5.
Prakash  Divya  Payra  Swagata  Verma  Sunita  Soni  Manish 《Natural Hazards》2013,69(3):1767-1779

In this study, the aerosol behavior during two contradictory events, i.e., dust storm (DS) and Diwali (DW) has been studied over Jaipur. The aerosol particle number concentration shows distinct features between DS and DW events. The total ANC was found minimum during DS while maximum during DW. The 24 h mean of total ANC was 9.15 × 104 (±7.71 × 104) and 5.38 × 105 (±3.73 × 105 particles/l) during DS and DW, respectively. The total ANC increases from 7.78 × 104 to 5.32 × 105 and 3.52 × 105 to 1.70 × 106 particles/l in 24 h during DS and DW, respectively. In DS, the ANC in coarse mode (2 < particle diameter < 20 μm) is significantly high while in DW, the ANC in fine mode (0.3 < particle diameter < 2 μm) exhibits higher concentration. During dust episode, a significant change in ANC (3.0 × 103 to 1.12 × 105 particles/l) was observed for the particle of size range in 2.0–20 μm with a slight increase in particles number concentration (7.48 × 104 to 4.20 × 105 particles/l) in 0.3–2.0 μm range is also observed. During DS, the fine and coarse mode particles increased 4.61 and 36.44 times while during DW, it increased 3.83 and 0.95 times, respectively. The relatively high particle levels during DW are attributed for two reasons: local emissions due to burning of fire crackers and meteorological conditions, i.e., low wind speeds and low mixing-layer heights lead to relatively high particle concentrations.

  相似文献   

6.
Using plug flow material transport and a cumulative-basis rate-of-breakage parameter, overall size reduction through the closed-circuit ball mills at the Pine Point and Gibraltar concentrators was simulated over a wide range of operating conditions. The rate-of-brakage parameter was related to particle size by a power law, the exponent (n) being: Pine Point, n = 1.043 ± 0.026, and Gibraltar, n = 0.747 ± 0.020. The success of this approach probably stems from the high (> 1.5) circulating load ratios encountered.By analogy individual mineral size reduction at Pine Point was examined. A similar rate-of-breakage parameter versus size relationship was found. Pyrite was the hardest mineral, but fine galena was equally resistant. However, the approximation that mineral and overall rates of breakage were the same gave an adequate fit to the mineral size reduction. This was emphasized by combining with a cyclone model to simulate cyclone overflow mineral size distribution. A more accurate cyclone model is shown to be more important in simulating mineral deportment at Pine Point.Complementary laboratory batch grinding tests were conducted on rod mill discharge and ball mill feed samples. Sufficient agreement with the first-order hypothesis was observed to analyse the rate-of-breakage parameter. The kinetics was similar for both samples and in turn similar to the plant-derived kinetics in terms of relative mineral rates-of-breakage and the relationship of the rate-of-breakage parameter with particle size.  相似文献   

7.
Using field surveys and laboratory analysis, soil physical and chemical properties were studied at a site exhibiting the reversal of desertification in Yanchi County of China’s Ningxia Hui autonomous region. The dominant soil particle size changed from coarse-fine sand to a combination of very fine sand and silt + clay, and corresponding levels of each soil nutrient increased. The content of coarse-fine sand (2–0.1 mm) was significantly and negatively correlated with soil nutrient contents, whereas nutrient contents were significantly and positively correlated with the contents of very fine sand (0.1–0.05 mm) and silt + clay (<0.05 mm). The increasingly fine soil texture and the nutrient enrichment both facilitated rehabilitation of desertified land. The silt + clay content contributed the most to the increasing soil nutrient contents, and thus appears to be the key factor in reversal of desertification. Soil nutrient concentrations in the bulk soil increased with increasing content of soil nutrients with different particle fractions, and there were significant positive correlations between them. The nutrients in all particle size classes jointly decided the effect of soil nutrient contents on the reversal process. Principal-components analysis (PCA) revealed that the soil quality tended to increase during the reversal process, and that nutrient factors were more significant than particle size (i.e., were the dominant factor that influenced soil quality). Available nutrients and soil organic matter (SOM) were the most important nutrient factors. Silt + clay were the most important particle factors.  相似文献   

8.
The trap efficiency of a catcher in wind erosion measurements plays a significant role, and in many cases suspension trap efficiencies at high wind velocities are still unknown. The sediment trap efficiency generally changes with particles size and with wind speed. In this study, the efficiency of Vaseline Slide (VS) and Modified Wilson and Cooke (MWAC) catchers were determined with different sand particle sizes (<50, <75, 50–75, 200–400, and 400–500 μm) at a fixed wind speed (13.3 ms−1) and with different soil textures at different wind velocities (10.3, 12.3, and 14.3 ms−1) in the wind tunnel of the International Center for Eremology (ICE), Ghent University, Belgium. The traps were placed at different heights (4, 6.5, 13, 20, 120, and 192 cm for VS and 1.5, 3, 5, 8, 11, and 30 cm for MWAC) to catch saltating and suspended sediments in a 12-m long, 1.2-m wide and 3.2-m high working section of the wind tunnel. In the sand particle experiments, the efficiency of the VS catcher was 92% for particles smaller than 50 μm and decreased with increasing particles size, falling to 2.2% for 400–500 μm particle size at 13.4 ms−1. However, the MWAC’s efficiency was 0% for particles smaller than 50 μm and increased with increasing particle size to 69.5% at 400–500 μm. In the experiments with different soil textures, the efficiency of each catcher significantly changed with soil and with wind speed. It also considerably varied with the catchers: for instance, for sand (S), the MWAC efficiency was very high (67.4, 113.4, and 90.5% at 10.3, 12.3, and 14.4 ms−1, respectively) while the efficiency of VS was relatively very low (5.2, 4.4, and 1.9% at 10.3, 12.3, and 14.4 ms−1, respectively). Results indicated that the efficiency depends critically on the particle size, type of catcher, and wind speed, and these could be helpful to increase the robustness of wind erosion measurements.  相似文献   

9.
《Sedimentology》2018,65(2):561-581
Layered deposits of relatively light and heavy minerals can be found in many aquatic environments. Quantification of the physical processes which lead to the fine‐scale layering of these deposits is often limited with flumes or in situ field experiments. Therefore, the following research questions were addressed: (i) how can selective grain entrainment be numerically simulated and quantified; (ii) how does a mixed bed turn into a fully layered bed; and (iii) is there any relation between heavy mineral content and bed stability? Herein, a three‐dimensional numerical model was used as an alternative measure to study the fine‐scale process of density segregation during transport. The three‐dimensional model simulates particle transport in water by combining a turbulence‐resolving large eddy simulation with a discrete element model prescribing the motion of individual grains. The granular bed of 0·004 m in height consisted of 200 000 spherical particles (D50 = 500 μ m). Five suites of experiments were designed in which the concentration ratio of heavy (5000 kg m−3) to light particles (i.e. 2560 kg m−3) was increased from 6%, 15%, 35%, 60% to 80%. All beds were tested for 10 sec at a predefined flow speed of 0·3 m sec−1. Analysis of the particle behaviour in the interior of the beds showed that the lighter particles segregated from the heavy particles with increasing time. The latter accumulated at the bottom of the domain, forming a layer, whereas the lighter particles were transported over the layer forming sweeps. Particles below the heavy particle layer indicated that the layer was able to armour the particles below. Consequentially, enrichment of heavy minerals in a layer is controlled by the segregation of a heavy mineral fraction from the light counterpart, which enhances current understanding of heavy mineral placer formation.  相似文献   

10.
Experimental studies concerning the dissolved air flotation (DAF) of fine (dp < 100 μm) quartz particles, using two different flotation cells (setups), are presented. Pure and well characterised quartz samples were treated with a commercial amine as collector prior to flotation and bubbles were characterised by the LTM-BSizer technique. Bubble size distribution showed 71% (by volume) and 94% (by number) of the bubbles having sizes (db) lower than 100 μm (i.e. microbubbles). The Sauter and arithmetic mean diameters were 79 μm and 56 μm, respectively, for the bubbles generated at 300 kPa (gauge) saturation pressure (after 30 minute saturation time). Quartz particle size distribution (obtained by laser diffraction) showed a volume-moment diameter of 13 μm. The Rosin–Rammler–Bennett, Gates–Gaudin–Schumann and log-normal distribution functions were well fitted (R2 > 0.96) to the bubble size distribution and quartz particle size distribution data. Values of total quartz recovery ranging from 6% to 53% (by mass) were obtained for the DAF experiments under different collector concentrations (up to 2 mg g− 1), with an optimal collector concentration found at 1 mg g− 1. These results are significant considering that 27% (by volume) of the quartz particles are ultrafine (dp < 5 μm), demonstrating the widely-known efficiency of DAF to remove small particles when applied in the field of water and wastewater treatment. The true flotation behaviour, as a function of particle diameter (dp), exhibits a local minimum when particles are approximately 3–5 μm in size. The results contribute to the discussion in the literature about the existence of such a minimum, which is generally interpreted as a change in the mechanism of particle collection from convection (collision) to diffusion at lower particle sizes.  相似文献   

11.
This retrospective study focuses on the fine silicate particles (<62 µm in diameter) produced in a large eruption that was otherwise well studied. Fine particles represent a potential hazard to aircraft, because as simple particles they have very low terminal velocities and could potentially stay aloft for weeks. New data were collected to describe the fine particle size distributions of distal fallout samples collected soon after eruption. Although, about half of the mass of silicate particles produced in this eruption of ~1 km3 dense rock equivalent magma were finer than 62 µm in diameter, and although these particles were in a stratospheric cloud after eruption, almost all of these fine particles fell to the ground near (<300 km) the volcano in a day or two. Particles falling out from 70 to 300 km from the volcano are mostly <62 µm in diameter. The most plausible explanation for rapid fallout is that the fine ash nucleates ice in the convective cloud and initiates a process of meteorological precipitation that efficiently removes fine silicates. These observations are similar to other eruptions and we conclude that ice formation in convective volcanic clouds is part of an effective fine ash removal process that affects all or most volcanic clouds. The existence of pyroclastic flows and surges in the El Chichón eruption increased the overall proportion of fine silicates, probably by milling larger glassy pyroclasts.  相似文献   

12.
长春市城区近地表灰尘粒度特征及其环境意义   总被引:1,自引:0,他引:1  
为剖析长春市城区近地表灰尘粒度特征,分别沿南北和东西轴线采集了34件城市近地表灰尘样品,采用激光粒度仪对样品进行了粒度测试分析。结果表明:长春市近地表灰尘颗粒物平均中值粒径和算术平均粒径分别为21.58 μm和24.24 μm,分选极差;以粗粉粒(10.00~80.00 μm)为主,平均约占71.28%,黏粒组(<5.00 μm)和细粉粒组(5.00~10.00 μm)分别约占14.75%和13.05%。频率曲线呈正偏双峰型分布,峰态中等偏窄,与现代尘暴和城市街道灰尘分布特征相一致,反映出其起源的多元性和相对稳定性,表明近地表灰尘沉积仍是风积作用的继续。近地表灰尘颗粒物粒径均小于100.00 μm,极易在外动力条件下再次扬起并悬浮搬运,PM10和PM2.5所占比例分别为27.76%和7.32%,其生态环境效应不应被忽视。粒径分布无显著空间变化,但城市中心区域粒径变化范围小,这可能说明城市边缘区域较中心区域近地表灰尘的起源更具多源性和复杂性。  相似文献   

13.
We present particle size data from 31 samples of carbonate cataclastic rocks collected across the 26 m thick fault core of the Mattinata Fault in the foreland of the Southern Apennines, Italy. Particle size distributions of incoherent samples were determined by a sieving-and-weighting technique. The number of weight-equivalent spherical particles by size is well fitted by a power-law function on a log–log space. Fractal dimensions (D) of particle size distributions are in the 2.091–2.932 range and cluster around the value of 2.5. High D-values pertain to gouge in shear bands reworking the bulk cataclastic rocks of the fault core. Low D-values characterise immature cataclastic breccias. Intermediate D-values are typical of the bulk fault core. Analysis of the ratio between corresponding equivalent particle numbers from differently evolved cataclastic rocks indicates that the development of particle size distributions with D>2.6–2.7 occurred by a preferential relative increase of fine particles rather than a selective decrement of coarse particles. This preferentially occurred in shear bands where intense comminution enhanced by slip localisation progressed by rolling of coarse particles whose consequent smoothing produced a large number of fine particles. Our data suggest that during the progression of cataclasis, the fragmentation mode changed from the Allègre et al.'s [Nature 297 (1982) 47] “pillar of strength” mechanism in the early evolutionary stages, to the Sammis et al.'s [Pure and Applied Geophysics 125 (1987) 777] “constrained comminution” mechanism in the subsequent stages of cataclasis. Eventually, localised shear bands developed mainly by abrasion of coarse particles.  相似文献   

14.
The main objective of this experimental study was to investigate the evolution of the mineral liberation characteristics of an ore undergoing grinding. Six samples of an iron ore containing hematite, magnetite and quartz have been tested. Mineral grade and liberation measurements have been performed with an image analyser on polished sections of particles from several discrete size intervals.For each product, the grade in iron oxides was increasing greatly with the fineness of the particles. Moreover, in each size interval down to 270 mesh, it was slightly decreasing as grinding proceeded. These behaviors are due to the fact that iron oxides were ground more easily than the siliceous gangue. The degree of liberation of the valuable minerals was evidently increasing with the particle fineness. Moreover, for each size interval coarser than 48 mesh, it has also shown a slight decrease with grinding. For finer sizes however, it appeared in practice invariant and independent of the grade or of the degree of grinding. These observations are of interest when considering that the grinding products tested were very different in fineness while corresponding to various modes of fragmentation.(jaw crushing, roll crushing and ball milling) and to an ore with a high tendency to break along the mineral grain boundaries.  相似文献   

15.
A series of experiments was conducted to determine the potential for aeolian abrasion of natural dune sands to produce fine particles (< 125 µm) by (1) the release of resident fines; (2) spalling, chipping and breakage of particles; and (3) the removal of grain surface coatings. Parent samples were obtained from the surfaces of four active continental dunes and abraded using a glass ‘test tube’ chamber for up to 120 h. The fine particles produced by this abrasion process were trapped at varying time intervals and subject to detailed particle‐size analyses using a Coulter Multisizer. The abrasion of untreated parent samples produced fine particles in one of two main size classes, < 10 µm and > 50 µm, but when the parent sample was sieved to exclude particles < 250 µm, relatively more material in the range 10–50 µm was produced. For unsieved parent samples, the size range associated with the dominant mode varied according to the length of the abrasion time. The coarsest mode (> 63 µm) was dominant during the first 16 h of abrasion, then became less significant and is thought to be associated with the release of resident fines into suspension. The finest mode (< 10 µm) was absent or very weak during the first 16 h of abrasion, then became more significant and, in some instances, dominated the distribution as abrasion continued. Removal of grain surface coatings is the main source of fine material < 10 µm, and this may be a significant source of fine material in areas where sands are dominated by subrounded and rounded particles. By comparison with previous studies of aeolian particle abrasion, these natural dune sands produced very low quantities of fine material (by weight), but their spatial extent makes them potentially a significant source of dust‐sized particles at the global scale.  相似文献   

16.
The concentration of ultrafine aerosol particles of aitken and nucleation mode having size in the range of 1–20 nm was monitored with water-based Condensation Particle Counter. The monitoring was carried out from midnight-to-midnight in every alternate day on a fortnightly basis to represent summer, monsoon and winter (autumn) seasons of 2008 at Mohal (1154 m amsl) and Kothi (2530 m amsl) in Kullu-Manali area of the northwestern Himalayan region of India. The results indicate that diurnal pattern has faint bimodal structure with two peaks, one in morning and the other in evening at both the sites but it is not as distinct as found in plains. There is rather a constant particle density pattern of large magnitude consistent with vehicular movement from morning till evening. The monthly 24 h average particle density gradually picks up from January, increases rapidly in summer months and then decreases in monsoon season at Mohal but at Kothi it keeps on rising from April to October with a slight more increase in September. The particle density is more in summer than in monsoon season at Mohal, a trend opposite to plains. It may be due to the development of warm thermal layer on valley floor while a cold layer develops along snowy hilltops in winter leading to convection of fine particle up the slopes of valley during daytime. At Kothi, the trend is same as it is in continental plains but opposite to Mohal. The relatively more value of particle density in September and October at both the sites may be due to month long International Kullu Dussehra fair in the valley. The vehicular survey conducted agrees well with entire study period averaged diurnal variations and monthly 24 h averaged value of fine particle density. The average value of ultrafine particle density at each hour of a day for entire study period is 20369 ± 1230 Ncm − 3 and 14389 ± 1464 Ncm − 3 at Mohal and Kothi sites, respectively. The comparison with earlier results shows a significant increase indicating impact of vehicular onslaught on pure air of this hilly region.  相似文献   

17.
A simple process to produce fine and low soda α-alumina (α-Al2O3) from a commercial grade aluminium trihydroxide (gibbsite, Al(OH)3) produced by KC Corporation Ltd was developed. There are two options for this process with the first one producing low soda α-alumina (< 0.05% Na2O) having a mean particle size of 50 μm. The second option yields a fine product with a mean size of less than 10 μm. In the first option, a plant aluminium trihydroxide containing 0.20% Na2O was first fluidized with nitrogen at 400–600 °C to yield an amorphous activated alumina. This intermediate product was then treated with acetic or oxalic acid, washed with water and heated to 1200 °C to form calcined α-alumina, having a Na2O content of less than 0.05%. A 20 min leaching using 0.2 M acetic or oxalic acid could yield an alumina product containing 0.04% Na2O. In the second option, a new technique for the preparation of fine and low soda α-alumina was evaluated using an attrition mill working also as a leaching vessel at 80 °C. Fine (< 10 μm in mean particle size) and low soda (< 0.04% Na2O) alumina was produced by a 20 min leaching step with 0.2 M acetic acid and concurrent attrition milling.  相似文献   

18.
In muddy sediments, the distinction between sortable silt and aggregated silty clay is important for the understanding of fine particle dynamics because both have different hydraulic properties. The Wadden Sea of the southern North Sea is severely depleted in fine-grained sediments mainly due to high energy levels along the diked coastline. As a result, muddy sediments are restricted to a narrow belt along the diked mainland shore. In the present study, the mechanism by which this mud is deposited and how floc deposition and break-up are reflected in the size distribution, has been investigated. For this purpose, surficial sediments from four intertidal nearshore transects were monitored and repeatedly sampled in the course of two years. High-resolution grain-size analyses were performed by an automated settling tube and a Sedigraph particle analyser for the sand and mud fractions, respectively.The grain size frequency distributions of the fine fractions demonstrate that the Wadden Sea muds are composed of two subpopulations, a well-sorted coarse silt and an unsorted silty clay population. A depletion of grain size around 8 μm (7 phi) demarcates the grain-size boundary between the two populations, suggesting that the finer mud population (< 8 μm) is deposited in the form of flocs and aggregates which are hydraulically equivalent to the local sands and coarser silts. Floc break-up and reconstitution in response to seasonally changing energy regimes lead to apparent seasonal sedimentation patterns in the back-barrier tidal basins. Furthermore, in the course of sample preparation, the flocs and aggregates are broken down into their constituent particles. This mechanical artefact in the size distributions produces an artificial seasonal fining/coarsening pattern. It was found that the comparison of clay/silt and < 8 μm/63 − 8 μm particle ratios are good indicators of floc behaviour. Higher ratios are found in mixed flats which are relatively protected from wave action, thereby promoting deposition of flocs. In addition, progressive size sorting and mixing processes along the transects are recognized in the frequency distributions of sands. The skewness pattern shows a landward decrease in positive values, which is exactly opposite to previously reported patterns, suggesting progressive winnowing of fine particles caused by increased wave action over the last decade. This effect of climate change further promotes depletion of fine-grained sediments in the basin.  相似文献   

19.
This paper presents a three dimensional Computational Fluid Dynamics (CFD) model to investigate the flow dynamics of solid–gas phases during fine grinding in an air jet mill. Alpine 100AFG fluidized bed air jet mill is considered for the study and the jet milling model is simulated using FLUENT 6.3.2 using a standard k-ε model. The model is developed in GAMBIT 2.3.16 and meshed by tet/hybrid (T-Grid) and Triangular (Pave) meshes. The effects of operating parameters such as solid feed rate, grinding air pressure and internal classifier speed on the performance of the jet mill are analyzed. The CFD simulation results are presented in the forms of dual phase vector plot, volume fraction of phases and particle trajectories during fine grinding process. The mass of ground feed entering and leaving the cyclone (underflow) is also computed by simulation. The proposed model gives realistic predictions of the flow dynamics within the jet mill. Experiments are conducted on the Alpine 100AFG jet mill to study the particle size, morphology and mass of the ground product. The numerical results are found in good agreement with the experimental results.  相似文献   

20.
The transport and filtration behaviour of fine particles (silt) in columns packed with sand was investigated under saturated conditions by using step-input injections. Three samples of different particle size distributions (coarse medium, fine medium and a mixture of both) were used in order to highlight the influence of the pore size distribution on particle retention and size selection of recovered particles. The main parameters of particle transport and deposition were derived from the adjustment of the experimental breakthrough curves by an analytical model. The higher particle retention occurs in the mixture medium, owing to its large pore size distribution, and the filtration coefficient decreases with increasing flow velocity. Particle size distribution of recovered particles shows a thorough size selection: (i) the first recovered particles are the coarser ones; (ii) the size of the recovered particles increases with increasing flow velocity and enlarger pore distribution of the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号