首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Study on the severest real ground motion for seismic design and analysis   总被引:1,自引:0,他引:1  
How to select the adequate real strong earthquake ground motion for seismic analysis and design of trucures is an essential problem in earthquake engineering research and practice.In the paper the concept of the severest design ground motion is proposed and a method is developed for comparing the severity of the recorded strong ground motions.By using this method the severest earthquake ground motions are selected out as seismic inputs to the structures to be designed from a database that consists of more than five thousand significant strong ground moton records collected over the world.The selected severest ground motions are very likely to be able to drive the structures to their critical response and thereby result in the highest damage potential.It is noted that for different structures with diffferent predominant natural periods and at different sites where structures are located the severest design ground motions are usually different.Finally.two examples are illustrated to demonstrate the rationality of the concept and the reliability of the selected design motion.  相似文献   

2.
最不利设计地震动研究   总被引:39,自引:1,他引:39       下载免费PDF全文
谢礼立  翟长海 《地震学报》2003,25(3):250-261
实际记录到的真实地震动在工程结构的抗震研究、分析和设计中往往作为一种施加到结构上使结构振动,直至破坏的地震荷载.如何合理选择真实的地震动记录作为研究结构地震反应的输入,一直是国内外抗震研究和设计中引人关注的重要问题.本文首先提出了最不利设计地震动的概念;然后在收集到的国内外5000余条被认为有重要意义的地震动记录基础上,利用综合估计地震动潜在破坏势的方法,对4种场地类型分别给出了长周期、短周期和中周期结构的国内外最不利设计地震动;最后通过几类不同结构的地震反应分析,初步验证了本文所确定的最不利设计地震动的可靠性和合理性.   相似文献   

3.
基于显式有限元方法和运动学震源模型并利用昆明盆地三维地下构造模型,本文研究了震源参数对断层附近长周期地震动的影响.结果表明,断层的破裂方式、埋藏深度、破裂速度以及断层面上位错的不均匀分布对断层附近长周期地震动有重要影响.不同破裂方式下,破裂的方向性强的区域分布不同,由于破裂的方向性效应和复杂场地条件的共同作用,导致不同破裂方式的断层附近地震动分布差别很大.随着破裂速度的增加,方向性效应更加明显,断层附近的长周期地震动也随之增大;对于浅源地震,随着断层埋深的增加,地震动明显下降.对于埋藏深度很浅的断层,当Asperity靠近断层上沿时,会显著增大其在地表投影附近的长周期地震动.能否合理地估计这些基本震源参数,是预测未来发震断层周围地震动场的关键.  相似文献   

4.
基于分解方法的脉冲型地震动非弹性反应谱分析   总被引:1,自引:1,他引:0       下载免费PDF全文
本文旨在分析脉冲型地震动中不同频率的地震动分量对于原始地震动幅值及其非弹性反应谱的影响.首先以近期12次大地震的53条典型脉冲型地震动为数据基础,基于多尺度分解方法获取脉冲型地震动中的高频分量和低频分量.为与传统方法对比,本文获取了能够表征地震动脉冲特性的卓越分量及滤除卓越分量的剩余分量.然后对比分析原始地震动和4种地震动分量的幅值特征和非弹性反应谱的特性,以讨论地震动分量对原始地震动幅值参数及其非弹性反应谱的影响.最后结合简谐地震动模型和地震动分量的性质,讨论脉冲型地震动非弹性反应谱诸多特征的产生原因.分析发现,低频分量不仅是控制脉冲型地震动速度和位移幅值的主要因素,其对原始地震动的加速度幅值也具有不可忽略的影响.低频分量也是导致脉冲型地震动非弹性位移比谱偏大以及强度折减系数谱偏小的直接原因,从而造成结构在脉冲型地震动作用下需要具有更大的非弹性位移以及更高的强度需求.  相似文献   

5.
Damage to building structures due to underground blast‐induced ground motions is a primary concern in the corresponding determination of the safe inhabited building distance (IBD). Because of the high‐frequency nature of this category of ground motions and especially the presence of significant vertical component, the characteristics of structural response and damage differ from those under seismic type low‐frequency ground motions. This paper presents a numerical investigation aimed at evaluating reinforced concrete (RC) structure damage generated by underground blast‐induced ground excitation. In the numerical model, two damage indices are proposed to model reinforced concrete failure. A fracture indicator is defined to track the cracking status of concrete from micro‐ to macrolevel; the development of a plastic hinge due to reinforcement yielding is monitored by a plastic indicator; while the global damage of the entire structure is correlated to structural stiffness degradation represented by its natural frequency reduction. The proposed damage indices are calibrated by a shaking table test on a 1: 5‐scale frame model. They are then applied to analyse the structural damage to typical low‐ to high‐rise RC frames under blast‐induced ground motions. Results demonstrate a distinctive pattern of structural damage and it is shown that the conventional damage assessment methods adopted in seismic analysis are not applicable here. It is also found that the existing code regulation on allowable peak particle velocity of blast‐induced ground motions concerning major structural damage is very conservative for modern RC structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete(r.c.)spatial frames,because only far-fault ground motions are considered in the seismic codes.Strong near-fault earthquakes are characterized by long-duration(horizontal)pulses and high values of the ratio α_(PGA)of the peak value of the vertical acceleration,PGA_V,to the analogous value of the horizontal acceleration,PGA_H,which can become critical for girders and columns.In this work,six- and twelve-storey r.c.spatial frames are designed according to the provisions of the Italian seismic code,considering the horizontal seismic loads acting(besides the gravity loads)alone or in combination with the vertical ones.The nonlinear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like iterative procedure.A lumped plasticity model based on the Haar-Karman principle is adopted to model the inelastic behaviour of the frame members.For the numerical investigation,five near-fault ground motions with high values of the acceleration ratio α_(PGA) are considered.Moreover,following recent seismological studies,which allow the extraction of the largest(horizontal) pulse from a near-fault ground motion,five pulse-type(horizontal)ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted.The results of the nonlinear dynamic analysis carried out on the test structures highlighted that horizontal and vertical components of near-fault ground motions may require additional consideration in the seismic codes.  相似文献   

7.
The influence of vertical ground motions on the seismic response of highway bridges is not very well understood. Recent studies suggest that vertical ground motions can substantially increase force and moment demands on bridge columns and girders and cannot be overlooked in seismic design of bridge structures. For an evaluation of vertical ground motion effects on the response of single‐bent two‐span highway bridges, a systematic study combining the critical engineering demand parameters (EDPs) and ground motion intensity measures (IMs) is required. Results of a parametric study examining a range of highway bridge configurations subjected to selected sets of horizontal and vertical ground motions are used to determine the structural parameters that are significantly amplified by the vertical excitations. The amplification in these parameters is modeled using simple equations that are functions of horizontal and vertical spectral accelerations at the corresponding horizontal and vertical fundamental periods of the bridge. This paper describes the derivation of seismic demand models developed for typical highway overcrossings by incorporating critical EDPs and combined effects of horizontal and vertical ground motion IMs depending on the type of the parameter and the period of the structure. These models may be used individually as risk‐based design tools to determine the probability of exceeding the critical levels of EDP for pre‐determined levels of ground shaking or may be included explicitly in probabilistic seismic risk assessments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
本文首先考察了地震动加速度时程在时域和频域上的非平稳性,通过实例分析说明地震动加速度时程 的非平稳性不能由相位谱的概率分布唯一决定,进而阐明了相位差谱是影响地震动非平稳的决定性因素。经 统计检验确定了脉动相位差的概率分布模型,利用相位差谱的数字特征与地震特性参数之间的统计关系,给 出了基于相位差谱的地震动时程生成方法。最后,通过对计算实例的分析,证实了此方法能够反映并模拟实 际地震动的时─频非平稳性。  相似文献   

9.
10.
The effect of seawater on vertical ground motions is studied via a theoretical method and then actual offshore ground motion records are analyzed using a statistical method. A theoretical analysis of the effect of seawater on incident plane P and SV waves at ocean bottom indicate that on one hand, the affected frequency range of vertical ground motions is prominent due to P wave resonance in the water layer if the impedance ratio between the seawater and the underlying medium is large, but it is greatly suppressed if the impedance ratio is small; on the other hand, for the ocean bottom interface model selected herein, vertical ground motions consisting of mostly P waves are more easily affected by seawater than those dominated by SV waves. The statistical analysis of engineering parameters of offshore ground motion records indicate that:(1) Under the infl uence of softer surface soil at the seafl oor, both horizontal and vertical spectral accelerations of offshore motions are exaggerated at long period components, which leads to the peak spectral values moving to a longer period.(2) The spectral ratios(V/H) of offshore ground motions are much smaller than onshore ground motions near the P wave resonant frequencies in the water layer; and as the period becomes larger, the effect of seawater becomes smaller, which leads to a similar V/H at intermediate periods(near 2 s). These results are consistent with the conclusions of Boore and Smith(1999), but the V/H of offshore motion may be smaller than the onshore ground motions at longer periods(more than 5 s).  相似文献   

11.
This paper presents a new way of selecting real input ground motions for seismic design and analysis of structures based on a comprehensive method for estimating the damage potential of ground motions, which takes into consideration of various ground motion parameters and structural seismic damage criteria in terms of strength, deformation, hysteretic energy and dual damage of Park & Ang damage index. The proposed comprehensive method fully involves the effects of the intensity, frequency content and duration of ground motions and the dynamic characteristics of structures. Then, the concept of the most unfavourable real seismic design ground motion is introduced. Based on the concept, the most unfavourable real seismic design ground motions for rock, stiff soil, medium soil and soft soil site conditions are selected in terms of three typical period ranges of structures. The selected real strong motion records are suitable for seismic analysis of important structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake, as they can cause the greatest damage to structures and thereby result in the highest damage potential from an extended real ground motion database for a given site. In addition, this paper also presents the real input design ground motions with medium damage potential, which can be used for the seismic analysis of structures located at the area with low and moderate seismicity. The most unfavourable real seismic design ground motions are verified by analysing the seismic response of structures. It is concluded that the most unfavourable real seismic design ground motion approach can select the real ground motions that can result in the highest damage potential for a given structure and site condition, and the real ground motions can be mainly used for structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
用经验格林函数法和随机方法模拟卢龙地震的比较   总被引:1,自引:1,他引:0  
在介绍用经验格林函数方法和随机方法模拟地震动的基础上,分别用这两种方法模拟了卢龙5.7级地震。模拟结果表明,用经验格林函数方法模拟地震动的结果与地震记录符合得很好。用随机方法模拟地震动在高频部分与地震动记录符合得比较好,而在中、低频部分符合得不太好。两种方法比较,经验格林函数方法模拟的结果更符合实际记录。但随机方法具有计算简单、无需小震记录的优点,因此发展随机的方法是有意义的。随机方法中中、低频部分不太符合的原因是随机方法中的很多经验关系是在美国大陆得到的。因此建议加强对中国大陆经验关系的研究,并把中国大陆的经验关系加入到随机方法中,使随机的方法成为中国大陆普适的模拟地震动的方法。  相似文献   

13.
陈波  温增平 《地震工程学报》2018,40(6):1295-1305
确定地震动输入样本容量是开展结构动力地震反应分析的重要环节,目前国内外关于地震动输入样本容量的讨论往往忽略或尚难以定量考虑结构地震反应估计的可靠度水平。以一实际钢筋混凝土框架结构为例,首先分析在大样本地震动作用下结构非线性地震反应的统计特征,研究估计结构地震反应时取样本最大值和平均值的差异,然后借助于假设检验分析结构地震反应的概率分布模型,给出基于一致可靠度的地震动样本容量确定方法,并对比分析单周期点、多周期点、谱值匹配调整地震动及人工合成地震动对样本容量需求的影响,为保证在小样本地震动输入下结构地震反应估计值满足给定可靠度和容许误差提供分析方法和判断依据。本文方法适应于定量确定不同结构类型和不同地震强度水平下的地震动样本容量需求,对建筑结构抗震性能评估及设计规范研究有一定意义。  相似文献   

14.
A method is established to identify critical earthquake ground motions that are to be used in physical testing or subsequent advanced computational studies to enable seismic performance to be assessed. The ground motion identification procedure consists of: choosing a suitable suite of ground motions and an appropriate intensity measure; selecting a computational tool and modelling the structure accordingly; performing Incremental Dynamic Analysis on a non‐linear model of the structure; interpreting these results into 50th (median) and 90th percentile performance bounds; and identifying the critical ground motions that are close to these defining probabilistic curves at ground motion intensities corresponding to the design basis earthquake and the maximum considered earthquake. An illustrative example of the procedure is given for a reinforced concrete highway bridge pier designed to New Zealand specifications. Pseudodynamic tests and finite element based time history analyses are performed on the pier using three earthquake ground motions identified as: (i) a Design Basis Earthquake (10% probability in 50 years) with 90 percent confidence of non‐exceedance; (ii) a Maximum Considered Event (2% probability in 50 years) representing a median response; and (iii) a Maximum Considered Event representing 90 percent confidence of non‐exceedance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
城市立交桥等线型结构无法彻底避免地裂缝活动的影响.基于地裂缝场地上盘对地震动的放大效应,考虑地裂缝与桥梁结构的交角,得到结构非线性动力时程分析时的非一致地震动输入的上盘放大系数.地裂缝两侧的沉降差使得连续桥内力显著变化,导致桥墩的轴力增大且在地震作用下桥墩顶部的水平力增大.针对西安地裂缝场地与地裂缝活动特征,以三跨城市...  相似文献   

16.
In this paper, a comprehensive investigation of the effect of spatially varying earthquake ground motions on the stochastic response of bridges isolated with friction pendulum systems is performed. The spatially varying earthquake ground motions are considered with incoherence, wave-passage and site-response effects. The importance of the site-response effect, which arises from the difference in the local soil conditions at different support points of the isolated bridge, is investigated particularly. Mean of maximum and variance response values obtained from the spatially varying earthquake ground motions are compared with those of the specialised cases of the ground motion model. It is shown that site-response component of the spatially varying earthquake ground motion model has important effects on the stochastic response of the isolated bridges. Therefore, to be more realistic in calculating the isolated bridge responses, the spatially varying earthquake ground motions should be incorporated in the analysis.  相似文献   

17.
The orientations of ground motions are paramount when the pulse‐like motions and their unfavorable seismic responses are considered. This paper addresses the stochastic modeling and synthesizing of near‐fault impulsive ground motions with forward directivity effect taking the orientation of the strongest pulses into account. First, a statistical parametric analysis of velocity time histories in the orientation of the strongest pulse with a specified magnitude and various fault distances is performed. A new stochastic model is established consisting of a velocity pulse model with random parameters and a stochastic approach to synthesize high‐frequency velocity time history. The high‐frequency velocity history is achieved by integrating a stochastic high‐frequency accelerogram, which is generated via the modified K‐T spectrum of residual acceleration histories and then modulated by the specific envelope function. Next, the associated parameters of pulse model, envelope function, and power spectral density are estimated by the least‐square fitting. Some chosen parameters in the stochastic model of near‐fault motions based on correlation analysis are regarded as random variables, which are validated to follow the normal or lognormal distribution. Moreover, the number theoretical method is suggested to select efficiently representative points, for generating artificial near‐fault impulsive ground motions with the feature of the strongest pulse, which can be used to the seismic response and reliability analysis of critical structures conveniently. Finally, the simulated ground motions demonstrate that the synthetic ground motions generated by the proposed stochastic model can represent the impulsive characteristic of near‐fault ground motions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
IntroductionEarthquakedamagesurveyandresearchresultshavedemonstratedthatspatialdistributiondifferenceofgroundmotionisoneoftheimportantreasonswhichcausedlongstructure(eglongspanbridge,undergroundpipe)destroy.Thathowtoprovideareasonableinputofgroundmotionfieldforaseismicdesignoflongstructureisaurgentprobleminearthquakeengineeringfield.Atpresent,themethodtostudyspatialvariationofgroundmotionsisadoptingstatisticanalysisbasedondensearrayrecordssuchasSMART-1array,etc,togetcoherencyfunctionofground…  相似文献   

19.
基于运动学震源模型,进行了不同震源参数情形下强地面震动数值模拟.结果表明,不同的破裂过程会产生差别甚大的强地面运动分布,一次确定性震源参数的模拟结果不能作为活动断层地震危害性评价的指标,只有通过大量三维地震动场模拟计算,给出地面震动评估的统计结果,才是比较合理的发展方向.由于一次三维地震动场计算耗时很大,因此解决问题的关键是如何考虑合理的震源参数.  相似文献   

20.
为研究近断层地震作用下框排架结构破坏的可能性,以某钢筋混凝土框排架结构为原型建立有限元非线性分析模型,选取16条近断层地震波及8条远场地震波,采用增量动力分析方法绘制易损性曲线.结果表明:对于远场地震,8度多遇地震及基本地震时,结构正常使用、基本使用、修复后使用、生命安全及防止倒塌五个极限状态均未超越,满足"小震不坏,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号