首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study used “factor separation” to quantify the sensitivity of simulated present and future surface temperatures and precipitation to alternative regional climate model physics components. The method enables a quantitative isolation of the effects of using each physical component as well as the combined effect of two or more components. Simulation results are presented from eight versions of the Mesoscale Modeling System Version 5 (MM5), one-way nested within one version of the Goddard Institute for Space Studies Atmosphere-Ocean Global Climate Model (GISS AOGCM). The MM5 simulations were made at 108 km grid spacing over the continental United States for five summers in the 1990s and 2050s. Results show that the choice of cumulus convection parameterization is the most important “factor” in the simulation of contemporary surface summer temperatures and precipitation over both the western and eastern USA. The choice of boundary layer scheme and radiation package also increases the range of model simulation results. Moreover, the alternative configurations give quite different results for surface temperature and precipitation in the 2050s. For example, simulated 2050s surface temperatures by the scheme with the coolest 1990s surface temperatures are comparable to 1990s temperatures produced by other schemes. The study analyzes the spatial distribution of 1990s to 2050s projected changes in the surface temperature for the eight MM5 versions. The predicted surface temperature change at a given grid point, averaged over all eight model configurations, is generally about twice the standard deviation of the eight predicted changes, indicating relative consensus among the different model projections. Factor separation analysis indicates that the choice of cumulus parameterization is the most important modeling factor amongst the three tested contributing to the computed 1990s to 2050s surface temperature change, although enhanced warming over many areas is also attributable to synergistic effects of changing all three model components. Simulated ensemble mean precipitation changes, however, are very small and generally smaller than the inter-model standard deviations. The MM5 versions therefore offer little consensus regarding 1990s to 2050s changes in precipitation rates.  相似文献   

3.
Potential impact of climate change on marine dimethyl sulfide emissions   总被引:1,自引:0,他引:1  
Dimethyl sulfide (DMS) is a biogenic compound produced in sea-surface water and outgased to the atmosphere. Once in the atmosphere, DMS is a significant source of cloud condensation nuclei in the unpolluted marine atmosphere. It has been postulated that climate may be partly modulated by variations in DMS production through a DMS-cloud condensation nuclei-albedo feedback. We present here a modelled estimation of the response of DMS sea-water concentrations and DMS fluxes to climate change, following previous work on marine DMS modeling ( Aumont et al., 2002 ) and on the global warming impact on marine biology ( Bopp et al., 2001 ). An atmosphere–ocean general circulation model (GCM) was coupled to a marine biogeochemical scheme and used without flux correction to simulate climate response to increased greenhouse gases (a 1% increase per year in atmospheric CO2 until it has doubled). The predicted global distribution of DMS at  1 × CO2  compares reasonably well with observations; however, in the high latitudes, very elevated concentrations of DMS due to spring and summer blooms of Phaeocystis can not be reproduced. At  2 × CO2  , the model estimates a small increase of global DMS flux to the atmosphere (+2%) but with large spatial heterogeneities (from −15% to +30% for the zonal mean). Mechanisms affecting DMS fluxes are changes in (1) marine biological productivity, (2) relative abundance of phytoplankton species and (3) wind intensity. The mean DMS flux perturbation we simulate represents a small negative feedback on global warming; however, the large regional changes may significantly impact regional temperature and precipitation patterns.  相似文献   

4.
We investigate the sensitivity of the transient climate change to a tidal mixing scheme. The scheme parameterizes diapycnal diffusivity depending on the location of energy dissipation over rough topography, whereas the standard configuration uses horizontally constant diffusivity. We perform ensemble climate change experiments with two setups of MPIOM/ECHAM5, one setup with the tidal mixing scheme and the second setup with the standard configuration. Analysis of the responses of the transient climate change to CO2 increase reveals that the implementation of tidal mixing leads to a significant reduction of the transient surface warming by 9 %. The weaker surface warming in the tidal run is localized particularly over the Weddell Sea, likely caused by a stronger ocean heat uptake in the Southern Ocean. The analysis of the ocean heat budget reveals that the ocean heat uptake in both experiments is caused by changes in convection and advection. In the upper ocean, heat uptake is caused by reduced convection and enhancement of the Deacon Cell, which appears also in isopycnal coordinates. In the deeper ocean, heat uptake is caused by reduction of convective cooling associated with the circulation polewards of 65°S. Tidal mixing leads to stronger heat uptake in the Southern Ocean by causing stronger changes in advection, namely a stronger increase in the Deacon Cell and a stronger reduction in advective cooling by the circulation polewards of 65°S. Counter-intuitively, the relation between tidal mixing and greater heat storage in the deep ocean is an indirect one, through the influence of tidal mixing on the circulation.  相似文献   

5.
6.
Simultaneous measurements of rain acidity and dimethyl sulfide (DMS) at the ocean surface and in the atmosphere were performed at Amsterdam Island over a 4 year period. During the last 2 years, measurements of sulfur dioxide (SO2) in the atmosphere and of methane sulfonic acid (MSA) and non-sea-salt-sulfate (nss-SO4 2-) in rainwater were also performed. Covariations are observed between the oceanic and atmospheric DMS concentrations, atmospheric SO2 concentrations, wet deposition of MSA, nss-SO4 2-, and rain acidity. A comparable summer to winter ratio of DMS and SO2 in the atmosphere and MSA in precipitation were also observed. From the chemical composition of precipitation we estimate that DMS oxidation products contribute approximately 40% of the rain acidity. If we consider the acidity in excess, then DMS oxidation products contribute about 55%.  相似文献   

7.
径流对气候变化的敏感性分析   总被引:2,自引:0,他引:2  
全球变暖愈来愈引起社会各界的关注 ,本文利用月水文模型 ,采取假定气候方案 ,以黄河流域为例 ,分析了径流对气候变化的敏感性。结果表明 ,径流对降水变化的响应较气温变化显著 ;一般情况下 ,半干旱地区径流较半湿润地区对气候变化敏感 ,人类活动的影响可在一定程度上削弱径流对气候变化的敏感性  相似文献   

8.
9.
The Goddard Institute for Space Studies (GISS) General Circulation Model (GCM) has been used in conjunction with a field level plant process model (CERES-Maize) and a field level pesticide transport model (PRZM) to study the impacts of doubled levels of atmospheric CO2 on various aspects of corn production in the Southern U.S.A. Grid-box scale GCM output has been applied to a 38-year time series of historical weather data at 28 different locations for several typical soil profiles throughout the South. Limitations on the use of the climate scenario in conjunction with the process models are discussed. Major shortcomings include: 1) no direct impacts of atmospheric CO2 on plant growth and development in the plant process model; 2) neither macro-pore solute transport nor chemical decay rate response to temperature are included in the pesticide transport model; and 3) the climate change scenario output does not provide information concerning changes in temperature extremes and variability or precipitation frequency, intensity or duration. The latter are particularly critical parameters for the detailed simulation of hydrological processes. In spite of these omissions, the combination of the three models facilitates the study of the impacts of GCM modeled climate change on several inter-related agro-climatic issues of interest to agricultural policy makers. These issues include: changes in dryland and irrigated corn yields; changes in sowing and harvest dates; modification of crop water demand; and estimates of effects on pesticide losses from the soil surface and through leaching from the bottom of the active corn root zone. Model generated results which address these issues are presented but must be used with caution in light of the GCM and process model limitations. The results of this study suggest that substantial changes in agricultural production and management practices may be needed to respond to the climate changes expected to take place throughout the Southern U.S.A.  相似文献   

10.
Climate Dynamics - The study examines the influence of external climate forcings, and atmosphere–ocean–sea–ice coupled interaction on the Southern Hemisphere (SH) atmospheric...  相似文献   

11.
 The possible future impact of anthropogenic forcing upon the circulation of the Mediterranean, and the exchange through the Strait of Gibraltar is investigated using a Cox-type model of the Mediterranean at 0.25° × 0.25° resolution, forced by “control” and “greenhouse” scenarios provided by the HadCM2 coupled climate model. The current structure of the Mediterranean forced by the “control” climate is compared with observations: certain aspects of the present circulation are reproduced, but others are absent or incorrectly represented. Deficiencies are most probably due to weaknesses in the forcing climatology generated by the climate model, so some caution must be exercised in interpreting the enhanced greenhouse simulation. Comparison of the control and greenhouse scenarios suggests that deep-water production in the Mediterranean may be reduced or cease in the relatively near future. The results also suggest that the Mediterranean outflow, may become warmer and more saline, but less dense, and hence shallower. The volume of the exchange at the Strait of Gibraltar seems to be relatively insensitive to future climate change, however. Our results indicate that a parameterisation of Gibraltar exchange and Mediterranean Outflow Water (MOW) production may be able to provide adequate representation of the changes we observe for the purposes of the current generation of climate models. Received: 10 August 1998 / Accepted: 11 October 1999  相似文献   

12.
The response of the ocean’s meridional overturning circulation (MOC) to increased greenhouse gas forcing is examined using a coupled model of intermediate complexity, including a dynamic 3-D ocean subcomponent. Parameters are the increase in CO2 forcing (with stabilization after a specified time interval) and the model’s climate sensitivity. In this model, the cessation of deep sinking in the north “Atlantic” (hereinafter, a “collapse”), as indicated by changes in the MOC, behaves like a simple bifurcation. The final surface air temperature (SAT) change, which is closely predicted by the product of the radiative forcing and the climate sensitivity, determines whether a collapse occurs. The initial transient response in SAT is largely a function of the forcing increase, with higher sensitivity runs exhibiting delayed behavior; accordingly, high CO2-low sensitivity scenarios can be assessed as a recovering or collapsing circulation shortly after stabilization, whereas low CO2-high sensitivity scenarios require several hundred additional years to make such a determination. We also systemically examine how the rate of forcing, for a given CO2 stabilization, affects the ocean response. In contrast with previous studies based on results using simpler ocean models, we find that except for a narrow range of marginally stable to marginally unstable scenarios, the forcing rate has little impact on whether the run collapses or recovers. In this narrow range, however, forcing increases on a time scale of slow ocean advective processes results in weaker declines in overturning strength and can permit a run to recover that would otherwise collapse.  相似文献   

13.
14.
The increase of atmospheric CO2 concentrations due to anthropogenic activities is substantially damped by the ocean, whose CO2 uptake is determined by the state of the ocean, which in turn is influenced by climate change. We investigate the mechanisms of the ocean’s carbon uptake within the feedback loop of atmospheric CO2 concentration, climate change and atmosphere/ocean CO2 flux. We evaluate two transient simulations from 1860 until 2100, performed with a version of the Max Planck Institute Earth System Model (MPI-ESM) with the carbon cycle included. In both experiments observed anthropogenic CO2 emissions were prescribed until 2000, followed by the emissions according to the IPCC Scenario A2. In one simulation the radiative forcing of changing atmospheric CO2 is taken into account (coupled), in the other it is suppressed (uncoupled). In both simulations, the oceanic carbon uptake increases from 1 GT C/year in 1960 to 4.5 GT C/year in 2070. Afterwards, this trend weakens in the coupled simulation, leading to a reduced uptake rate of 10% in 2100 compared to the uncoupled simulation. This includes a partial offset due to higher atmospheric CO2 concentrations in the coupled simulation owing to reduced carbon uptake by the terrestrial biosphere. The difference of the oceanic carbon uptake between both simulations is primarily due to partial pressure difference and secondary to solubility changes. These contributions are widely offset by changes of gas transfer velocity due to sea ice melting and wind changes. The major differences appear in the Southern Ocean (?45%) and in the North Atlantic (?30%), related to reduced vertical mixing and North Atlantic meridional overturning circulation, respectively. In the polar areas, sea ice melting induces additional CO2 uptake (+20%).  相似文献   

15.
The potential effects of a dynamic ocean on climate change are assessed by comparison of a simulation from 1880 into the future by the CSIRO (Mark 2) coupled atmosphere–ocean general circulation model with equilibrium results from a mixed-layer ocean (MLO) version of the model. At 2082, when the effective CO 2 is tripled, the global warming in the coupled model is barely half the 3×CO 2 MLO result, largely because of oceanic heat uptake, as diagnosed using an effective heat capacity. The effective ocean depth continues to increase during a further 1700 years with stabilized tripled CO 2, by which time the mean ocean warming reaches the upper ocean value. Some reduction of the coupled model warming is due to the effective sensitivity (for 2×CO 2), determined from the radiative response to the forcing, being persistently 0.2 K lower than the MLO model value. A regional energy and feedback analysis shows that this is largely due to an overall equatorward oceanic heat transport anomaly, which reduces the high-latitude warming in the coupled model. The global warming at 3800 is around 95% of the anticipated equilibrium value, which is matched by the result of a simple energy balance model for the approach to equilibrium. The geographical effect of the oceanic heat transport is confirmed using a mixed-layer model with perturbed oceanic heat convergence. The eastern equatorial Pacific warming is enhanced by over 1 K, and rainfall is perturbed in an ENSO-like pattern.  相似文献   

16.
Measurements of the concentrations of carbonyl sulfide (COS) in the marine atmosphere were made over a period of two years in the southern Indian Ocean (Amsterdam Island, 37°50 S–77°31 E; March 1987–February 1988 and April 1989–February 1990). The mean atmospheric COS concentration for the whole period was 475±48 pptv (n=544). Atmospheric COS concentrations show no significant seasonal variation with a summer to winter ratio of 1.05. Taking into account the observed variability of the atmospheric COS concentration (10%), a value of 1.4 yr is estimated as a lower limit for the atmospheric COS lifetime. A comparison of the COS data at Amsterdam Island with those obtained in the Southern Hemisphere in the past 12 yr does not reveal any significant trend in the tropospheric background COS mixing ratio.  相似文献   

17.
18.
Abstract

A þrst climate simulation performed with the novel Canadian Regional Climate Model (CRCM) is presented. The CRCM is based on fully elastic non‐hydrostatic þeld equations, which are solved with an efþcient semi‐implicit semi‐Lagrangian (SISL) marching algorithm, and on the parametrization package of subgrid‐scale physical effects of the second‐generation Canadian Global Climate Model (GCMII). Two 5‐year integrations of the CRCM nested with GCMII simulated data as lateral boundary conditions are made for conditions corresponding to current and doubled CO2 scenarios. For these simulations the CRCM used a grid size of 45 km on a polar‐stereographic projection, 20 scaled‐height levels and a time step of 15 min; the nesting GCMII has a spectral truncation of T32, 10 hybrid‐pressure levels and a time step of 20 min. These simulations serve to document: (1) the suitability of the SISL numerical scheme for regional climate modelling, (2) the use of GCMII physics at much higher resolution than in the nesting model, (3) the ability of the CRCM to add realistic regional‐scale climate information to global model simulations, and (4) the climate of the CRCM compared to that of GCMII under two greenhouse gases (GHG) scenarios.  相似文献   

19.
We use the Earth system model of intermediate complexity LOVECLIM to show the effect of coupling interactive ice sheets on the climate sensitivity of the model on a millennial time scale. We compare the response to a 2×CO2 warming scenario between fully coupled model versions including interactive Greenland and Antarctic ice sheet models and model versions with fixed ice sheets. For this purpose an ensemble of different parameter sets have been defined for LOVECLIM, covering a wide range of the model??s sensitivity to greenhouse warming, while still simulating the present-day climate and the climate evolution over the last millennium within observational uncertainties. Additional freshwater fluxes from the melting ice sheets have a mitigating effect on the model??s temperature response, leading to generally lower climate sensitivities of the fully coupled model versions. The mitigation is effectuated by changes in heat exchange within the ocean and at the sea?Cair interface, driven by freshening of the surface ocean and amplified by sea?Cice-related feedbacks. The strength of the effect depends on the response of the ice sheets to the warming and on the model??s climate sensitivity itself. The effect is relatively strong in model versions with higher climate sensitivity due to the relatively large polar amplification of LOVECLIM. With the ensemble approach in this study we cover a wide range of possible model responses.  相似文献   

20.
Fingerprint techniques for the detection of anthropogenic climate change aim to distinguish the climate response to anthropogenic forcing from responses to other external influences and from internal climate variability. All these responses and the characteristics of internal variability are typically estimated from climate model data. We evaluate the sensitivity of detection and attribution results to the use of response and variability estimates from two different coupled ocean atmosphere general circulation models (HadCM2, developed at the Hadley Centre, and ECHAM3/LSG from the MPI für Meteorologie and Deutsches Klimarechenzentrum). The models differ in their response to greenhouse gas and direct sulfate aerosol forcing and also in the structure of their internal variability. This leads to differences in the estimated amplitude and the significance level of anthropogenic signals in observed 50-year summer (June, July, August) surface temperature trends. While the detection of anthropogenic influence on climate is robust to intermodel differences, our ability to discriminate between the greenhouse gas and the sulfate aerosol signals is not. An analysis of the recent warming, and the warming that occurred in the first half of the twentieth century, suggests that simulations forced with combined changes in natural (solar and volcanic) and anthropogenic (greenhouse gas and sulfate aerosol) forcings agree best with the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号