首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
There are two parts to this paper. In the first we calculate the hydrodynamic response of the solar atmosphere to the injection of an intense beam of electrons in a numerical simulation of a solar flare. In the second we predict the spectroscopic consequences of the hydrodynamic behaviour calculated in the first part. The hydrodynamics is predicted by solving the equations of conservation of mass, momentum, and energy. The latter is expressed as two temperature equations; one for the electrons and the other for the neutral atoms and positive ions of hydrogen. The equations are solved in one dimension and the geometric form is of a semi-circular loop having its ends in the photosphere. The results show how the loop is filled at supersonic speed with plasma at temperatures characteristic of flares. At the same time a compression wave is predicted to propagate down towards the photosphere. After the heating pulse stops, the plasma that has risen into the loop, starts to decay and return to the condition it was in before the pulse started. In predicting the spectrum that would be emitted by such a plasma calcium was chosen for illustration. The first and main part of this calculation was setting up and solving the time-dependent equations of ionization/recombination. In order to provide a standard for comparison the same ionization and recombination rate coefficients are used to predict the steady-state distribution of populations of ionization stages. This is then compared with the distribution found from the time-dependent solution and shows that there is a negligibly small time lag predicted by the time-dependent result. However the more significant comparisons to make are between the temperatures of the peak abundances of the various ions under the assumptions of steady-state and time-dependent ionization. For the particular circumstances chosen here the temperature differences are predicted to be in the neighbourhood of 10% or less and in view of the overall accuracy of the atomic data are not significant. It would appear therefore that the much simpler assumption of steady-state ionization balance leads to results of acceptable accuracy for the particular case considered.  相似文献   

2.
Dzifčáková  Elena 《Solar physics》2002,208(1):91-111
In the past few years new calculations of the ionization and recombination rates have been published. The new Fe ionization equilibrium for these new rates is available for a Maxwellian distribution. Therefore the updated Fe ionization equilibrium for the non-thermal -distribution with an enhanced number of particles in the high-energy tail is presented. Results for the various deviations from a Maxwellian distribution are given in tabular form and these are compared with previous ones. A method for the determination of an energy distribution different from the Maxwellian one is suggested.  相似文献   

3.
The existence of doubly excited levels causes dielectronic recombination and autoionization. These effects influence respectively the total recombination rate and the total ionization rate of different ions. The ratios of dielectronic recombination to radiative recombination and of autoionization to collisional ionization are given as a function of the electron temperature for the term systems of Oiv, Ov, Ovi, Siix and Fexv. While autoionization can contribute appreciably to the total ionization rate, dielectronic recombination is always the most effective recombination mechanism.  相似文献   

4.
We discuss needs in dielectronic recombination data motivated by recent work directed at a quantitative understanding of ion charge states of various elements observed in situ in the solar wind and CMEs. The competing processes of ionization and recombination lead to departures from collision ionization equilibrium. The use of this as a diagnostic of acceleration and heating processes of the solar wind and CMEs is sensitive to the accuracy of the atomic rates in a way that steady state ionization equilibrium plasmas are not. The most pressing need is dielectronic recombination rates for ions Fe8+-12+. These are among the dominant species observed in various regions of the solar wind and CMEs, and in remotely sensed EUV spectra.  相似文献   

5.
The current practice of treating ionic recombination in the lower atmosphere is in error in two respects: firstly the Thomson formula for the ter-molecular recombination coefficient does not represent the behaviour as accurately as commonly assumed: secondly the ter-molecular recombination coefficient (expressed in binary form) and the rate coefficient for the binary recombination of an isolated ion-pair are not additive. Computer simulated experiments are performed which should give the total recombination coefficient in the region below 40 km with some precision. It is shown that the recombination rate is not appreciably affected by inhomogeneity in the cosmic ray ionization. The equilibrium small ion number density profile is calculated and found to be in good agreement with the observed profile. It is inferred that the mixing ratio of the trace gas x which reacts with proton hydrates to form non-proton hydrates has an approximately constant value of 5 × 10−13 from 20 to 42 km.  相似文献   

6.
A preliminary analysis is given of 2D spectroscopic data on the galaxy SBS 1533+574(AB) obtained using the multipupil spectrographs on the 2.6-m telescope at the BAO (VAGR) and the 6-m telescope at the SAO (MPFS). The two components of the galaxy are star formation regions in different stages. The component SBS 1533+574B is known to be a BCDG. The plots of the intensity distribution of the radiation in the recombination lines of hydrogen and the forbidden lines of gases with a low degree of ionization obtained here make it possible to compare the basic characteristics of the HII-zones and the surrounding shell. The velocity distribution over the field of the galaxy is indicative of a common rotation of the system and of an intrinsic rotation of the components which is more distinct for component B. __________ Translated from Astrofizika, Vol. 49, No. 4, pp. 511–525 (November 2006).  相似文献   

7.
We give a review of problems connected with the interpretation of meter and decameter carbon radiolines. The lines are formed inside clumps of molecular clouds in layers with a column density N ≈ 6 · 1021 cm−2. These clumps are very typical structures. The distribution of physical parameters (number density, temperature, etc.) inside the clumps is poorly known. The most difficult and important question is the penetration of subcosmic rays into the clumps. Observations show that the ionization rate is ζ = (1–7) · 10−17 s−1 inside molecular clouds and significantly greater in the diffuse gas. Long-wave radio recombination lines can probably be used for the analysis of the distribution of subcosmic rays inside molecular clouds. The interpretation is complicated by the influence of low-temperature dielectron recombination and poorl known variations of carbon depletion in the clumps.  相似文献   

8.
The dynamical evolution of hot optically thin plasmas in the ISMcrucially depends on the heating and cooling processes. It isessential to realize that all physical processes that contributeoperate on different time scales. In particular detailedbalancing is often violated since the statistically inverseprocess of e.g. collisional ionization is recombination of an ionwith two electrons, which as a three-body collision is usuallydominated by radiative recombination, causing a departure fromcollisional ionization equilibrium. On top of these differences inatomic time scales, hot plasmas are often in a dynamical state,thereby introducing another time scale, which canbe the shortest one.The non-equilibrium effects will be illustrated and discussed inthe case of galactic outflows. It will be shown, that spectralanalyses of X-ray data of edge-on galaxies show a clear signaturein the form of ‘multi-temperature’ halos, which can mostnaturally be explained by the ‘freezing-in’ of highly ionizedspecies in the outflow, which contribute to the overall spectrumby delayed recombination. This naturally leads to anon-equilibrium cooling function, which modifies the dynamics,which in turn changes the plasma densities and thermal energybudget, thus feeding back on the ionization structure. Thereforeself-consistent modelling is needed.  相似文献   

9.
We investigate the stability of D-type ionization fronts (IF). We find the dispersion relation for surface modes of weak-D IF illuminated by a plane-parallel radiation field, including both the inclination of the IF to the ionizing radiation field and the effects of recombination in the ionized gas. It is well known that IF are unstable in the absence of recombination in the ionized gas, but that recombination tends to stabilize them. For finite inclination, however, IF are unstable at essentially all wavelengths in the limit of very cold upstream gas.
We present numerical hydrodynamic simulations of the development of the instabilities. These confirm the presence of long-wavelength instabilities of IF when the sound speed in the neutral gas is a finite fraction of that in the ionized gas and the ionization cross section is finite. They also show the development of the instabilities to non-linear amplitude.  相似文献   

10.
The development of perturbations of number densities of ions and electrons during the recombination epoch is analysed. The equations for relative perturbations of ionization fractions were derived from the system of equations for accurate computation of the ionization history of the early Universe. It is shown that strong dependence of ionization and recombination rates on the density and temperature of plasma provides the significant deviations of amplitudes of ionization fractions relative to perturbations from those of baryon matter density adiabatic perturbations. Such deviations are most prominent for cosmological adiabatic perturbations of scales larger than the sound horizon at the recombination epoch. The amplitudes of relative perturbations of number densities of electrons and protons at the last scattering surface exceed by a factor of ≃5 the amplitude of the relative perturbation of baryons total number density: for helium ions this ratio reaches a value of ≃18. For subhorizon cosmological perturbations, these ratios appear to be essentially smaller and depend on oscillation phase at the moment of decoupling. These perturbations of number densities of ions and electrons at the recombination epoch do not contribute to the intrinsic plasma temperature fluctuations but cause the 'corrugation' of the last scattering surface in optical depth,  δ z dec/( z dec+ 1) ≈−δb/3  , at scales larger than the sound horizon. It may result in notable changes of pre-calculated values of the cosmic microwave background polarization pattern at several degrees of angular scales.  相似文献   

11.
We investigate the dissociative recombination contribution to I(5577) and I(6300) of [OI] as a function of low energy cutoff for two measured solar proton spectra. The volume ionization rate profiles used in the calculation are obtained using a detailed atomic cross section approach in the continuous slowing down approximation. The ratio of the dissociative recombination contribution to the direct impact contribution for both the 5577 Å and 6300 Å [OI] emissions is found to be dependent upon the low energy cutoff. This ratio has a nominal value of ~2.0 for the 5577 Å [OI] emission and ~0.25 for the 6300 Å [OI] emission. The I(5577)/I(3914) and I(6300)/I(3914) ratios including the direct and dissociative recombination contributions are strongly dependent upon the low energy cutoff of the spectrum. We have also investigated F-layer enhancements resulting from the low energy spectrum component. For the Mizera et al. (1972) spectrum with a low energy cutoff of 12.4 keV, we find an NmF2 of ~4.5 × 103 electrons/cm3 or about 10 per cent of the ionization required to maintain the dip pole at a value of 5 × 104 electrons/cm3. Extension of the cutoff to 1 keV results in ~1 × 104 electrons/cm3, or about 20 per cent of the required maintenance ionization.  相似文献   

12.
Results of a numerical computer investigation of the geomagnetically quiet, high latitude F-region ionosphere are presented. A mathematical model of the steady state polar convective electric field pattern is used in conjunction with production and loss processes to solve the continuity equation for the ionization density in a unit volume as it moves across the polar cap and through the auroral zones.Contours of electron density (~ 300 km altitude) over the polar region are computed for various geophysical conditions. Results show changes in the F-region morphology within the polar cap in response to varying the asymmetry of the global convective electric fields but no corresponding change in the morphology of the mid-latitude ionospheric trough. The U.T. response of the ionosphere produces large diurnal changes in both the polar cap densities and trough morphology. In agreement with observations, the model shows diurnal variations of the polar cap density by a factor of about 10 at midwinter and a negligible diurnal variation at midsummer. The phase of the polar cap diurnal variation is such that the maximum polar cap densities occur approximately when the geomagnetic pole is nearest to the Sun (i.e. when the polar cap photo-ionization is a maximum).Within the accuracy of this model, the results suggest that transport of ionization from the dayside of the auroral zone can numerically account for the maintenance of the polar cap ionosphere during winter when no other sources of ionization are present. In addition, east-west transport of ionization, in conjunction with chemical recombination is responsible for the major features of the main trough morphology.There is little seasonal variation in the depth or latitude of the ionization trough, the predominant seasonal change being the longitudinal extent of the trough.The polar wind loss of ionization is of secondary importance compared to chemical recombination.  相似文献   

13.
The major theoretical limitation for extracting cosmological parameters from the cosmic microwave background (CMB) sky lies in the precision with which we can calculate the cosmological recombination process. Uncertainty in the details of hydrogen and helium recombination could effectively increase the errors or bias the values of the cosmological parameters derived from the Planck satellite, for example. Here, we modify the cosmological recombination code recfast by introducing one more parameter to reproduce the recent numerical results for the speed-up of the helium recombination. Together with the existing hydrogen fudge factor, we vary these two parameters to account for the remaining dominant uncertainties in cosmological recombination. By using the C osmo MC code with Planck forecast data, we find that we need to determine the parameters to better than 10 per cent for He  i and 1 per cent for H, in order to obtain negligible effects on the cosmological parameters. For helium recombination, if the existing studies have calculated the ionization fraction to the 0.1 per cent level by properly including the relevant physical processes, then we already have numerical calculations which are accurate enough for Planck . For hydrogen, setting the fudge factor to speed up low-redshift recombination by 14 per cent appears to be sufficient for Planck . However, more work still needs to be done to carry out comprehensive numerical calculations of all the relevant effects for hydrogen, as well as to check for effects which couple hydrogen and helium recombination through the radiation field.  相似文献   

14.
We discuss the variable degree of ionizationx of a hydrogen-helium plasma in the early Universe for a quasi-static expansion in thermal equilibrium. The final equation for the degree of ionization can be reduced to a polynomial of fourth order inx with known coefficients depending on the temperature. Restricting to a pure hydrogen-plasma applied to the recombination era, where the main ionization effects are due to photo-electric and collisional processes, we study the dynamical evolution of the degree of ionization for nonstatic and nonequilibrium situations. The calculation can be reduced to a pure quadrature. In the linear case, we also calculate the rate of ionization.  相似文献   

15.
We study the nonstationary recombination of hydrogen in the atmosphere of SN 1987A by taking into account ion-molecular processes. The hydrogen excitation due to nonstationary recombination is shown to be enough to explain the observed hydrogen lines in a time interval until day 30 in the absence of additional excitation mechanisms. Thus, the problem of a deficit in the hydrogen excitation that has recently been found in modeling the hydrogen spectrum of SN 1987A at an early photospheric stage by assuming statistical ionization equilibrium is resolved. The mass of the radioactive 56Ni with a spherically symmetric distribution in the outer layers is shown to be close to 10?6 M . Our model predicts the appearance of a blue peak in the Hα profile between days 20 and 30. This peak bears a close similarity to the observed peak known as the Bochum event. The presence of this peak in the model is attributable to nonstationary recombination and to a substantial contribution of hydrogen neutralization involving H? and H2.  相似文献   

16.
The physical ingredients to describe the epoch of cosmological recombination are amazingly simple and well‐understood. This fact allows us to take into account a very large variety of physical processes, still finding potentially measurable consequences for the energy spectrum and temperature anisotropies of the Cosmic Microwave Background (CMB). In this contribution we provide a short historical overview in connection with the cosmological recombination epoch and its connection to the CMB. Also we highlight some of the detailed physics that were studied over the past few years in the context of the cosmological recombination of hydrogen and helium. The impact of these considerations is two‐fold: (i) The associated release of photons during this epoch leads to interesting and unique deviations of the CosmicMicrowave Background (CMB) energy spectrum from a perfect blackbody, which, in particular at decimeter wavelength and the Wien part of the CMB spectrum, may become observable in the near future. Despite the fact that the abundance of helium is rather small, it still contributes a sizeable amount of photons to the full recombination spectrum, leading to additional distinct spectral features. Observing the spectral distortions from the epochs of hydrogen and helium recombination, in principle would provide an additional way to determine some of the key parameters of the Universe (e.g. the specific entropy, the CMB monopole temperature and the pre‐stellar abundance of helium). Also it permits us to confront our detailed understanding of the recombination process with direct observational evidence. In this contribution we illustrate how the theoretical spectral template of the cosmological recombination spectrum may be utilized for this purpose. We also show that because hydrogen and helium recombine at very different epochs it is possible to address questions related to the thermal history of our Universe. In particular the cosmological recombination radiation may allow us to distinguish between Compton y ‐distortions that were created by energy release before or after the recombination of the Universe finished. (ii) With the advent of high precision CMB data, e.g. as will be available using the PLANCK Surveyor or CMBPOL, a very accurate theoretical understanding of the ionization history of the Universe becomes necessary for the interpretation of the CMB temperature and polarization anisotropies. Here we show that the uncertainty in the ionization history due to several processes, which until now were not taken in to account in the standard recombination code RECFAST, reaches the percent level. In particular He II → He I recombination occurs significantly faster because of the presence of a tiny fraction of neutral hydrogen at z ∼ 2400. Also recently it was demonstrated that in the case of H I Lyman α photons the timedependence of the emission process and the asymmetry between the emission and absorption profile cannot be ignored. However, it is indeed surprising how inert the cosmological recombination history is even at percent‐level accuracy. Observing the cosmological recombination spectrum should in principle allow us to directly check this conclusion, which until now is purely theoretical. Also it may allow to reconstruct the ionization history using observational data (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Nonzero cosmological constant favours cosmological models with larger Hubble constant. The evolution of ionization during decoupling period in a universe with nonzero cosmological constant is computed by using a corrected recombination coefficient. Also presented in this paper is the redshift distribution of the last scattering surfaces of the cosmic background photons while the cosmological constant is nonvanishing. Finally, we give a brief estimation about the influence of He on the last scattering surfaces. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Coherent elastic neutrino-nucleus scattering (CENNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. Detection of CENNS could offer benefits for detection of supernova and solar neutrinos in astrophysics, or for detection of antineutrinos for nuclear reactor monitoring and nuclear nonproliferation. One challenge with detecting CENNS is the low energy deposition associated with a typical CENNS nuclear recoil. In addition, nuclear recoils result in lower ionization yields than those produced by electron recoils of the same energy. While a measurement of the nuclear recoil ionization yield in liquid argon in the keV energy range has been recently reported, a corresponding model for low-energy ionization yield in liquid argon does not exist. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The model consists of two distinct components: (1) simulation of the atomic collision cascade with production of ionization, and (2) the thermalization and drift of ionization electrons in an applied electric field including local recombination. As an application of our results we report updated estimates of detectable ionization in liquid argon from CENNS at a nuclear reactor.  相似文献   

19.
梁贵云  赵刚 《天文学进展》2005,23(3):248-271
正在进行的实验室天体物理测量解决了X射线天文学的一些问题,这些实验产生了大量可靠的原子数据,它们既可用于电荷分布中电离与复合截面的计算,又可用于对X射线谱线形成的线表、激发截面及双电子复合系数的理解。另有一部分实验注重于解决天体观测的难题,以及验证现有的和寻找新的X射线谱线诊断。讨论了上述实验产生的数据类型,并展示了实验室测量如何为卫星(ASCA、EUVE、Chandra、XMM和ASTRO-E2)观测提供实验依据.  相似文献   

20.
We have constructed self-consistent temperature and density profiles of irradiated active protoplanetary disks, using a two-dimensional radiative transfer calculation. By means of these profiles we have studied the stabilization of the convective instability by radiative heating and the magnetorotational instability (MRI) via ohmic dissipation, taking into account the effect of dust particle growth. Simple chemistry such as ionization by cosmic rays and recombination on dust grains are used to calculate the ionization degree of gas in the disks. Our results show that the dust growth stabilizes the convective instability due to the 2D effect of radiative transfer, while it enhances the MRI through the decrease in the recombination of ions on the dust grains. In addition, the influences of the dust settling toward the midplane of the disks on the instabilities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号