首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
为了建立松辽盆地等时地层格架,深入认识松辽盆地地质特征和结构以及油气聚集规律,本文开展了松辽盆地不同工区、不同时期采集的二维和三维地震资料叠前连片处理技术研究.本文针对叠前连片处理过程中不同区块的非一致性, 采用了相应的处理方法和手段, 使得连片处理后数据的相位达到一致,区块间拼接带的频率、能量(或振幅)变化自然合理.处理后的资料地质现象丰富,地层齐全,具有较高的信噪比和连续性.资料反映的区域构造合理,有利于对松辽盆地区域地质规律进行统一的认识.  相似文献   

2.
三维地震资料叠前时间偏移应用研究   总被引:1,自引:16,他引:1       下载免费PDF全文
本文通过选取合适的叠前时间偏移软件,对两块三维地震资料进行偏移成像试验,验证叠前时间偏移中影响偏移成像效果的几个主要因素.该软件偏移算法的核心技术是弯曲射线偏移处理,这不同于工业界常用的直射线假设.偏移速度是偏移成像好坏的主要因素,通过迭代进行偏移、速度分析,使共成像点道集拉平,从而实现构造的准确成像;偏移孔径也是影响偏移成像的一个关键参数,其选取与成像目标层的倾斜角、深度、速度等有关;反假频参数对偏移成像效果有一定影响,是偏移中需要考虑的因素之一.  相似文献   

3.
地震叠前时间偏移的一种图形处理器提速实现方法   总被引:14,自引:11,他引:14       下载免费PDF全文
新近发展的图形处理器(GPU,Graphic Processing Unit)通用计算技术,现已日趋实用成型,并获得诸多应用领域的广泛关注.对油气勘探专项资料处理技术的运用而言,概因GPU与中央处理器(CPU)的计算性能的甚大差异,致使GPU这一通用计算技术在石油工业中的应用研究正在有效开展.本文仅借助于油气勘探中广泛使用的叠前时间偏移,旨在于扼要阐明其基于GPU应用的有效性;文中还提出一种利用GPU实现地震叠前时间偏移的软件构件方法,并针对非对称走时叠前时间偏移所拓展的应用软件提供一种具体实现架构.与以往用个人计算机(PC,Personal Computer)或者PC集群所用的叠前时间偏移相比,本文方法可甚大地提高计算效率,从而在石油物探资料处理中可显著地节约计算成本和维护费用.文中实际例证也表明,基于GPU进行高性能并行计算,当是适应目前石油工业中大规模计算需求的一个重要发展途径.  相似文献   

4.
随着勘探程度的不断提高,断陷盆地陡坡带砂砾岩体油气藏成为了重点勘探对象之一,但陡倾角的大断层、非均质性强的砂砾岩体使得常规的叠后偏移成像方法成果难以满足勘探开发的需要.采用叠前时间偏移处理技术,开展针对性的叠前预处理技术、精细的速度模型建立和关键参数的合理选取等研究,三维叠前时间偏移处理较常规三维叠后时间偏移处理获得了较高质量的成像剖面,且输出的道集可以用于砂砾岩体储层描述研究.  相似文献   

5.
高性能计算(high performance computing)是地震数据处理领域一个重要研究课题.目前的高性能计算大多是利用图形处理器(GPU)强大并行处理能力,以GPU/CPU协同并行计算构架为基础实现有关算法.本文讨论了利用CUDA和Impulse C-to-FPGA工具分别在GPU(图形处理器)和FPGA(可编程逻辑门阵列)平台上并行实现Kirchhoff叠前时间偏移算法.处理结果表明,利用GPU加速Kirehhoff叠前时间偏移处理得到了14倍的单核加速比,利用FPGA加速Kirchhoff叠前时间偏移处理得到了9.5倍的单核加速比.  相似文献   

6.
对地震照明叠前深度偏移的基本概念、实现方法进行了分类和阐述.地震照明叠前深度偏移是通过对震源和炮记录进行合理的选择和合成,从而进行地震照明成像的一种有效方法.其可以分为平面波偏移和小束波偏移.理论模型的处理效果证明地震照明叠前深度偏移成像技术有很高的计算效率,并且还可以提高地下特定目标的成像质量.  相似文献   

7.
微机群并行实现Marmousi模型叠前深度偏移   总被引:6,自引:19,他引:6  
波动方程叠前深度偏移等地震资料处理需要相当大规模的计算资源条件。巨型并行机因其计算能力强而备受工业界的青睐。但其价格的昂贵也限制了使用范围。近年来国际上出现的微机群是一种大规模并行计算的廉价实现方案,本文即是讨论利用微机群来实现Marmousi模型叠前深度偏移所涉及的数值实现。为比较起见,我们选择国际上大规模分布式并行计算机代表-IBM SP-2以进行计算性能的比较。  相似文献   

8.
油气勘探地震资料处理GPU/CPU协同并行计算   总被引:4,自引:3,他引:4       下载免费PDF全文
随着图形处理器(Graphic Processing Unit: GPU)在通用计算领域的日趋成熟,使GPU/CPU协同并行计算应用到油气勘探地震资料处理中,对诸多大规模计算的关键性环节有重大提升.本文阐明协同并行计算机的思路、架构及编程环境, 着重分析其计算效率得以大幅度提升的关键所在.文中以地震资料处理中的叠前时间偏移和Gazdag深度偏移为切入点,展示样机测试结果的图像显示.显而易见,生产实践中,时常面临对诸多算法进行算法精度和计算速度之间的折中选择.本文阐明GPU/CPU样机协同计算具有高并行度,进而可在算法精度与计算速度的优化配置协调上获得广阔空间.笔者认为,本文的台式协同并行机研制思路及架构,或可作为地球物理配置高性能计算机全新选择的一项依据.  相似文献   

9.
共偏移距道集平面波叠前时间偏移与反偏移   总被引:3,自引:1,他引:3       下载免费PDF全文
在Dubrulle提出的共偏移距道集频率波数域叠前时间偏移的基础上,提出了共偏移距道集频率波数域叠前时间偏移与反偏移一对共轭算子.讨论了该对算子的变孔径实现过程.并把该对共轭算子串连起来实现了叠前地震数据的规则化处理.指出最小二乘意义下的叠前地震数据规则化会得到更好的效果.v(z)介质模型和Marmousi模型的数值试验结果表明,方法理论正确、有效.  相似文献   

10.
地震叠前逆时偏移高阶有限差分算法及GPU实现   总被引:11,自引:10,他引:11       下载免费PDF全文
叠前逆时偏移技术是解决地震成像问题的有力工具,但由于计算量大、成像噪音以及存储量大等原因没有得到广泛的应用.本文给出了逆时偏移的实现过程,分析了高阶有限差分格式的稳定性与频散关系.针对叠前逆时偏移计算量大的问题,使用图形处理器(Graphic Processing Unit,简称GPU)实现算法加速,比传统的CPU计算速度提高了一个数量级.文中对理论模型进行了计算,并与单程波偏移方法做比较,结果表明:叠前逆时偏移有效突破了成像倾角限制,对垂直断层、盐丘空腔内幕等特殊构造成像效果均有显著提高.本文尚未涉及成像噪音去除以及存储量等问题,笔者将另文阐述.  相似文献   

11.
地震叠前逆时偏移算法的CPU/GPU实施对策   总被引:8,自引:8,他引:8       下载免费PDF全文
相较于单程波偏移算法而言,逆时偏移成像方法以其物理基础为依托优势,几十年来一直备受国内外地球物理学家的青睐.目前的逆时偏移(RTM)若直接采用双程波动方程进行延拓,尽管可以回避上下行波的分离处理,然就已有算法而言,其计算量和I/O(输入/输出)量却是最大的.针对此问题,本文在分析现行逆时偏移的多种算法基础上,提出利用CPU/GPU(中央处理器/图形处理器)作为数值计算核心,建立随机边界模型,从而克服存储I/O难题和提高计算效率.在实际的数据测试中,本文的方法可以大幅度的提高计算效率和减少存储单元,从而促使其高效地应用于生产实际.  相似文献   

12.
转换波叠前时间偏移方法综述   总被引:3,自引:5,他引:3       下载免费PDF全文
本文对各向同性介质和VTI介质中的转换波叠前时间偏移方法进行了总结和归纳,分析了每种方法优缺点和适用条件.认为应在实际应用中根据不同的实际资料选择不同的方法,才能得到较好的成像效果.在转换波叠前时间偏移中,速度模型的建立及各种方法对更复杂构造的适应性仍需加强研究.  相似文献   

13.
为了提高叠前数据质量,将叠前时间偏移/反偏移与共散射点道集相结合,提出了一种新的时间偏移/反偏移方法.利用改进的CRS参数建立精确的速度模型,提高偏移成像质量.将振幅映射到共偏移距顶点来生成共散射点道集,将偏移和中点上的多参数叠加,通过叠加数据,实现了叠前数据增强,道集的数量远高于传统叠前时间偏移的叠加数量.利用基于中点位移、半偏移距和偏移速度的算子进行反偏移处理,能量重新分配回时间域中的每个绕射同相轴,压制噪声,地震资料信噪比和成像精度均得到了提高.提高质量后的叠前数据可用于后续的速度分析、叠加、偏移等常规处理中,效果好于原始CMP道集.模型和实际数据的计算结果均验证了该方法的正确性和有效性,该方法在低信噪比资料的处理中将会有广阔的应用前景.  相似文献   

14.
为适应实际生产中对大规模三维工区数据处理的效果及效率的要求,提出了按三维成像体输出成像结果的3D Kirchhoff积分法偏移实现方案.将地震数据按共偏移距道集形式排放,每个共偏移距数据的偏移类似于一个3D叠后Kirchhoff积分偏移,极大地降低了对计算机内存和局部盘及I/O通讯率的要求.每个地震道的成像(输出等时面)在由炮检点连线定义的旋转坐标系中进行,更好地考虑了偏移孔径计算及反假频处理.同时兼顾了超大规模地震数据PSTM成像处理中内存需求量、I/O通讯问题、并行处理方案及效率优化的细节问题.并行计算用偏移距号和每个共偏移距数据体中的线号作为一级和二级索引进行任务分解,更适应当前计算机集群中计算节点比较多的情况.最后考虑了在基本不影响效率的前提下的断点保护处理方案.理论及实际数据测试结果说明了该方案的可行性,与商业软件的对比验证了该方案的优越性.在此较完善的实现方案基础上,可以容易地把更优越的积分类偏移方法迅速推向实用化.  相似文献   

15.
叠前逆时偏移是当前最为准确的地震成像方法,由于计算量大、存储量大等原因需要合适的实现策略和高效的计算平台.本文以高阶有限差分逆时偏移为基础,重点讨论了在GPU上实现需要解决的显存不足问题和人工边界问题.利用区域分解技术可以在当前GPU上高效地实现任意生产规模的三维逆时偏移成像,不会受到GPU显存规模的制约.常规最佳匹配层边界条件边界区域控制方程与内部区域差异较大,不适于GPU高速运算.本文在GPU上实现近似最佳匹配层(NPML)边界条件,使得高阶有限差分计算不需要分支判断,边界区域辅助波场的存储量也较低,保证了在GPU上进行波场传播的高效性.三维理论数据和实际资料成像结果表明了本文方法的正确性.  相似文献   

16.
提出了一种在时间和空间上完全局域化的波场分解和传播算法─dreamlet偏移方法.Dreamlet是一种脉冲-小波束形式的波场分解原子,它利用多维局部分解变换,把时空域波场映射到局部时间-频率-空间-波数相空间,并用局部相空间的传播算子(dreamlet算子)沿深度延拓.本文利用多维局部余弦变换实现dreamlet算法,分解后的波场系数和传播算子不仅有很好的稀疏性,且均为实数,也即波的传播和成像过程完全在实数域实现.文中推导了局部余弦基dreamlet波场分解和传播算子理论公式并将其应用于叠前深度偏移.在dreamlet相空间波的传播过程为稀疏矩阵相乘,而且延拓后的地表数据波场的有效时间长度随深度的增加不断减小,从而可以减少需要传播的波场系数.二维SEG/EAGE盐丘和SIGSBEE模型算例验证了理论推导的正确性,成像结果显示该方法在横向速度变化剧烈情况下有很好的精度.  相似文献   

17.
提出了一种在时间和空间上完全局域化的波场分解和传播算法─dreamlet偏移方法.Dreamlet是一种脉冲-小波束形式的波场分解原子,它利用多维局部分解变换,把时空域波场映射到局部时间-频率-空间-波数相空间,并用局部相空间的传播算子(dreamlet算子)沿深度延拓.本文利用多维局部余弦变换实现dreamlet算法,分解后的波场系数和传播算子不仅有很好的稀疏性,且均为实数,也即波的传播和成像过程完全在实数域实现.文中推导了局部余弦基dreamlet波场分解和传播算子理论公式并将其应用于叠前深度偏移.在dreamlet相空间波的传播过程为稀疏矩阵相乘,而且延拓后的地表数据波场的有效时间长度随深度的增加不断减小,从而可以减少需要传播的波场系数.二维SEG/EAGE盐丘和SIGSBEE模型算例验证了理论推导的正确性,成像结果显示该方法在横向速度变化剧烈情况下有很好的精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号