共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
第二代小波变换及其在地震信号去噪中的应用 总被引:12,自引:0,他引:12
本文讨论了第二代小波变换的基本原理和变换过程,并将第二代小波变换引入到地震资料去噪处理中,基于提升法的小波变换是一种柔性的小波构造方法,它使用线性、非线性或空间变化的预测和更新算子,并能确保变换的可逆性。通过对模拟数据和实际资料的处理,证明了的它对地震信号去噪具有很好的效果。离散信号的小波去噪可分为三步:小波分解,系数缩减(切除噪声部分),信号重建。目前常用的小波去噪的方法有硬阈值法和软阈值法,这里采用软阈值法去噪。本文的提升变换采用的是Deslauriers-Dubuc(4,2)小波,基于以上变换方法,分别对含噪的模拟数据及实际地震数据进行3级可逆提升变换,对每一级上的细节信号按上述的软域值法进行处理,削减小波系数中的噪声部分,从而实现了信号去噪,结果证明去除随机噪声的效果是令人满意的。 相似文献
7.
小波模极大值去噪算法中将高频小波系数全部当做噪声处理, 忽略了高频小波系数中仍含有的有用信息, 从而导致了模极大值传播点错选现象以及计算出的噪声方差中仍含有用信息. 针对这些问题, 提出了小波熵与相关性相结合的小波模极大值去噪算法. 将高频小波系数进行相关处理, 确定有效信号的位置; 将最大尺度上的高频小波系数划分成若干个小区间, 计算各区间小波熵; 以小波熵最大区间的高频小波系数的平均值作为噪声方差, 根据Donoho提出的阈值公式计算最大尺度上的阈值; 经阈值比较得到的模极大值点位置与相关处理得到的有用信息的位置进行比较, 保留相同位置的模极大值, 剔除位置不同由噪声引起的模极大值点; 采用即兴(Adhoc)算法逐级搜索各尺度上的模极大值, 并用交替投影算法进行重构. 该算法实现了阈值的自适应选取, 并有效解决了去除错选模极大值传播点的问题. 将本算法和传统去噪方法用于仿真信号处理中, 经对比分析验证了本算法的有效性. 相似文献
8.
9.
10.
11.
12.
13.
14.
在宽角反射/折射地震测深数据处理中, 仍多用基于傅里叶变换的滤波方法和小波去噪方法。鉴于傅里叶方法对稳态信号很有效但对非稳态的地震信号效果不佳的状况以及小波不能同时具有正交性、紧支性、对称性, 本文给出了基于多小波的去噪方法, 多小波具有正交性、对称性、紧支性, 克服了传统小波的缺陷。编写了多小波去噪方法的人机交互软件。该软件可以方便快捷地显示宽角反射/折射地震记录截面, 进行多小波域的阈值去噪。实例计算结果表明, 本文所述方法和编写的软件有效且可行。 相似文献
15.
16.
17.
18.
19.
Seismic signal denoising is a key step in seismic data processing. Airgun signals are easy to be interfered with by noise when it travels a long distance due to the weak energy of active source signal of the airgun. Aiming to solve this problem, and considering that the conventional Curvelet transform threshold processing method does not use the seismic spectrum information, we independently process the Curvelet scale layer corresponding to valid data based on the characteristics of the Curvelet transform of multi-scale, multi-direction and capable of expressing the sparse seismic signals in order to fully excavate the information features. Combined with the Curvelet adaptive threshold denoising the algorithm, we apply the Curvelet transform to denoising seismic signals while retaining the weak information in the signal as much as possible. The simulation experiments show that the improved threshold denoising method based on Curvelet transform is superior to the frequency domain filtering, wavelet denoising and traditional Curvelet denoising method in detailed information extraction and signal denoising of low SNR signals. The calculation accuracy of the relative wave velocity variation of underground medium is improved. 相似文献