首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheatland  M.S.  Uchida  Y. 《Solar physics》1999,189(1):163-172
In 1988, Uchida and Shibata proposed a model for compact loop flares as due to the collision of two large amplitude torsional Alfvén wave packets coming up along a coronal magnetic loop, leaking out from the subphotospheric convective layers of the solar atmosphere. We investigate the possibility that active region transient brightenings occur when a single torsional Alfvén wave packet transits a coronal loop. Assuming this related origin for flares and transient brightenings, the statistics of the two phenomena must also be closely related. It is shown that the observed power-law frequency-energy distributions of flares and transient brightenings may be accounted for in a natural way if the energy distribution of the underlying torsional Alfvén wave packets is itself a power law.  相似文献   

2.
The solar X-ray observing satellite Yohkoh has discovered various new dynamic features in solar flares and corona, e.g., cusp-shaped flare loops, above-the-loop-top hard X-ray sources, X-ray plasmoid ejections from impulsive flares, transient brightenings (spatially resolved microflares), X-ray jets, large scale arcade formation associated with filament eruption or coronal mass ejections, and so on. It has soon become clear that many of these features are closely related to magnetic reconnection. We can now say that Yohkoh established (at least phenomenologically) the magnetic reconnection model of flares. In this paper, we review various evidence of magnetic reconnection in solar flares and corona, and present unified model of flares on the basis of these new Yohkoh observations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We present the first evidence for occurrences of magnetic interactions between a jet, a filament and coronal loops during a complex event, in which two flares sequen-tially occurred at different positions of the same active region and were closely associated with two successive coronal mass ejections (CMEs), respectively. The coronal loops were located outside but nearby the filament channel before the flares. The jet, originating from the first flare during its rise phase, not only hit the filament body but also met one of the ends of the loops. The filament then underwent an inclined eruption followed by the second flare and met the same loop end once more. Both the jet and the filament erup- tion were accompanied by the development of loop disturbances and the appearances of brightenings around the meeting site. In particular, the erupting filament showed clear manifestations of interactions with the loops. After a short holdup, only its portion passed through this site, while the other portion remained at the same place. Following the fila-ment eruption and the loop disappearance, four dimmings were formed and located near their four ends. This is a situation that we define as "quadrupolar dimmings." It appears that the two flares consisted of a sympathetic pair physically linked by the interaction between the jet and the filament, and their sympathy indicated that of the two CMEs.Moreover, it is very likely that the two sympathetic CMEs were simultaneously associ-ated with the disappearing loops and the quadrupole dimmings.  相似文献   

4.
Radosław Rek 《Solar physics》2010,267(2):361-375
Solar flares take place in regions of strong magnetic fields and are generally accepted to be the result of a resistive instability leading to magnetic reconnection. When new flux emerges into a pre-existing active region it can act as a flare and coronal mass ejection trigger. In this study we observed active region 10955 after the emergence of small-scale additional flux at the magnetic inversion line. We found that flaring began when additional positive flux levels exceeded 1.38×1020 Mx (maxwell), approximately 7 h after the initial flux emergence. We focussed on the pre-flare activity of one B-class flare that occurred on the following day. The earliest indication of activity was a rise in the non-thermal velocity one hour before the flare. 40 min before flaring began, brightenings and pre-flare flows were observed along two loop systems in the corona, involving the new flux and the pre-existing active region loops. We discuss the possibility that reconnection between the new flux and pre-existing loops before the flare drives the flows by either generating slow mode magnetoacoustic waves or a pressure gradient between the newly reconnected loops. The subsequent B-class flare originated from fast reconnection of the same loop systems as the pre-flare flows.  相似文献   

5.
M. R. Kundu 《Solar physics》1996,169(2):389-402
We present a review of selected studies based upon simultaneous radio and X-ray observations of solar flares and coronal transients. We use primarily the observations made with large radio imaging instruments (VLA, BIMA, Nobeyama, and Nançay) along with Yohkoh/SXT and HXT and CGRO experiments. We review the recent work on millimeter imaging of solar flares, microwave and hard X-ray observations of footpoint emission from flaring loops, metric type IV continuum bursts, and coronal X-ray structures. We discuss the recent studies on thermal and nonthermal processes in coronal transients such as XBP flares, coronal X-ray jets, and active region transient brightenings.Dedicated to Cornelis de Jager  相似文献   

6.
DOUBLE-LOOP CONFIGURATION OF SOLAR FLARES   总被引:2,自引:0,他引:2  
Hanaoka  Yoichiro 《Solar physics》1997,173(2):319-346
We analyzed several flares, which are presumed to be caused by interactions between an emerging loop and an overlying loop. We call such a basic combination of loops a double-loop configuration, and we reveal its topology on the basis of the microwave and soft X-ray observations of the flares and the magnetograms. In many cases, the magnetic field of the flare loops shows a bipolar + remote unipolar structure, rather than a quadrapole structure. The footpoints of two loops are distributed in three magnetic patches, and two of the footpoints of the loops, one from the emerging loop and the other from the overlying loop, are included in a single magnetic polarity patch. Therefore, the two loops form a three-legged structure, and the two loops are not anti-parallel as assumed in the traditional reconnection models. Typically, the emergence of a parasitic polarity near the major preceding-polarity region or the following one in an active region creates this configuration, but, in one of the analyzed flares, two active regions are involved in the configuration. Not only the flares, but various other active phenomena – microflares, thermal plasma flows like jets, and surges – occur in the same magnetic configuration. Hence, the interaction between two loops, which forms the three-legged structure, is an important source of the various types of activity.  相似文献   

7.
We study sudden brightenings of coronal loops that interconnect active regions. Such brightenings often occur within one or two days after the birth of a new interconnecting loop, as well as in some old interconnections. The brightenings of young loops are obviously associated with the emergence of new magnetic flux near their footpoints, whereas some enhancements of old loops may be triggered by slowly moving disturbances propagating from other centers of activity. A few loop brightenings are associated with flares, but the loop does not brighten in consequence of energy supply from the flare. Both the flare and the loop brightening are independent consequences of one common agent, presumably newly emerging flux.Temperatures in brightened loops are between 3 and 4 × 106 K and densities are < 2 × 109 cm–3, probably < 5 × 108 cm–3 in some old loops. The top part of a loop is the site of the most intense brightening in the initial phase of a loop enhancement. The most frequent lifetime of these brightenings is 6 to 7 hr.Hale Observatories are operated jointly by the Carnegie Institution of Washington and the California Institute of Technology.  相似文献   

8.
Shimojo  Masumi  Kurokawa  Hiroki  Yoshimura  Keiji 《Solar physics》2002,206(1):133-142
We present a detailed study of coronal loop brightenings observed in an active region on the solar limb. These brightening loops show expanding and shrinking motions in EUV coronal line images and also show downflow along the loops in Lα and Hα images. By means of time-slice analysis of the images, we found that both the expanding and shrinking motions of the loops are not real motions of plasma but apparent motions like post-flare loops, where the loops at the different height are successively heated and cooled. From a temperature analysis, the time delay between the brightenings of hot 195 Å and cool Lα loops is found to be nearly equal to the time-scale of the conduction cooling. We conclude that these loop brightenings are sources of so called Hα coronal rains.  相似文献   

9.
We have detected chromospheric footpoints of the giant post-flare coronal arches discovered by HXIS a few years ago. H photographs obtained at Big Bear and Udaipur Solar Observatories show chromospheric signatures associated with 5 sequential giant arch events observed in the interval from 6 to 10 November, 1980. The set of footpoints at one end of the arches consists of enhancements within a plage at the northeast periphery of the active region and the set of footpoints at the other end of the arch consists of brightenings of the chromosphere south of the active region. Both sets of footpoints show very slow brightness variations correlated in time with the brightness variations of the X-ray arches. Current-free modelling of the coronal magnetic field by Kopp and Poletto (1989), based on a Kitt Peak magnetogram, confirms the identification of the two sets of footpoints by showing magnetic field lines connecting them.The brightenings appear as a succession of point-like enhancements whose individual lifetimes are of the time-scale of minutes but which continue to occur for periods of several hours. This behaviour allows us to infer a fine structure in the coronal arches, undetectable in the X-ray images. The discovery of these brightenings and their location at the periphery of the active region also alters our conception of the relationship of the giant arches to the flares that begin concurrently with them. The giant arch phenomenon appears now to be either: (1) a long-lived, semi-permanent, coronal structure which is revived and fed with plasma and energy by underlying dynamic flares, or alternatively (2) a system of high-altitude loops which open at the onset of every such flare and subsequently reconnect over intervals of many hours.  相似文献   

10.
Recent Skylab and magnetograph observations indicate that strong photospheric electric currents underlie small flare events such as X-ray loops and surges. What is not yet certain, because of the non-local dynamics of a fluid with embedded magnetic field, is whether flare emission derives from the energy of on-site electric currents or from energy which is propagated to the flare site through an intermediary, such as a stream of fast electrons or a group of waves. Nevertheless, occurrences of: (1) strong photospheric electric currents beneath small flares; (2) similar magnetic fine structure inside and outside active regions; (3) eruptive prominences and coronal white light transients in association with big flares; and, (4) active boundaries of large unipolar regions suggest the possibility that all phenomena of solar activity are manifestations of the rapid ejection and/or gradual removal of electric currents of various sizes from the photosphere. The challenge is to trace the precise magnetofluid dynamics of each active phenomenon, particularly the role of electric current build-up and dissipation in the low corona.  相似文献   

11.
We present a summary of several studies of transient coronal phenomena based upon high spatial resolution radio imaging data along with Yohkoh SXT and HXT observations. In addition to normal flares the studies also involve such exotic events as active region transient brightenings (ARTB) and coronal jets and bright points. We provide evidence of nonthermal processes in flaring X-ray bright points from spatially resolved meter-wave data, existence and propagation of type II burst emitting electrons in coronal jets, radio signatures of ARTB's, and beaming of electrons producing microwave and hard X-rays. The implications of these observations are discussed.  相似文献   

12.
Qiu  Jiong  Wang  Haimin  Chae  Jongchul  Goode  Philip R. 《Solar physics》1999,190(1-2):153-165

An active region loop system was observed in a decaying active region for three hours by TRACE and BBSO in a joint campaign on September 27, 1998. Continuous mass motion was seen in Hα offband filtergrams throughout the three hours, and some UV loops were exhibited transient brightenings. We find that: (1) cool material was flowing along the loops at a speed of at least 20 km s?1. Further, in Hα red and blue wings, we see mass motion along different loops in opposite directions. This is the first report of a counter-streaming pattern of mass motion in an Hα loop system. (2) Transient brightenings of different UV loops at different times were observed at C?iv 1550 Å. These brightened UV loops were located in the same region and at the same altitudes as the Hα loops. The observations show a clear correlation between the transient brightenings of UV loops and mass motion in Hα loops. (3) Both footpoints of the loop system were located in regions of mixed magnetic polarities. Frequent micro-flares at one footpoint of the loops with small-scale brightenings spreading along the loop leg were observed before the brightening and rising of one C?iv loop. Similar to the case of a filament, the continuous mass motion along the loops seems important for maintaining the cool Hα loop system at coronal height. There may be an indication that the mass motion in cool Hα loops and the correlated transient brightening of the active region loops were due to the small-scale chromospheric magnetic reconnection at the footpoint regions of the loop system.

  相似文献   

13.
Jiao  Litao  McClymont  A. N.  MikiĆ  Z. 《Solar physics》1997,174(1-2):311-327
Studies of solar flares indicate that the mechanism of flares is magnetic in character and that the coronal magnetic field is a key to understanding solar high-energy phenomena. In our ongoing research we are conducting a systematic study of a large database of observations which includes both coronal structure (from the Soft X-ray Telescope on the Yohkoh spacecraft) and photospheric vector magnetic fields (from the Haleakala Stokes Polarimeter at Mees Solar Observatory). We compare the three-dimensional nonlinear force-free coronal magnetic field, computed from photospheric boundary data, to images of coronal structure. In this paper we outline our techniques and present results for active region AR 7220/7222. We show that the computed force-free coronal magnetic field agrees well with Yohkoh X-ray coronal loops, and we discuss the properties of the coronal magnetic field and the soft X-ray loops.  相似文献   

14.
We study transverse loop oscillations triggered by 17flares and filament destabilizations; only 2 such cases have been reported in the literature until now. Oscillation periods are estimated to range over a factor of ∼15, with most values between 2 and 7 min. The oscillations are excited by filament destabilizations or flares (in 6% of the 255 flares inspected, ranging from about C3 to X2). There is no clear dependence of oscillation amplitude on flare magnitude. Oscillations occur in loops that close within an active region, or in loops that connect an active region to a neighboring region or to a patch of strong flux in the quiet Sun. Some magnetic configurations are particularly prone to exhibit oscillations: two active regions showed two, and one region even three, distinct intervals with loop oscillations. The loop oscillations are not a resonance that builds up: oscillations in loops that are excited along their entire length are likely to be near the fundamental resonance mode because of that excitation profile, but asymmetrically excited oscillations clearly show propagating waves that are damped too quickly to build up a resonance, and some cases show multiple frequencies. We discuss evidence that all oscillating loops lie near magnetic separatrices that outline the large-scale topology of the field. All magnetic configurations are more complicated than a simple bipolar region, involving mixed-polarities in the interior or vicinity of the region; this may reflect that the exciting eruptions occur only in such environments, but this polarity mixing likely also introduces the large-scale separatrices that are involved. Often the oscillations occur in conjunction with gradual adjustments in loop positions in response to the triggering event. We discuss the observations in the context of two models: (a) transverse waves in coronal loops that act as wave guides and (b) strong sensitivity to changes in the field sources for field lines near separatrices. Properties that favor model b are (1) the involvement of loops at or near separatrices that outline the large-scale topology of the field, (2) the combined occurrence of oscillations and loop translations, (3) the small period spread and similar decay time scale in a set of oscillating loops in one well-observed event, and (4) the existence of loops oscillating in antiphase with footpoints close together in two cases. All other properties are compatible with either model, except the fact that almost all of the oscillations start away from the triggering event, suggestive of an outward-pushing exciting wave more in line with model a. The spread in periods from event to event suggests that the oscillations may reflect the properties of some driver mechanism that is related to the flare or mass ejection. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1014957715396  相似文献   

15.
Schmidt  Joachim M. 《Solar physics》2000,197(1):135-148
Three sympathetic flares were observed with the Solar Magnetic Field Telescope (SMFT) at the Huairou Solar Observing Station of Beijing Astronomical Observatory on 29 August, and 1 September 1990. Each set of sympathetic flares had three ribbons. Two ribbons appeared in active region NOAA 6233 and one ribbon occurred in NOAA 6240 embedded in a single polarity area. Photospheric vector magnetograms were simultaneously obtained from both regions as well. We use a new numerical technique to reconstruct the chromospheric and coronal magnetic fields by making use of the observed vector magnetic fields in the photosphere as boundary conditions. Magnetic field loops linking both regions were identified from the reconstructed 3-D fields. The analysis of chromospheric filtergrams and reconstructed 3-D magnetic fields indicates that interaction between a sheared lower loop in the active region NOAA 6233 and a higher loop linking the two regions resulted in sympathetic flares. The analysis of the time delay between flare ribbons in NOAA 6233 and 6240 indicates that heat conduction along the higher loop from the primary energy release site is responsible for the sympathetic flaring in NOAA 6240. The events reported in this paper represent only one alternative as the cause of sympathetic flaring in which energy transport along coronal interconnecting loops plays the major role, and no in-situ energy release is required.  相似文献   

16.
Skylab observations of the Sun in soft X-rays gave us the first possibility to study the development of a complex of activity in the solar corona during its whole lifetime of seven solar rotations. The basic components of the activity complex were permanently interconnected (including across the equator) through sets of magnetic field lines, which suggests similar connections also below the photosphere. However, the visibility of individual loops in these connections was greatly variable and typically shorter than one day. Each brightening of a coronal loop in X-rays seems to be related to a variation in the photospheric magnetic field near its footpoint. Only loops (rarely visible) connecting active regions with remnants of old fields can be seen in about the same shape for many days. The interconnecting X-ray loops do not connect sunspots.We point out several examples of possible reconnections of magnetic field lines, giving rise to the onset of the visibility or, more likely, to sudden enhancements of the loop emission. In one case a new system of loops brightened in X-rays, while the field lines definitely could not have reconnected. Some striking brightenings show association with flares, but the flare occurrence and the loop brightening seem to be two independent consequences of a common triggering action: emergence of new magnetic flux. In old active regions, growing and/or brightened X-ray loops can be seen quite often without any associated flare; thus, the absence of any flaring in the chromosphere does not necessarily mean that the overlying coronal active region is quiet and inactive.We further discuss the birth of the interconnecting loops, their lifetime, altitude, variability in shape in relation to the photospheric magnetic field, the similarity of interconnecting and internal loops in the late stages of active regions, phases of development of an active region as manifested in the corona, the remarkably linear boundary of the X-ray emission after the major flare of 29 July 1973, and a striking sudden change in the large-scale pattern of unipolar fields to the north of the activity complex.The final decay of the complex of activity was accompanied by the penetration of a coronal hole into the region where the complex existed before.  相似文献   

17.
By means of Hα, EUV, soft X-ray, hard X-ray, and photospheric magnetic field observations, we report the surge-like eruption of a small-scale filament, called “blowout surge” according to recent observations, occurring on a plage region around AR 10876 on 1 May 2006. Along magnetic polarity reversal boundaries with obvious magnetic cancelations, the filament was located underneath a compact coronal arcade and close to one end of large coronal loops around the AR’s periphery. The filament started to erupt about 8 min before the main impulsive phase of a small two-ribbon flare, which had two Hα blue-wing kernels connected by hard X-ray loop-top sources on the both sides of the filament. After the flare end, the filament further underwent a distant eruption following a path nearly along the preexisting large loops, and thus looked like an Hα surge and an EUV jet. During the eruption, a small coronal dimming was formed near the flare, while weak brightenings appeared around the remote end of the large loops. We interpret these joint observations as the filament eruption being confined and guided by the large loops. The filament eruption, initially embedded in one footpoint region of the large loops, can break away from the magnetic restraint of the overlying compact arcade, but might be still limited inside the large loops. As a result, the eruption took a surge form that can only expand laterally along the large loops rather than erupt radially.  相似文献   

18.
The solar atmosphere displays a wide variety of dynamic phenomena driven by the interaction of magnetic fields and plasma. In particular, plasma jets in the solar chromosphere and corona, coronal heating, solar flares and coronal mass ejections all point to the presence of magnetic phenomena such as reconnection, flux cancellation, the formation of magnetic islands, and plasmoids. While we can observe the signatures and gross features of such phenomena we cannot probe the essential physics driving them, given the spatial resolution of current instrumentation. Flexible and well-controlled laboratory experiments, scaled to solar parameters, open unique opportunities to reproduce the relevant unsteady phenomena under various simulated solar conditions. The ability to carefully control these parameters in the laboratory allows one to diagnose the dynamical processes which occur and to apply the knowledge gained to the understanding of similar processes on the Sun, in addition directing future solar observations and models. This talk introduces the solar phenomena and reviews the contributions made by laboratory experimentation.  相似文献   

19.
By using Hα, He I 10830, EUV and soft X-ray (SXR) data, we examined a filament eruption that occurred on a quiet-sun region near the center of the solar disk on 2006 January 12, which disturbed a sigmoid overlying the filament channel observed by the GOES-12 SXR Imager (SXI), and led to the eruption of the sigmoid. The event was associated with a partial halo coronal mass ejection (CME) observed by the Large Angle and Spectrometric Coronagraphs (LASCO) on board the Solar and Heliospheric Observatory (SOHO), and resulted in the formation of two flare-like ribbons, post-eruption coronal loops, and two transient coronal holes (TCHs), but there were no significantly recorded GOES or Hα flares corresponding to the eruption. The two TCHs were dominated by opposite magnetic polarities and were located on the two ends of the eruptive sigmoid. They showed similar locations and shapes in He Ⅰ 10830, EUV and SXR observations. During the early eruption phase, brightenings first appeared on the locations of the two subsequent TCHs, which could be clearly identified on He Ⅰ 10830, EUV and SXR images. This eruption could be explained by the magnetic flux rope model, and the two TCHs were likely to be the feet of the flux rope.  相似文献   

20.
Magnetic fields in the low corona are the only plausible source of energy for solar flares. Other energy sources appear inadequate or uncorrelated with flares. Low coronal magnetic fields cannot be measured accurately, so most attention has been directed toward measurements of the photospheric magnetic fields from which coronal developments may be inferred. Observations of these magnetic fields are reviewed. It is concluded that, except possibly for the largest flares, changes in the photospheric magnetic fields in flaring centers are confined to evolutionary changes associated with emergence of new magnetic flux. Flare observations with the 10830 Å line of helium, in particular, are discussed. It is concluded that the brightest flare knots appear near points of emergent magnetic flux. Pre-flare activation and eruptions of H filaments are discussed. It is concluded that the rapid motions in filaments indicate unambiguously that the magnetic fields in the low corona are severely disrupted prior to most flares. The coronal signature of H filament eruptions is illustrated with soft X-ray photographs from the S-054 experiment of the NASA Skylab mission. An attempt is made, by studying X-ray flare morphology, to determine whether flares grow by reconnections between adjacent or intertwined magnetic elements or by triggering, in which each flaring loop drives adjacent loops to unstable states. It is concluded that successive loop brightenings are most easily interpreted as the result of magnetic field reconnections, although better time resolution is required to settle the question. A model of magnetic field reconnections for flares associated with filament activation and emerging magnetic flux is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号