首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The electron paramagnetic resonance (EPR) of Gd3+ in MgF2 reveals that Gd3+ has two different environments in the lattice. One of them has D 2h symmetry, the EPR spectrum is characterized by a large zero field splitting [B 2 0 = 968.10?4 cm?1; B 2 2 = 357.10?4 cm?1] and the fourth order term of the spin Hamiltonian is axial; it is assumed that one Gd3+ substitutes two Mg2+. The other Gd3+ center has only monoclinic symmetry. From the analysis of the fourth order term of the spin Hamiltonian of the corresponding spectrum it is seen that one Gd3+ substitutes one Mg2+ and that this substitution produces a large local distortion of the lattice.  相似文献   

2.
A comparative study of blue and green beryl crystals (from the region of Governador Valadares, Minas Gerais, Brazil) using electron paramagnetic resonance (EPR) and optical absorption (OA) spectroscopy is reported. The EPR spectra show that Fe3+ in blue beryl occupies a substitutional Al3+ site and in green beryl is localized in the structural channels between two O6 planes. On the other hand the infrared spectra show that the alkali content in the blue beryl is mostly at substitutional and/or interstitial sites and in green beryl is mostly in the structural channels. The OA spectra show two types of Fe2+. Thermal treatments above 200° C in green beryl cause the reduction of Fe3+ into Fe2+ accompanied by a change of color to blue. The blue beryl color does not change on heating. The kinetics of the thermal conversion of Fe3+ into Fe2+ is composed of two first order processes; the first one has an activation energy ΔE 1=0.30 eV and the second one has an activation energy ΔE 2=0.46 eV.  相似文献   

3.
Natural blue and colorless rare-gem mineral specimens of euclase from Brazil are investigated by electron paramagnetic resonance (EPR). Angular dependences of Fe3+ EPR spectra in three mutually perpendicular crystal planes are analyzed revealing g and D tensors with significant low-symmetry effects, as for example, the high asymmetry parameter E/D = 0.28. Fourth-order degree Stevens parameters are also included in analysis. The anisotropy of both g and D tensors is consistent with Fe3+ substituting for Al3+ ions in strongly distorted AlO5(OH) octahedra in which the oxygen distances range from 1.85 to 1.98 Å. Fe3+ is not responsible for the blue color because colorless and blue euclase show nearly the same Fe3+ concentration as measured by EPR. However, total iron content in blue sample is much higher than in the colorless one suggesting that the existing model that Fe2+–Fe3+ intervalence charge transfer transition may explain the blue color of euclase.  相似文献   

4.
The electron paramagnetic resonance (EPR) spectra of Fe3+ in a well cristallized kaolinite from Decazeville in France are well resolved. It is shown that in this sample there are mainly two slightly different spectra, well separated at low temperature and characterized at -150° C by the constants B 2 0 = 0.112 cm?1, B 2 2 = 0.0688 cm?1 for one and B 2 0 = 0.116 cm?1, B 2 2 = 0.0766 cm?1 for the second. These two spectra arise from Fe3+ substituted for Al3+ at the two octahedral positions in equal amounts. The temperature dependence of EPR spectra was studied and was explained by a modification of the octahedral sites.  相似文献   

5.
Ferrous and ferric iron concentrations in feldspars with low total iron content (<0.32 wt% total Fe) were determined from optical and electron paramagnetic resonance (EPR) spectra to better than ±15 percent of the amount present. Optical spectra indicate that Fe2+ occupies two distorted M-sites in plagioclases of intermediate structural state. The linear dependence of the Fe2+/Fe total ratio on An content demonstrates that Fe2+ substitutes for Ca (not Na) so that the number of Ca-sites is a principal factor in iron partitioning in plagioclase. EPR powder spectra show that the number of sites for Fe3+ depends on structural state rather than on plagioclase chemistry. The observed linear correspondence of EPR double-integrated intensities with optical peak areas shows that all Fe3+ is tetrahedrally coordinated in both plagioclase and disordered potassium feldspar. Microcline perthites show, in addition to tetrahedral Fe3+, a signal due to axially coordinated ferric iron, which we associate with formation of hematite inclusions.  相似文献   

6.
57Fe Mössbauer spectra are presented for synthetic cation-deficient Fe2TiO4 and FeCr2O4 spinel particles (<1μm) at various temperatures. The spectra of ferrimagnetic cation-deficient Fe2TiO4 show characteristic features due to relaxation because of superparamagnetism and spin relaxation in the temperature range 5–294 K. At 5 K and 78 K, a superposition of at least two sextets is observed which appear to arise from Fe3+ onA-sites (Fe A 3+ andB-sites (Fe B 3+ ) of the spinal lattice with magnetic hyperfine fields at 5 K ofB hf ((Fe B 3+ )≈47.5 T andB hf (Fe B 3+ )≈51.0 T, respectively. Cation-deficient FeCr2O4 particles reveal at 78 K a fieldB hf (Fe3+)≈46.9 T and exhibit relaxation spectra as a consequence of superparamagnetism in the temperature range 80 K - ~300 K. At 294 K, quadrupole splitting Δ(Fe A 3+ )=0.92 mm/s and isomer shift δ(Fe A 3+ )=0.29 mm/s (relative to metallic Fe) are measured. For both compounds the magnetic hyperfine fieldsB hf are discussed in terms of supertransferred hyperfine fields involving vacancies and in the case of cation-deficient Fe2TiO4 also diamagnetic Ti4+ neighbours of the Fe ions.  相似文献   

7.
Absorption bands are determined in polarized optical spectra of vivianite Fe3(PO4)2·8H2O, recorded at room and low temperatures. These bands are caused by spin-allowed d-d transitions in structurally nonequivalent Fe A 2+ (~11000 cm-1 (γ-polarization) (and) ~12000 cm-1 (β-polarization)) (and) Fe B 2+ (~8400 cm-1 (γ, α-polarization) and ~11200 cm-1 (α-polarization)) ions. A charge transfer band (CTB) Fe B 2+ +Fe B 3+ →Fe B 2+ +Fe B 2+ (~15000 cm-1) also determined, has polarizing features giving evidence of a change in the Fe B 2+ -Fe B 3+ bond direction, when compared with Fe B 2+ -Fe B 2+ . Bands of exchange-coupled Fe3+-Fe3+ pairs (~19400, ~20400, ~21300 and ~21700 cm-1) which appear on oxidation of Fe2+ in paired Fe B octahedra are also characterized.  相似文献   

8.
The shock-metamorphosed quartz exhibits thermal luminescence (TL) with maxima at 365 nm, 470 nm and 610–680 nm. By electron paramagnetic resonance (EPR) analysis E1 type electron centers and hole centers have been found which originate from vacancies including those from the substitution of Al3+ and/or Fe3+, for Si4+. The EPR and TL spectra may be interpreted mainly in terms of vacancy type defects associated with dislocations in the crystal structure of quartz.  相似文献   

9.
Room temperature X-irradiation of some natural beryls produced several new absorption lines in the electron paramagnetic resonance (EPR) spectrum, a known series of optical absorption lines in the 500–700 nm range, and a shift of the absorption edge to lower energies. Several of the new EPR lines and part of the irradiation-induced shift of the absorption edge disappeared after a few days at room temperature, and were not examined in detail. However, three of the paramagnetic centres responsible for the new EPR lines were stable at room temperature and two of these have previously been identified as atomic hydrogen and the methyl radical, CH3. These species were stable to ~150 and ~450°C respectively. The third stable species, hitherto unreported, showed a single-line EPR spectrum of axial symmetry, with g∥=2.0051 and g⊥=2.0152. This spectrum was found to be intensity-correlated with the series of optical bands in the 500–700 nm range, after thermal bleaching at 175°C. The EPR and optical spectra are therefore assigned to the same species. It is argued that this species is the CO 3 ? molecular ion, located in the widest part of the structural channel and aligned with the plane of the molecule perpendicular to the c axis. The EPR spectrum is consistent with a 2 A2 ground state of a CO 3 ? molecule with trigonal symmetry, and this requires that the optical transition has a 2 A22 E′ character. Most of the features in the optical spectrum can be assigned to coupling of a totally symmetric mode of frequency ~1020 cm?1 onto a zero-phonon line at 14,490 cm?1 and a second weaker line at 16,020 cm?1. However, both of these two fundamental lines are structured, and the two components show strong temperature-dependent derivative-shaped magnetic circular dichroism (MCD). Furthermore, the overall sign of the MCD for the line at 16,020 cm?1 is opposite to that at 14,490 cm?1. The separation (~120 cm?1) of the two components of the 14,490 cm?1 line is much larger than that expected from spin-orbit interaction, and the origin of this splitting is not yet understood.  相似文献   

10.
The use of ultrasonically modulated electron resonance (UMER) to study S-state ions in substitutional sites of mineral single crystals is discussed. Mn2+ and Fe3+ in natural single crystals of tremolite are used as examples. Combined electron paramagnetic resonance (EPR) and UMER measurements establish almost certainly that Mn2+ enters predominantly into the distorted M4 sites occupied by Ca2+ in the ideal tremolite structure and only to a minor extent into the M1, M2 and M3 sites normally occupied by Mg2+. Fe3+ in tremolite gives rise to the well known high spin resonance with g eff?4.3 but there is considerable uncertainty as to the site of the impurity ion.  相似文献   

11.
Natural colored fluorites were studied by means of optical absorption and electron paramagnetic resonance (EPR). Complex centers involving rare-earth ions and/or oxygen give rise to the various colors observed. These include yttrium-associated F centers (blue), coexisting yttrium and cerium-associated F centers (yellowish-green), the (YO2) center (rose) and the O 3 ? molecule ion (yellow). Divalent rare-earth ions also contribute to the colorations, as for instance Sm3+ (green fluorites), or they are at the origin of strong fluorescence observed (Eu2+). Strong irradiation of the crystals with ionizing radiation leads to coagulation of color centers, and to precipitation of metallic calcium colloids. There is probably no simple relation connecting the coloration and the growth process of the crystal. Thermal stability studies, however, have allowed to partially classify the colors as being of primary or secondary origin.  相似文献   

12.
Lithian ferrian enstatite with Li2O = 1.39 wt% and Fe2O3 7.54 wt% was synthesised in the (MgO–Li2O–FeO–SiO2–H2O) system at P = 0.3 GPa, T = 1,000°C, fO2 = +2 Pbca, and a = 18.2113(7), b = 8.8172(3), c = 5.2050(2) Å, V = 835.79(9) Å3. The composition of the orthopyroxene was determined combining EMP, LA-ICP-MS and single-crystal XRD analysis, yielding the unit formula M2(Mg0.59Fe 0.21 2+ Li0.20) M1(Mg0.74Fe 0.20 3+ Fe 0.06 2+ ) Si2O6. Structure refinements done on crystals obtained from synthesis runs with variable Mg-content show that the orthopyroxene is virtually constant in composition and hence in structure, whereas coexisting clinopyroxenes occurring both as individual grains or thin rims around the orthopyroxene crystals have variable amounts of Li, Fe3+ and Mg contents. Structure refinement shows that Li is ordered at the M2 site and Fe3+ is ordered at the M1 site of the orthopyroxene, whereas Mg (and Fe2+) distributes over both octahedral sites. The main geometrical variations observed for Li-rich samples are actually due to the presence of Fe3+, which affects significantly the geometry of the M1 site; changes in the geometry of the M2 site due to the lower coordination of Li are likely to affect both the degree and the kinetics of the non-convergent Fe2+-Mg ordering process in octahedral sites.  相似文献   

13.
Susceptibility, magnetisation and Mössbauer measurements are reported for a representative selection of 2:1 layer phyllosilicates. Eight samples from the mica, vermiculite and smectite groups include examples diluted in iron which are paramagnetic at all temperatures, as well as iron-rich silicates which order magnetically below 10 K. Anisotropic susceptibility of crystals of muscovite, biotite and vermiculite is quantitatively explained with a model where the Fe2+ ions lie in sites of effective trigonal symmetry, the trigonal axis lying normal to the sheets. The ferrous ground state is an orbital singlet. Ferric iron gives an isotropic contribution to the susceptibility. Fe2+-Fe2+ exchange interactions are ferromagnetic with y ~ 2 K, whereas Fe3+-Fe3+ coupling is antiferromagnetic in the purely ferric minerals. A positive paramagnetic Curie temperature for glauconite may be attributable to Fe2+ → Fe3+ charge transfer. Magnetic order was found to set in inhomogeneously for glauconite at 1–7 K. One biotite sample showed an antiferromagnetic transition at T N =7 K marked by a well-defined susceptibility maximum. Its magnetic structure, consisting of ferromagnetic sheets with moments in their planes coupled antiferromagnetically by other, weak interactions, resembles that found earlier for the 1:1 mineral greenalite.  相似文献   

14.
Crystals of the olivine minerals, tephroite (Mn2SiO4) and fayalite (Fe2SiO4) containing manganese(II) and iron (II and trace of III), respectively, were synthesized. Glasses were prepared from these crystalline materials by a splat-quench technique. Measurement of electron paramagnetic resonance (EPR) of all these powdered samples at room temperature show that the g-factors of Mn2+ in both glassy and crystalline environments (geff = 2.004) are the same, although the EPR linewidths (for glass, ΔHpp = 200 G; for crystals ΔHpp = 287 G) suggest less clustering of paramagnetic Mn2+ ions in the glass. Mn2+ probably occupies a distorted octahedral site in the tephroite crystal structure, although a four-fold coordination is suggested from other spectroscopic investigation on this glass. The EPR parameters of Fe3+ in synthetic fayalite glass (geff = 2.01 and 6.00; ΔHpp=150 and 1375 G, respectively, for the high and low field resonances) and powdered crystals (geff = 3.31 and ΔHpp = 900 G) indicated that Fe3+ ion in the crystals, is probably located in a distorted tetragonal site M2 and an axial environment has been proposed in the glassy system.  相似文献   

15.
Electron paramagnetic resonance (EPR) measurements of natural anhydrite CaSO4, celestite SrSO4 and barite BaSO4 have revealed the presence of PO 3 2? and SO 3 ? radicals. Hyperfine structure from33S has been detected and measured for the first time. Low-symmetry effects, which are manifested in noncoincidence of g and hyperfine axes, were observed for SO 3 ? . The dynamics of one of the two SO 3 ? types in anhydrite has been investigated. Variations of spin Hamiltonian parameters with temperature have been attributed to thermally induced jumps between the two magnetically inequivalent sites of this center.  相似文献   

16.
Only one part of the EPR lines of a kaolinite spectrum of structural Fe3+ is clearly observable because of the overlapping of other lines with other spectra. For this reason, to determine the structural Fe3+ concentration we used the line near g=9, although it is not intense. A standard is needed: powders of ZnS containing given concentrations of Mn2+ (isoelectronic to Fe3+) were used for this purpose. Using the simulations of the EPR spectra, the concentration (number of Fe3+ per Al3+) is determined; it is in the range 10?5 to 10?4 for our samples. Considering that the crystal-field disorder around Fe3+ is responsible for line broadening, we looked for a possible effect of the broadening on the intensity of the EPR spectra. This effect is taken as a distribution of the parameter λ=B22/B20. The influence of the parameter λ and its statistical distribution on the position, shape, width and intensity of the EPR line has been calculated using simulation procedures. The correction due to the disorder on the calculated concentration is of the same order of magnitude as the precision measurement. This method can be applied for other kaolinites by comparing the area of their g=9 lines with known ones.  相似文献   

17.
Electron paramagnetic resonance (EPR) measurements on dolomites from 9 different localities revealed contents of Mn2+ on two axial sites in all of them. The center with largerzero-field splitting (ZFS) was always present in much higher concentrations, except for a sample from Oberdorf it amounted to 95 percent or more of the total. This dolomite was the only one with a considerable content of Fe3+ on one axial site, almost certainly substituting for Mg2+. With X-ray irradiation the concentration of Fe3+ increased by about 30 percent showing that at least some of the divalent iron also substitutes for Mg. The ZFSs for Fe3+ and Mn2+ with larger ZFS increase with decreasing temperature in the same manner. The previous assignment of this Mn2+ to Mg sites is thus confirmed. An almost regular increase of the trigonal distortions at the divalent ions in different carbonates with increasing ionic radius is indicated by their crystal structure data. The very small ZFS for Mn2+ on Ca sites in dolomite must thus result from a strong local relaxation in the direction of a more regular octahedral arrangement. It is difficult to explain the different distribution ratios of Mn2+ on Ca and Mg sites with differences in growth and/or annealing temperatures alone. Thus different supply of Mg2+ and Ca2+ in the growth solutions may also contribute.  相似文献   

18.
Natural barbosalite Fe2+Fe3+ 2 (PO4)2(OH)2 from Bull Moose Mine, South Dakota, U.S.A., having ideal composition, was investigated with single crystal X-ray diffraction techniques, Mössbauer spectroscopy and SQUID magnetometry to redetermine crystal structure, valence state of iron and evolution of 57Fe Mössbauer parameter and to propose the magnetic structure at low temperatures. At 298?K the title compound is monoclinic, space group P21/n, a o ?= 7.3294(16)?Å, b o ?=?7.4921(17)?Å, c o ?=?7.4148 (18)?Å, β?=?118.43(3)°, Z?=?2. No crystallographic phase transition was observed between 298?K and 110?K. Slight discontinuities in the temperature dependence of lattice parameters and bond angles in the range between 150?K and 180?K are ascribed to the magnetic phase transition of the title compound. At 298?K the Mössbauer spectrum of the barbosalite shows two paramagnetic components, typical for Fe2+ and Fe3+ in octahedral coordination; the area ratio Fe3+/Fe2+ is exactly two, corresponding to the ideal value. Both the Fe2+ and the Fe3+ sublattice order magnetically below 173?K and exhibit a fully developed magnetic pattern at 160?K. The electric field gradient at the Fe2+ site is distorted from axial symmetry with the direction of the magnetic field nearly perpendicular to Vzz, the main component of the electric field gradient. The temperature dependent magnetic susceptibility exhibits strong antiferromagnetic ordering within the corner-sharing Fe3+-chains parallel to [101], whereas ferromagnetic coupling is assumed within the face-sharing [1?1?0] and [?1?1?0] Fe3+-Fe2+-Fe3+ trimer, connecting the Fe3+-chains to each other.  相似文献   

19.
 Geological sedimentary dolomite samples from the Superior Proterozoic are studied using electron paramagnetic resonance (EPR) spectroscopy. The complex spectra in the g=2.0 region is composed of Mn2+ lines and signals due to crystallization and radiation-induced defects. Measurements in microwave frequencies of 9.5 GHz (X-band) and 35 GHz (Q-band), and thermal and/or radiation treatments allowed identification of seven paramagnetic radicals in the g=2.0 region: (1) isotropic organic radical; (2) axial SO2 ; (3) axial PO2 0 or PO2 2−; (4) isotropic CO2 ; (5) axial CO2 ; (6) axial CO3 3−; (7) isotropic unknown line. The use of these paramagnetic centres as indicators of geological events is discussed. Received: 18 March 2002 / Accepted: 3 October 2002  相似文献   

20.
Manganoan lipscombite (Fe x /2+ , M y /2+ ) Fe 3?(x +y)/3+ [OH)3?(x+y)(PO4)2] was synthesized from pure chemicals. From the study of the Mn2+/Fe2+ atomic ratio by Mössbauer spectra, solubility, and electrokinetic properties, it was found that the crystal structure of lipscombite is not changed substantially by the manganese substitution. The unit cell parameters were determined from Guinier-Hägg X-ray diffraction patterns, which are identical for both synthetic ferrous-ferric and manganoan lipscombite. The two compounds crystallize in the tetragonal system with a=5.3020±0.0005 Å and c=12.8800±0.0005 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号