首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Wadi Bidah Mineral District of Saudi Arabia contains more than 16 small outcropping stratabound volcanogenic Cu–Zn–(Pb) ± Au-bearing massive sulphide deposits and associated zones of hydrothermal alteration. Here, we use major and trace element analyses of massive sulphides, gossans, and hydrothermally altered and least altered metamorphosed host rock (schist) from two of the deposits (Shaib al Tair and Rabathan) to interpret the geochemical and petrological evolution of the host rocks and gossanization of the mineralization. Tectonic interpretations utilize high-field-strength elements, including the rare earth elements (REE), because they are relatively immobile during hydrothermal alteration, low-grade metamorphism, and supergene weathering and therefore are useful in constraining the source, composition, and physicochemical parameters of the primary igneous rocks, the mineralizing hydrothermal fluid and subsequent supergene weathering processes. Positive Eu anomalies in some of the massive sulphide samples are consistent with a high temperature (>250°C) hydrothermal origin, consistent with the Cu contents (up to 2 wt.%) of the massive sulphides. The REE profiles of the gossans are topologically similar to nearby hydrothermally altered felsic schists (light REE (LREE)-enriched to concave-up REE profiles, with or without positive Eu anomalies) suggesting that the REE experienced little fractionation during metamorphism or supergene weathering. Hydrothermally altered rocks (now schists) close to the massive sulphide deposits have high base metals and Ba contents and have concave-up REE patterns, in contrast to the least altered host rocks, consistent with greater mobility of the middle REE compared to the light and heavy REE during hydrothermal alteration. The gossans are interpreted to represent relict massive sulphides that have undergone supergene weathering; ‘chert’ beds within these massive sulphide deposits may be leached wall-rock gossans that experienced silicification and Pb–Ba–Fe enrichment from acidic groundwaters generated during gossan formation.  相似文献   

2.
DH and 18O16O ratios have been measured for whole-rock samples and mineral separates from the mafic and ultramatic rocks of the Cambro-Ordovician Highland Border Suite. The H- and O- isotopic compositions of these rocks record individual stages in a relatively complex 500 Myr old hydrothermal/metamorphic history. Lizardite serpentinites (δD ~ ? 105‰; δ18O ~ + 6.2‰) record a premetamorphic history and indicate that parent harzburgites, dunites, and pyroxenites were serpentinized through low-temperature interaction with meteoric waters during cooling. The other rocks of the Highland Border Suite record subsequent interaction with metamorphic fluids. Amphibolite facies hornblende schists were produced through thrust-related (dynamothermal) metamorphism of spilitic pillow lavas. During dehydration, D-enriched fluids were driven off from the spilites thus leaving the hornblende schists to equilibrate with a relatively D-depleted internal fluid reservoir (δD ~ ? 45‰). The expelled D-enriched fluids may have mixed with more typical Dalradian metamorphic waters which then exchanged with the remaining mafic rocks and lizardite serpentinites during greenschist facies regional metamorphism to produce antigorite serpentinites (δD ~ ? 62‰; δ18O ~ + 8‰) and greenschist metaspilites (δD ~ ? 57‰; δ18O ~ + 7.3‰) with similar H- and O-isotopic compositions. Serpentinites which have been only partially metamorphosed show intermediate H-isotopic compositions between that of metamorphic antigorite (δD ~ ? 62‰) and non-metamorphic lizardite δD ~ ? 105‰) end members.  相似文献   

3.
Recently, a huge ultrahigh‐pressure (UHP) metamorphic belt of oceanic‐type has been recognized in southwestern (SW) Tianshan, China. Petrological studies show that the UHP metamorphic rocks of SW Tianshan orogenic belt include mafic eclogites and blueschists, felsic garnet phengite schists, marbles and serpentinites. The well‐preserved coesite inclusions were commonly found in eclogites, garnet phengite schists and marbles. Ti‐clinohumite and Ti‐chondrodite have been identified in UHP metamorphic serpentinites. Based on the PT pseudosection calculation and combined U‐Pb zircon dating, the P‐T‐t path has been outlined as four stages: cold subduction to UHP conditions before ~320 Ma whose peak ultrahigh pressure is about 30 kbar at 500oC, heating decompression from the Pmax to the Tmax stage before 305 Ma whose peak temperature is about 600oC at 22kbar, then the early cold exhumation from amphibolite eclogite facies to epidote‐amphibolite facies metamorphism characterized by ITD PT path before 220 Ma and the last tectonic exhumation from epidote amphibolite facies to greenschist facies metamorphism. Combining with the syn‐subduction arc‐like 333‐326 Ma granitic rocks and 280‐260 Ma S‐type granites in the coeval low‐pressure and high‐temperature (LP‐HT) metamorphic belt, the tectonic evolution of Tianshan UHP metamorphic belt during late Cambrian to early Triassic has been proposed.  相似文献   

4.
The metapelitic schists of the Golpayegan region can be divided into four groups based on their mineral assemblages: (1) garnet-chloritoid schists, (2) garnet schists, (3) garnet-staurolite schists, and (4) staurolite-kyanite schists. Paleozoic pelagic shales experienced progressive metamorphism and polymetamorphism from greenschist to amphibolite facies along the kyanite geotherm. Mylonitic granites are concentrated in the central part of the region more than in other areas, and formed during the dynamic metamorphic phase by activity on the NW-SE striking Varzaneh and Sfajerd faults. The presence of chloritoid in the metapelites demonstrates low-grade metamorphism in the greenschist facies. The textural and chemical zoning of garnets shows three stages of growth and syntectonic formation. With ongoing metamorphism, staurolite appeared, and the rocks reached amphibolite facies, but the degree of metamorphism did not increase past the kyanite zone. Thus, metamorphism of the pelitic sediments occurred at greenschist to lower amphibolite facies. Thermodynamic studies of these rocks indicate that the metapelites in the north Golpayegan region formed at 511?C618°C and 0.24?C4.1 kbar.  相似文献   

5.
In the area of the magnesite deposits of Eugui (Navarra, Spain) studies on illite crystallinity, the degree of graphitization of carbonaceous material, measurements of vitrinite reflectivity, and fluid inclusions have been carried out on dolomites, magnesites, schists, and carbonaceous matter. These rocks have suffered metamorphism of very low to low grade.The magnesite appears generally concordant with the Namurian dolomitic rocks showing a typically banded structure. The genetic model proposed involves an early Mg concentration during sedimentation (syndiagenetic dolomitization), lateral circulation of saline solutions, and formation of diagenetically crystallized rhythmites (DCR), and final compaction. The formation of magnesite took place under the conditions of low pressure and temperatures close to 150°C, very similar to all strata-bound ore deposits. Deformation and regional metamorphism only caused minor removal, recrystallization, and transformation of the clay minerals and carbonaceous matter.  相似文献   

6.
李强  温珍河  侯方辉  朱晓青  孙军 《地质通报》2016,35(11):1784-1796
通过矿物化学、全岩主微量元素和铂族元素研究,结合锆石年代学判断苏鲁造山带仰口蛇纹岩的原岩成因和演化历史。蛇纹岩中尖晶石经历了多阶段变质;全岩主量元素具有超基性堆晶岩的性质,代表玄武质组分含量的Ca O+Al_2O_3变化于2.0%~5.83%之间;部分不相容微量元素富集;铂族元素中Ir的含量低(0.64×10~(-9)~1.43×10~(-9)),Pd/Ir值高(1.05~3.42)。蛇纹岩中的锆石一部分为新形成的变质成因锆石(年龄平均为230±3Ma),与高压-超高压变质的年代吻合;另一部分可能是在三叠纪变质阶段古老锆石重结晶形成的。由此认为,仰口蛇纹岩的原岩可能为超基性堆晶岩,三叠纪时随着俯冲的扬子板块发生变质,在发生蛇纹石化作用之前经历了熔体/流体的改造。  相似文献   

7.
Chloritoid-sericite schists from the chlorite zone of the regionally metamorphosed Singhbhum anticlinorium in Eastern India are described with regard to the formation of chloritoid during prograde metamorphism — the main stage of its crystallisation was coeval with the movement. The movements accompanying metamorphism have had a marked effect on the lattice orientation of this mineral, so that its crystallographic axis is roughly parallel to the regional fold axis. In one case chloritoid appears to be in stable association with hematite, i.e. it persists beyond the magnetite-hematite equilibrium, which is probably a local effect due to a slight rise in oxygen partial pressure in the last stages of metamorphism. The occurrence of phengitic mica in these schists is suggestive of high total pressures and high water pressures.  相似文献   

8.
Results of U-Pb (SHRIMP II) and Rb-Sr dating of sillimanite schists in southwestern Transbaikalia are presented, which testify to high-temperature metamorphism in the Late Mesozoic. The metamorphism might have been related to the formation of metamorphic cores or tectonoplutonic activity accompanied by the formation of rift structures in Transbaikalia and Mongolia.  相似文献   

9.
Serpentinites in the Eastern Desert (ED) of Egypt represent integral components of the ophiolites. Metamorphic textures of the serpentinites preserve the complex mineralogical evolution from primary peridotite through metamorphism, and late-stage hydrothermal alteration. Two textural types are distinguished in the olivines of the present serpentinized peridotites, namely (a) highly-strained olivine grains with kink bands, as in the deformed mantle tectonites from ophiolites, and (b) non-strained grains. The latter may represent recrystallized crystals during later thermal metamorphic events due to the intrusion of granite. On the basis of X-ray diffraction analysis, antigorite is the main serpentine minerals with lesser chrysotile and lizardite which indicates that serpentinites were formed under prograde metamorphism. Relict primary minerals of the serpentinites are Cr-spinel, olivine and pyroxene. Chrome spinel relicts have high Cr# (0.60–0.80), whereas primary olivines are Mg-rich nature (Fo = 89–96). Geochemical compositions of serpentinites indicate that they formed not at mid-ocean ridges but at spreading centers associated with subduction zones and this could have happened in a supra-subduction zone either in the fore-arc or back-arc environments. Mineral compositions of primary chrome spinels and olivines are similar to those of modern fore-arcs. High Cr# in the relict chrome spinels and Fo in the primary olivines of serpentinites indicate that they are residual after extensive partial melting and originated by sea-floor spreading during subduction initiation.  相似文献   

10.
Paleozoic banded-iron-formation (BIF) deposits occur within the Nahuelbuta-Queule Complex (south central Chile) which hosts the following stratigraphic units: Cabo Tirúa (green schists, mica schists, and metacherts), Lleu-Lleu (iron-bearing metacherts, mica schists, and serpentinites), and Colcura (metagraywackes and metapelites). The lithological, structural, and geochemical characteristics of the Lleu-Lleu and Cabo Tirúa units indicate that they were part of a tectonic mélange accreted to the South American paleocontinent during the Paleozoic. BIF ores are restricted to the Lleu-Lleu metacherts and are characterized by oxide-silicate-sulfide BIF facies. The iron-bearing metacherts present mineralogical and geochemical characteristics close to the volcanogenic BIF types and are thought to have been formed by submarine volcanic exhalative activity.  相似文献   

11.
In the central part of the Fennoscandian Shield, the Talvivaara Ni–Zn–Cu–Co deposit, hosted by Palaeoproterozoic metamorphosed black schists, contains low uranium concentrations ranging from 10 to 30 ppm. The Talvivaara black schists were deposited 2.0–1.9 Ga ago and underwent subsequent metamorphism during the 1.9–1.79 Ga Svecofennian orogeny. Anhedral uraninite crystals rimmed by bitumen constitute the main host of uranium. U–Pb secondary ion mass spectrometry dating indicates that uraninite crystals were formed between 1,878?±?17 and 1,871?±?43 Ma, during peak metamorphism. Rare earth element patterns and high Th content (average 6.38 wt%) in disseminated uraninite crystals indicate that U was concentrated during high temperature metamorphism (>400 °C). The formation of bitumen rims around uraninite may be explained by two distinct scenarios: (a) a transport of U coincident with the migration of hydrocarbons or (b) post-metamorphic formation of bitumen rims, through radiolytic polymerization of gaseous hydrocarbons at the contact with uraninite.  相似文献   

12.
The metapelitic schists of Jandagh or simply Jandagh metapelites can be divided into four groups based on mineral assemblages: (1) quartz-muscovite schists, (2) quartz-muscovite-biotite schists, (3) garnet-muscovite-chlorite schists, and (4) garnet-muscovite-staurolite schists. The Jandagh garnet-muscovite-chlorite schists show the first appearance of garnets. These garnets contain 58–76% almandine, 1–18% spessartine, and 8–20% grossular. Microprobe analysing across the garnets demonstrates an increase in Mg# from core to rim. This is a feature of the prograde metamorphism of metapelites. Well-preserved garnet growth zoning is a sign that metapelites were rapidly cooled and later metamorphic phases had no effect here. The appearance of staurolite in garnet-muscovite-chlorite schists signifies a beginning of the amphibolite facies. The absence of zoning in staurolite suggests that its formation and growth during prograde metamorphism occurred at a widely spaced isograde. Thermobarometric investigations show that the Jandagh metapelites were formed within a temperature range of 400–670°C and pressures of 2.0–6.5 kbar. These results are in agreement with the mineral paragenetic evidence and show the development of greenschist and amphibolite facies in the area studied.  相似文献   

13.
Bulk composition and specific reaction history among common silicate minerals have been proposed as controls on monazite growth in metapelitic rocks during amphibolite facies metamorphism. It has also been implied that monazite that formed during greenschist facies metamorphism may be preserved unchanged under upper amphibolite facies conditions. If correct, this would make the interpretation of monazite ages in polymetamorphic rocks exceedingly difficult, because isotopic dates could vary significantly in rocks that have experienced identical metamorphic conditions but differ only slightly in whole-rock composition. Low-Ca pelitic schists from the Mount Barren Group in southwestern Australia display a range of whole-rock compositions in AFM space and different peak mineral assemblages resulting from amphibolite facies metamorphism (∼8 kb, 650 °C). In this study, we test whether bulk composition controls the formation of monazite through geochronology and textural evidence linking monazite growth with deformation and peak metamorphism. X-ray element mapping of monazite from the metapelitic rocks reveals concentric zoning in many grains with compositionally distinct cores and rims. In situ SHRIMP U-Pb geochronology of monazite yields two 207Pb/206Pb age populations. The cores, and texturally early monazite, give an age of 1209 ± 10 Ma, interpreted to record prograde metamorphism, whereas the rims and “late” monazite define a single population of 1186 ± 6 Ma, which is considered the likely age of peak thermal metamorphism. The growth of monazite was widespread in low-Ca pelitic schists representing a broad range of compositions in AFM space, indicating that variations in bulk composition in AFM space did not control the formation of monazite during amphibolite facies metamorphism in the Mount Barren Group.  相似文献   

14.
Spinels, Fe–Ti oxide minerals, apatites, and carbonates hosted in ophiolitic serpentinites and metagabbros of Gabal Garf (southern ED) and Wadi Hammariya (central ED) of Egypt are discussed. Microscopic and electron probe studies on these minerals are made to evaluate their textural and compositional variations. Alteration of chromites led to form ferritchromite and magnetite; rutile–magnetite intergrowths and martite are common in serpentinites. Fine trillis exsolution of ilmenite–magnetite and ilmenite–hematite and intergrowth of rutile–magnetite and ilmenite–sphene are recorded. Composite intergrowth grains of titanomagnetite–ilmenite trellis lamellae are common in metagabbros. The formation of ilmenite trellis and lamellae in magnetite and titanomagnetite indicate an oxidation process due to excess of oxygen contained in titanomagnetite; trapped and external oxidizing agents. This indicates the high P H2O and oxygen fugacity of the parental magma. The sulfides minerals include pyrrhotite, pyrite and chalcopyrite. Based on the chemical characteristics, the Fe–Ti oxide from the ophiolitic metagabbros in both areas corresponds to ilmenite. The patites from the metagabbros are identified as fluor-apatite. Carbonates are represented by dolomites in serpentinites and calcite in metagabbros. Spinel crystals in serpentinites are homogenous or zoned with unaltered cores of Al-spinel to ferritchromit and Cr-magnetite toward the altered rims. Compared to cores, the metamorphic rims are enriched in Cr# (0.87–1.00 vs. 0.83–0.86 for rims and cores, respectively) and impoverished in Mg# (0.26–0.48 vs. 0.56–0.67) due to Mg–Fe and Al (Cr)–Fe3+ exchange with the surrounding silicates during regional metamorphism rather than serpentinization process. The Fe–Ti oxides have been formed under temperature of ~800 °C for ilmenite. Al-spinels equilibrated below 500–550 °C, while the altered spinel rims correspond to metamorphism around 500–600 °C. Geochemical evidence of the podiform Al-spinels suggest a greenschist up to lower amphibolite facies metamorphism (at 500–600 °C), which is isofacial with the host rocks. Al-spinel cores do not appear to have re-equilibrated completely with the metamorphic spinel rims and surrounding silicates, suggesting relic magmatic composition unaffected by metamorphism. The composition of Al-spinel grains suggest an ophiolitic origin and derivation by crystallization of boninitic magma that belonging to a supra-subduction setting could form either in forearcs during an incipient stage of subduction initiation or in back-arc basins.  相似文献   

15.
江绍断裂两侧早元古代变质基底特征及形成的构造环境   总被引:3,自引:0,他引:3  
江绍断裂东侧出露的早元古代变质基底以一套遭受中压型角闪岩相区域热流变质作用改造的黑云斜长变粒岩、云母石英片岩为主,夹少量斜长角闪岩和大理岩,已遭受4期构造变形作用改造,从原岩建造和主要岩类地球化学特点推测它可能形成于大陆或大陆边缘类似于内硅铝盆地环境。江绍断裂西侧早元古代变质基底则以星子杂岩为代表,由变粒岩、浅粒岩、(十字一石榴)云母片岩和少量斜长角闪岩组成,已遭受中压型高绿片岩相一低角闪岩相区域热流变质作用改造,推测其形成于活动性较强大陆一大陆边缘环境。江绍断裂两侧早元古代变质基底在原岩建造、变质一变形作用等特征上存在明显差异,因此华夏地块和扬子地块在早元古代可能是两个地块。  相似文献   

16.
The studied serpentinites occur as isolated masses, imbricate slices of variable thicknesses and as small blocks or lenses incorporated in the sedimentary matrix of the mélange. They are thrusted over the associated island arc calc-alkaline metavolcanics and replaced by talc-carbonates along shear zones. Lack of thermal effect of the serpentinites upon the enveloping country rocks, as well as their association with thrust faults indicates their tectonic emplacement as solid bodies. Petrographically, they are composed essentially of antigorite, chrysotile and lizardite with subordinate amounts of carbonates, chromite, magnetite, magnesite, talc, tremolite and chlorite. Chrysotile occurs as cross-fiber veinlets traversing the antigorite matrix, which indicate a late crystallization under static conditions. The predominance of antigorite over other serpentine minerals indicates that the serpentinites have undergone prograde metamorphism or the parent ultramafic rocks were serpentinized under higher pressure. The parent rocks of the studied serpentinites are mainly harzburgite and less commonly dunite and wehrlite due to the prevalence of mesh and bastite textures. The serpentinites have suffered regional metamorphism up to the greenschist facies, which occurred during the collisional stage or back-arc basin closure, followed by thrusting over a continental margin. The microprobe analyses of the serpentine minerals show wide variation in SiO2, MgO, Al2O3, FeO and Cr2O3 due to different generations of serpentinization. The clinopyroxene relicts, from the partly serpentinized peridotite, are augite and similar to clinopyroxene in mantle-derived peridotites. The chromitite lenses associated with the serpentinites show common textures and structures typical of magmatic crystallization and podiform chromitites. The present data suggest that the serpentinites and associated chromitite lenses represent an ophiolitic mantle sequence from a supra-subduction zone, which were thrust over the continental margins during the collisional stage of back-arc basin.  相似文献   

17.
A metamorphic rock complex, strongly resembling the so-called “Granulitgebirge” of Saxony, occurs in the Spanish region Galicia. Stratigraphically, these rocks are overlain by migmatites, supracrustal metamorphites and finally by early palaeozoic strata cropping out in Western Asturias and Northern Portugal. Structurally the complex constitutes a mushroom-shaped dome which has been raised through a thin mantle of schists and gneisses along blastomylonitic borderzones containing tectonic “fish”. Petrologically it consists predominantly of rather coarsely banded, lenticular or massive rocks belonging for the greater part to the hornblende-clinozoisite granulite subfacies ofEskola's granulite facies, closely associated with eclogites, serpentinites, amphibolites and gneisses. Indications of progressive metamorphism and migmatization (especially that of a pegmatoid nature) are of strictly local occurrence, but on the other hand there is abundant evidence of one or more stages of retrograde metamorphism, particularly in the blastomylonitic horizons. The chemistry of granulites and eclogites and of their typomorphic minerals is briefly mentioned together with their metamorphic facies relations. Finally, petrogenesis and tectogenesis of the rock complex are discussed.  相似文献   

18.
Whole-rock major element chemical analyses of progressively metamorphosed impure carbonate rocks and pelitic schists, collected from the same metamorphic terrain, reveal similarities and differences in the chemical response of these rock types to the metamorphic event. Relative to a constant aluminum reference frame, both schist and carbonate exhibit no detectable change in their contents of Fe, Mg, Ti, Si, and Ca with change in metamorphic grade. Carbonate rocks become progressively depleted in K and Na with increasing grade of metamorphism, while schists exhibit no statistically significant change in their contents of K and Na. Both rock types become depleted in volatiles (principally CO2 and H2O) with increasing grade.Whole-rock chemical data permit two mechanisms for migration of K and Na from the carbonate rocks during metamorphism: (a) diffusion of alkalis from carbonate to adjacent schist; (b) transport of alkalis by through-flowing metamorphic fluid (infiltration). Mineral equilibria in schist and metacarbonate rock from the same outcrops allow calculation of the affinity for cation exchange between the two rock types during metamorphism. Measured affinities indicate that if mass transport of K and Na occurred by diffusion, chemical potential gradients would have driven the alkalis from schist into carbonate rock. Because diffusion cannot produce the observed chemical trends in the metacarbonates, K and Na are believed to have been removed during metamorphism by infiltration.The disparity in chemical behavior between the pelitic schists and metacarbonate rocks may be a result of enhanced fluid flow through the carbonates. The carbonate rocks may have acted as metamorphic aquifers; the greater flow of fluid through them would then have had a correspondingly greater effect on their whole-rock chemistry.  相似文献   

19.
Phlogopites containing anomalously high values of Zn, Mn and Li have been identified in low-magnesium feldspathic schists and quartzites from the Precambrian of northern New Mexico. The phlogopite is volumetrically minor (<2%) and coexists with muscovite. The presence of hematite and piemontite in the phlogopite-bearing samples indicates high oxidizing conditions, but their presence in phlogopite-free mica schists nearby demonstrates that high fo2 is insufficient to account for the phlogopite occurrences. A model for phlogopite development is presented which is based upon (1) high fo2 conditions, (2) limited H+ during metamorphism, and (3) early mobilization of Mg (and Zn, Mn, Li) during incipient metamorphism. The absence of phlogopite in associated rocks which refect high fo2 conditions is due to the larger amount of H+ available during metamorphism, resulting in the development of abundant muscovite rather than rare phlogopite.  相似文献   

20.
To assess the petrogenetic relationship between monazite and major silicates during prograde metamorphism, REE were measured across coexisting zoned silicates in garnet through kyanite‐grade pelitic schists from the Great Smoky Mountains, western Blue Ridge terrane, southern Appalachians, to establish REE concentrations and distributions before and after the monazite‐in isograd, and to identify the role major silicates play in the formation of monazite. Results indicate significant scavenging of light rare‐earth elements (LREE) from silicates during the monazite‐in isograd reaction; however, the absolute concentration of LREE hosted in the silicates was insufficient to produce monazite in the quantity observed in these schists. Monazite must have formed mainly from either the dissolution of allanite or some other source of concentrated LREE (possibly adsorbed onto grain boundaries), even though direct evidence for allanite is lacking in a majority of the samples. Laser‐ablation ICP‐MS analyses and theoretical thermodynamic calculations show that monazite may have formed as a result of contributions from both allanite and major silicates. Allanite breakdown initially formed monazite, and monazite production drew LREE liberated from allanite, major silicates and possibly from crystal boundaries. In many rocks the reaction was further promoted by the staurolite‐in reaction, allowing for rapid, isogradic monazite growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号