首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unusual textural and chemical characteristics of disseminated dolomite in Upper Jurassic shelf sediments of the North Sea have provided the basis for a proposed new interpretation of early diagenetic dolomite authigenesis in highly bioturbated marine sandstones. The dolomite is present throughout the Franklin Sandstone Formation of the Franklin and Elgin Fields as discrete, non‐ferroan, generally unzoned, subhedral to highly anhedral ‘jigsaw piece’ crystals. These are of a similar size to the detrital silicate grains and typically account for ≈5% of the rock volume. The dolomite crystals are never seen to form polycrystalline aggregates or concretions, or ever to envelop the adjacent silicate grains. They are uniformly dispersed throughout the sandstones, irrespective of detrital grain size or clay content. Dolomite authigenesis predated all the other significant diagenetic events visible in thin section. The dolomite is overgrown by late diagenetic ankerite, and bulk samples display stable isotope compositions that lie on a mixing trend between these components. Extrapolation of this trend suggests that the dolomite has near‐marine δ18O values and low, positive δ13C values. The unusual textural and chemical characteristics of this dolomite can all be reconciled if it formed in the near‐surface zone of active bioturbation. Sea water provided a plentiful reservoir of Mg and a pore fluid of regionally consistent δ18O. Labile bioclastic debris (e.g. aragonite, Mg‐calcite) supplied isotopically positive carbon to the pore fluids during shallow‐burial dissolution. Such dissolution took place in response to the ambient ‘calcite sea’ conditions, but may have been catalysed by organic matter oxidation reactions. Bioturbation not only ensured that the dissolving carbonate was dispersed throughout the sandstones, but also prohibited coalescence of the dolomite crystals and consequent cementation of the grain framework. Continued exchange of Mg2+ and Ca2+ with the sea‐water reservoir maintained a sufficient Mg/Ca ratio for dolomite (rather than calcite) to form. Irregular crystal shapes resulted from dissolution, of both the dolomite and the enclosed fine calcitic shell debris, before ankerite precipitation during deep‐burial diagenesis.  相似文献   

2.
Calcite septarian concretions from the Permian Beaufort Group in the Maniamba Graben (NW Mozambique) allow controls on the composition and nature of diagenetic fluids to be investigated. The concretions formed in lacustrine siltstones, where they occur in spherical (1 to 70 cm in diameter) and columnar (up to 50 cm long) forms within three closely spaced, discrete beds totalling 2·5 m in thickness. Cementation began at an early stage of diagenesis and entrapped non‐compacted burrows and calcified plant roots. The cylindrical concretions overgrew calcified vertical plant roots, which experienced shrinkage cracking after entrapment. Two generations of concretionary body cement and two generations of septarian crack infill are distinguished. The early generation in both cases is a low‐Mn, Mg‐rich calcite, whereas the later generation is a low‐Mg, Mn‐rich calcite. The change in chemistry is broadly consistent with a time (burial)‐related transition from oxic to sub‐oxic/anoxic conditions close to the sediment–water interface. Geochemical features of all types of cement were controlled by the sulphate‐poor environment and by the absence of bacterial sulphate reduction. All types of cement present have δ13C ranging between 0‰ and −15‰(Vienna Peedee Belemnite, V‐PDB), and highly variable and highly depleted δ18O (down to 14‰ Vienna Standard Mean Ocean Water, V‐SMOW). The late generation of cement is most depleted in both 13C and 18O. The geochemical and isotopic patterns are best explained by interaction between surface oxic waters, pore waters and underground, 18O‐depleted, reducing, ice‐meltwaters accumulated in the underlying coal‐bearing sediments during the Permian deglaciation. The invariant δ13C distribution across core‐to‐rim transects for each individual concretion is consistent with rapid lithification and involvement of a limited range of carbon sources derived via oxidation of buried plant material and from dissolved clastic carbonates. Syneresis of the cement during an advanced stage of lithification at early diagenesis is considered to be the cause of development of the septarian cracks. After cracking, the concretions retained a small volume of porosity, allowing infiltration of anoxic, Ba‐bearing fluids, resulting in the formation of barite. The results obtained contribute to a better understanding of diagenetic processes at the shallow burial depths occurring in rift‐bound, lacustrine depositional systems.  相似文献   

3.
The oxygen isotope compositions of diagenetic carbonate minerals from the Lower Jurassic Inmar Formation, southern Israel, have been used to identify porewater types during diagenesis. Changes in porewater composition can be related to major geological events within southern Israel. In particular, saline brines played an important role in late (Pliocene-Pleistocene) dolomitization of these rocks. Diagenetic carbonates included early siderite (δ18OSMOW=+24.4 to +26.5‰δ13CPDB=?1.1 to +0.8‰), late dolomite, ferroan dolomite and ankerite (δ18OSMOW=+18.4 to +25.8‰; δ13CPDB=?2.1 to +0.2‰), and calcite (δ18OSMOW=+21.3 to +32.6‰; δ13CPDB=?4.2 to + 3.2‰). The petrographic and isotopic results suggest that siderite formed early in the diagenetic history at shallow depths. The dolomitic phases formed at greater depths late in diagenesis. Crystallization of secondary calcite spans early to late diagenesis, consistent with its large range in isotopic values. A strong negative correlation exists between burial depth (temperature) and the oxygen isotopic compositions of the dolomitic cements. In addition, the δ18O values of the dolomitic phases in the northern Negev and Judea Mountains are in isotopic equilibrium with present formation waters. This behaviour suggests that formation of secondary dolomite post-dates the tectonic activity responsible for the present relief of southern Israel (Upper Miocene to Pliocene) and that the dolomite crystallized from present formation waters. Such is not the case in the Central Negev. In that locality, present formation waters have much lower salinities and δ18O values, indicating invasion of freshwater, and are out of isotopic equilibrium with secondary dolomite. Recharge of the Inmar Formation by meteoric water in the Central Negev occurred in the Pleistocene, and halted formation of dolomite.  相似文献   

4.
J. D. HUDSON 《Sedimentology》1978,25(3):339-370
In interpreting the results of a petrographic and isotopic study of concretions, a range of subjects is discussed including the original texture of the Oxford Clay sediment, Jurassic palaeotemperatures, the diagenetic history of pore-waters and the palaeo-hydrology of central England. The concretions are all composed predominantly of calcite. They include precompactional, pyrite-rich concretions that later suffered an eposide of brecciation, and others that only commenced to form after compaction had crushed ammonite shells included in the bituminous clay sediment. Petrographic, chemical, and especially carbon isotope data demonstrate a dominantly organic source for the carbon in the early formed concretions. Oxygen isotopes indicate formation at the same temperatures (13-16°C) at which benthic molluscs were living. Concretion growth in pelleted, anaerobic mud proceeded concurrently with bacterial sulphate reduction and pyrite precipitation. Cracking of the concretions started at this stage: in a few concretions, the cracks were also partially filled with brown calcite. During post-compactional growth, δ13C increased and pyrite content decreased, showing waning organic influence; δ18O decreased. The brecciated concretions were intruded by clay in which baryte crystals grew; finally, most remaining voids were filled with strongly-ferroan calcite of δ18O about—7 PDB and δ13C about O PDB. This must indicate strong depletion of the pore waters in 18O. Mechanisms that might lead to this are reviewed. It is concluded that the sequence of mineralogical and chemical changes is most readily explained if originally marine porewaters, first modified by bacterial activity, were flushed from the compacting clays by water of ultimately meteoric origin. This had its source in palaeo-aquifers beneath the Oxford Clay. Speculative attempts are made to relate this history to the geology of the region.  相似文献   

5.
Sedimentological, mineralogical, stable carbon and oxygen isotope determinations and biomarker analyses were performed on siderite concretions occurring in terrestrial silts to understand their formation and to characterize the sedimentary and diagenetic conditions favouring their growth. High δ13C values (6·4‰ on average) indicate that siderite precipitated in an anoxic environment where bacterial methanogenesis operated. The development of anoxic conditions during shallow burial was induced by a change in sedimentary environment from flood plain to swamp, related to a rise of the ground‐water table. Large amounts of decaying plant debris led to efficient oxygen consumption within the pore‐water in the peat. Oxygen depletion, in combination with a decrease in sedimentation rate, promoted anoxic diagenetic conditions under the swamp and favoured abundant siderite precipitation. This shows how a change in sedimentary conditions can have a profound impact on the early‐diagenetic environment and carbonate authigenesis. The concretions contain numerous rhizoliths; they are cemented with calcium‐rhodochrosite, a feature which has not been reported before. The rhodochrosite cement has negative δ13C values (?16·5‰ on average) and precipitated in suboxic conditions due to microbial degradation of roots coupled to manganese reduction. The exceptional preservation of the epidermis/exodermis and xylem vessels of former root tissues indicates that the rhodochrosite formed shortly after the death of a root in water‐logged sediments. Rhodochrosite precipitated during the initial stages of concretionary growth in suboxic microenvironments within roots, while siderite cementation occurred simultaneously around them in anoxic conditions. These suboxic microenvironments developed because oxygen was transported from the overlying oxygenated soil into sediments saturated with anoxic water via roots acting as permeable conduits. This model explains how separate generations of carbonate cements having different mineralogy and isotopic compositions, which would conventionally be regarded as cements precipitated sequentially in different diagenetic zones during gradual burial, can form simultaneously in shallow burial settings where strong redox gradients exist around vertically oriented permeable root structures.  相似文献   

6.
The Darlington (Sakmarian) and Berriedale (Artinskian) Limestones are neritic deposits that accumulated in high‐latitude environments along the south‐eastern margin of Pangea in what is now Tasmania. These rocks underwent a series of diagenetic processes that began in the marine palaeoenvironment, continued during rapid burial and were profoundly modified by alteration associated with the intrusion of Mesozoic igneous rocks. Marine diagenesis was important but contradictory; although dissolution took place, there was also coeval precipitation of fibrous calcite cement, phosphate and glauconite, as well as calcitization of aragonite shells. These processes are interpreted as having been promoted by mixing of shelf and upwelling deep ocean waters and enabled by microbial degradation of organic matter. In contrast to warm‐water carbonates where meteoric diagenesis is important, the Darlington and Berriedale Limestones were largely unaffected by meteoric diagenesis. Only minor dissolution and local cementation took place in this diagenetic environment, although mechanical compaction was ubiquitous. Correlation with burial history curves indicates that chemical compaction became important as burial depths exceeded 150 m, promoting precipitation of extensive ferroan calcite. This effect resulted from burial by rapidly deposited, overlying, thick, late Permian and Triassic terrestrial sediments. This diagenetic pathway was, however, complicated by the subsequent intrusion of massive Mesozoic diabases and associated silicifying diagenetic fluids. Finally, fractures most probably connected with Cretaceous uplift were filled with late‐stage non‐ferroan calcite cement. This study suggests that both carbonate dissolution and precipitation occur in high‐latitude marine palaeoenvironments and, therefore, the cold‐water diagenetic realm is not always destructive in terms of diagenesis. Furthermore, it appears that for the early Permian of southern Pangea at least, there was no real difference in the diagenetic pathways taken by cool‐water and cold‐water carbonates.  相似文献   

7.
The isotopic evolution of δ13C and δ18O is reported for the Jurassic and early Cretaceous in two pelagic sections of the External Zones in the Betic Cordilleras (SE Spain). Stable isotope curves from pelagic trough and swell sections display similar patterns. Variations in δ18O and δ13C values from strata at equivalent age probably reflect both early diagenetic cementation and later temperature‐related burial diagenesis. Comparison of global isotope curves with those presented in this work allows the differentiation of global from local events. Thus, the anoxic event during the early Toarcian (falciferum Zone) is characterized by elevated δ13C and depressed δ18O values. The isotopic record also allows the detection of the middle Oxfordian transgression. There are other peaks for the late Toarcian, early Bajocian, Callovian and early Berriasian that can also be used as tools for correlation purposes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
The Tepearasi Formation of the autochthonous Geyikdagi Group in the Central Tauride Belt, SE of Beysehir, is Dogger in age and consists dominantly of massive limestones and greyish dolomites occurring within the middle to upper sections. The total thickness of the dolomitic levels ranges from 100-300 m and laterally extends 500-700 m. Three types of dolomite were distinguished through petrographic analyses: homogeneous, mottled (saddle-crystalline) and joint-filling dolomite, which were interpreted to have formed in two different stages, early diagenetic and late diagenetic. The homogeneous dolomite of the early diagenetic stage is light-coloured and monotonous-textured and shows the form of a dolosparite mosaic. The mottled dolomite formed in the late diagenetic stage is light- to dark-coloured and coarsely granular idiomorphic. The other type of late diagenetic dolomite, described as the joint-filling type, presents a crystal growth pattern from the joint walls towards the centre of the joint space. I  相似文献   

9.
Early diagenesis of the Upper Cretaceous (late Coniacian to early Santonian) Marshybank Formation was controlled by depositional environment (composition of depositional water, Fe and organic content of the sediment, sedimentation rate, proximity to the shoreline) and influx of meteoric water related to relative sea-level fall. Five depositional environments, each characterized by a distinct early diagenetic mineral assemblage, have been recognized. Offshore shelf sediments that were deposited in a dysaerobic environment are characterized by abundant framboidal pyrite and rare septarian concretions, composed of ‘early’ calcite and siderite. Intense sulphate reduction, promoted by the dysaerobic depositional water, was the primary influence on early diagenesis. Offshore shelf sediments deposited under aerobic conditions are characterized by abundant concretions, composed of two generations of siderite (S1 and S2). In this environment, methanogenesis, rather than sulphate reduction, was more important. Early diagenesis of the inner shelf sands was generally limited. However, in sands deposited proximal to the shoreline, mixing of marine and meteoric waters promoted crystallization of Fe-rich chlorite and siderite. The shoreface was characterized by dissolution of detrital minerals in the upper portion, and precipitation of kaolinite or illite/smectite in the lower portion. In the coastal plain environment, brackish water and early reducing conditions resulted in formation of abundant euhedral pyrite. Ankerite, rather than siderite, is the typical early diagenetic carbonate. The δ18O values of the earliest cements (i.e. ‘early’ calcite, siderite S1, inner shelf siderite) indicate crystallization from a low-18O, marine-derived porewater. Assuming crystallization at 25°C, a δ18O value of about ?7‰ (SMOW) can be estimated for the seaway during Marshybank Formation time. Similar calculations for the overlying Dowling Member (Puskwaskau Formation) suggest that the δ18O value of the seaway increased to about ?4% (SMOW), consistent with its transgressive nature. Very low δ18O values are exhibited by siderite S2. These results indicate crystallization during intermediate diagenesis (≥60°C) from meteoric water (≥? 15‰ SMOW) that entered the Marshybank Formation during sea-level lowstand.  相似文献   

10.
A peculiar facies of the Norian–Rhaetian Dachstein‐type platform carbonates, which contains large amounts of blackened bioclasts and dissolutional cavities filled by cements and internal sediments, occurs in the Zlatibor Mountains, Serbia. Microfacies investigations revealed that the blackened bioclasts are predominantly Solenoporaceae, with a finely crystalline, originally aragonite skeleton of fine cellular structure. Blackening of other bioclasts also occurs subordinately. Solenoporacean‐dominated reefs, developed behind the platform margin patch‐reef tract, were the main source of sand‐sized detritus. The blackened and other non‐blackened bioclasts are incorporated in automicrite cement. Radiaxial fibrous calcite cements in the dissolutional cavities are also black, dark grey or white. Reworked black pebbles were reported from many occurrences of peritidal deposits; in those cases, the blackening took place under pedogenic, meteoric diagenetic conditions. In contrast, in the inner platform deposits of the Ilid?a Limestone, the blackening of bioclasts occurred in a marine–meteoric mixing‐zone, as indicated by petrographic features and geochemical data of the skeleton‐replacing calcite crystals. Attributes of mixing‐zone pore waters were controlled by mixing corrosion, different solubility of carbonate minerals and microbial decomposition of organic matter. In the moderate‐energy inner platform environment, large amounts of microbial organic tissue were accumulated and subsequently decomposed, triggering selective blackening in the course of early, shallow burial diagenesis. The δ18O and δ13C values of the mixing‐zone precipitates and replacive calcite do not produce a linear mixing trend. Variation mainly resulted from microbial decomposition of organic matter that occurred under mixing‐zone conditions. The paragenetic sequence implies cyclic diagenetic conditions that were determined by marine, meteoric and mixing‐zone pore fluids. The diagenetic cycles were controlled by sea‐level fluctuations of moderate amplitude under a semi‐arid to semi‐humid climate.  相似文献   

11.
Carbonate concretions provide unique records of ancient biogeochemical processes in marine sediments. Typically, they form in organic‐rich mudstones, where a significant fraction of the bicarbonate required for carbonate precipitation is supplied from the decomposition of organic matter in the sediments. As a result, carbonates that comprise concretions are usually characterized by broad ranges in δ13C and include values that are significantly depleted relative to seawater. This article reports results from a physical, petrographic and geochemical analysis of 238 concretions from the Wheeler Formation (Cambrian Series 3), Utah, USA, which are unusual in several respects. Most prominently, they formed in organic‐poor mudstones (total organic carbon = 0·1 to 0·5%) and are characterized by a narrow range of δ13C that onlaps the range of contemporaneous seawater values. Subtle centre to edge trends in δ13C demonstrate that concretion precipitation was initiated by local chemical gradients set up by microbial activity in the sediments, but was sustained during growth by a large pool of inorganic bicarbonate probably derived from alkaline bottom waters. The large inorganic pool appears to have been important in facilitating rapid precipitation of the concretion matrix, which occurred via both displacive and replacive carbonate precipitation during early diagenesis. Stable isotope data from cogenetic pyrite (δ34S) and silica (δ18O) phases provide insight into the evolution of biogeochemical processes during concretion growth, and suggest that concretions were formed almost entirely during sulphate reduction, with only minor modification thereafter. Concretions of the Wheeler Formation appear to represent an end‐member system of concretion formation in which rapid growth was promoted by ions supplied from sea‐water. As such, they offer insight into the spectrum of processes that may influence the growth of carbonate concretions in marine sediments.  相似文献   

12.
Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ13C=?28·7‰ PDB and δ18O=?1·6‰ PDB through to δ13C=?6·9‰ PDB and δ18O=?14·6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ13C=?12·0 to ?10·1‰ PDB and δ18O=?5·7 to ?5·6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ34S=+24·8‰ CDT and δ18O=+16·4‰ SMOW), indicating formation from near‐surface, sulphate‐depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ34S=+6 to +11‰ CDT and δ18O=+8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.  相似文献   

13.
The Shishugou Group, which consists of Middle Jurassic Toutunhe Formation and Upper Jurassic Qigu Formation, is currently an important hydrocarbon exploration target in the Fukang Sag of Junggar Basin, China. The Shishugou Group sandstones experienced a complex diagenetic history with deep burial (3600–5800 m) to develop low–ultralow porosity and permeability reservoir with some high-quality reservoirs found in the tight sandstones owing to the reservoir heterogeneity. This integrated petrographic and geochemical study aims to unravel the origin and alteration of calcite cement in the Shishugou Group sandstones and predict fluid–rock interaction and porosity evolution. The Shishugou Group sandstones (Q43.8F7.4R48.8) have a dominant calcite cement with strong heterogeneity forming in two generations: poikilotopic, pore-filling masses that formed at an early diagenetic stage and isolated rhombs or partial grain replacements that formed at a late stage. The Shishugou Group, which are lacustrine sediments formed in low–medium salinity lake water in a semiarid–arid climatic environment, provided the alkaline diagenetic environment needed for precipitation of chlorite and early calcite cements in early diagenesis. The Ca2+ of the pore-filling calcite cements was sourced from weathering or dissolution of volcanic clasts in the sediment source or during transport in under oxidising conditions. The δ18OV-PDB and δ13CV-PDB values of calcite were significantly controlled by distance from the top unconformity and underlying coal-bearing stratum with carbon sourced from atmospheric CO2, and organic matter. The early carbonate cement inhibited burial compaction producing intergranular pore spaces with enhanced reservoir properties by late dissolution under acidic conditions. Anhydrite cement reflects reaction of organic acid and hydrocarbon with the sandstones and is associated with fluid migration pathways. The fluid–rock interactions and porosity evolution of the tight deep sandstones produced secondary pores that filled with hydrocarbon charge that forms this deep high-quality reservoir.  相似文献   

14.
《Sedimentology》2018,65(3):745-774
This paper explores little investigated diagenesis of spicule‐dominated sediments, based on Permian spiculites and cool‐water carbonates of the Tempelfjorden Group in central Spitsbergen. Field observations, petrography, stable isotope geochemistry, and mineralogical and chemical analyses reveal that the strata have been subjected to multistage diagenesis as the result of silica phase transitions at medium burial depths and deep‐burial overprinting. The growth of silica concretions occurred during the opal‐A/opal‐CT conversion and was controlled by the content and distribution of clay and spicules in the sediment, resulting in a variety of megascopic silica fabrics. Opal‐CT was subsequently dissolved, and all silica is now in a stable quartz stage. Petrographically, the rocks are characterized by a variety of chalcedony and quartz cements which perfectly preserve precursor textures. Most cements precipitated from silica‐oversaturated fluids, and their shapes reflect the silica saturation state and geometry of the pore space. Some microquartz and cryptoquartz also formed by a solid–solid inversion (recrystallization) of chalcedony. The cements have δ 18O values between +30‰ and +20‰ Standard Mean Ocean Water and display a systematic depletion in 18O from the first to the last crystallized, interpreted to reflect a gradual increase in temperature during burial. The precipitation of quartz cements started in the Middle Triassic when the strata passed the 19°C isotherm at burial depths of ca 600 m, and was completed in the mid‐Cretaceous, 2·3 km beneath the sea floor at temperatures of 75°C. Late diagenetic overprinting of the chert includes fracturing, brecciation and cementation with carbonate cements having δ 18O values between +2‰ and −30‰ Pee Dee Belemnite and δ 13C values between +4‰ and −14‰ Pee Dee Belemnite; they are linked to hot solutions introduced during Cretaceous volcanism or Palaeogene tectonism. This study illustrates the diagenetic pathway during burial of spicule‐rich sediments in a closed system and thereby provides a baseline for studies of more complexly altered chert deposits.  相似文献   

15.
Faunally restricted argillaceous wackestones from the Middle Jurassic of eastern England contain evidence of early diagenetic skeletal aragonite dissolution and stabilization of the carbonate matrix, closely followed by precipitation of zoned calcite cements, and precipitation of pyrite. Distinctive cathodoluminescence and trace element trends through the authigenic calcites, their negative δ13C compositions and the location of pyrite in the paragenetic sequence indicate that calcite precipitation took place during sequential bacterial Mn, Fe and sulphate reduction. Calcite δ18O values are compatible with cementation from essentially marine pore fluids, although compositions vary owing to minor contamination with 18O-depleted ‘late’cements. Mg and Sr concentrations in the calcites are lower than those in recent marine calcite cements. This may be a result of kinetic factors associated with the shallow burial cementation microenvironments. Bicarbonate for sustained precipitation of the authigenic calcites was derived largely from aragonite remobilization, augmented by that produced through anaerobic organic matter oxidation in the metal and sulphate reduction environments. Aragonite dissolution is thought to have been induced by acidity generated during aerobic bacterial oxidation of organic matter. Distinction of post-oxic metal reduction and anoxic sulphate reduction diagenetic environments in modern carbonate sediments is uncommon outside pelagic settings, and early bacterially mediated diagenesis in modern platform carbonates is associated with extensive carbonate dissolution. High detrital Fe contents of the Jurassic sediments, and their restricted depositional environment, were probably the critical factors promoting early cementation. These precipitates constitute a unique example of calcite authigenesis in shallow water limestones during bacterial Mn and Fe reduction.  相似文献   

16.
The Gordon Group carbonates consist of biota of the Chlorozoan assemblage, diverse non‐skeletal grains and abundant micrite and dolomite, similar to those of modern warm water carbonates. Cathodoluminescence studies indicate marine, meteoric and some burial cements. Dolomites replacing burrows, mudcracks and micrite formed during early diagenesis.

δ18O values (‐5 to ‐7%ō PDB) of the non‐luminescent fauna and marine cement are lighter than those of modern counterparts but are similar to those existing within low latitudes during the Ordovician because of the light δ18O values of Ordovician seawater (‐3 to ‐5%o SMOW). The δ18O difference (2%o) between marine and meteoric calcite indicates that Ordovician meteoric water was similar to that in modern subtropics. Values of δ13C relative to δ18O indicate that during the Early Ordovician there were higher atmospheric CO2 levels than at present but during the Middle and Late Ordovician they became comparable with the present because of a change from ‘Greenhouse’ to glacial conditions. δ18O values of Late Ordovician seawater were heavier than in the Middle Ordovician mainly because of glaciation.

Dolomitization took place in marine to mixed‐marine waters while the original calcium carbonate was undergoing marine to meteoric diagenesis.  相似文献   

17.
Stable isotope and trace element analyses of 230 Jurassic (Pliensbachian–Toarcian) samples from northern Spain have been performed to test the use of geochemical variations in fossils (belemnites and brachiopods) and whole‐rock hemipelagic carbonates as palaeoceanographic indicators. Although the succession analysed (Reinosa area, westernmost Basque–Cantabrian Basin) has been subject to severe thermal alteration during burial diagenesis, the samples appear to be well preserved. The degree of diagenetic alteration of the samples has been assessed through the application of integrated petrographic, chemical and cathodoluminescence analyses. It is demonstrated that brachiopods and whole‐rock carbonates, although widely used for palaeoceanic studies, do not retain their primary marine geochemical composition after burial diagenesis. In contrast, there is strong evidence that belemnite rostra preserve original isotopic values despite pervasive diagenesis of the host rock. Well‐preserved belemnite shells (non‐luminescent to slightly luminescent) typically show stable isotope values of +4·3‰ to –0·7‰δ13C, +0·7‰ to –3·2‰δ18O, and trace element contents of <32 μg g–1 Mn, <250 μg g–1 Fe, >950 μg g–1 Sr and Sr/Mn ratios >80. This study suggests that the degree to which diagenesis has affected the preservation of an original isotopic composition may differ for different low‐Mg calcite fossil shells and hemipelagic bulk carbonates, behaviour that should be considered when marine isotopic signatures from other ancient carbonate rocks are investigated. Multiple non‐luminescent contemporaneous belemnite samples passed the petrographic and geochemical tests to be considered as palaeoceanic recorders, yet their δ13C and δ18O values exhibited moderate scatter. Such variability is likely to be related to the palaeoecological behaviour of belemnites and/or high‐frequency secular variations in sea‐water chemistry superimposed on the long‐term isotopic trend. A pronounced positive carbon‐isotope excursion (up to +4·3‰) is documented in the early Toarcian serpentinus biozone, which correlates with the Toarcian δ13C maximum reported in other European and Tethyan regions.  相似文献   

18.
During Integrated Ocean Drilling Program Expedition 325, 34 holes were drilled along five transects in front of the Great Barrier Reef of Australia, penetrating some 700 m of late Pleistocene reef deposits (post‐glacial; largely 20 to 10 kyr bp ) in water depths of 42 to 127 m. In seven holes, drilled in water depths of 42 to 92 m on three transects, older Pleistocene (older than last glacial maximum, >20 kyr bp ) reef deposits were recovered from lower core sections. In this study, facies, diagenetic features, mineralogy and stable isotope geochemistry of 100 samples from six of the latter holes were investigated and quantified. Lithologies are dominated by grain‐supported textures, and were to a large part deposited in high‐energy, reef or reef slope environments. Quantitative analyses allow 11 microfacies to be defined, including mixed skeletal packstone and grainstone, mudstone‐wackestone, coral packstone, coral grainstone, coralline algal grainstone, coral‐algal packstone, coralline algal packstone, Halimeda grainstone, microbialite and caliche. Microbialites, that are common in cavities of younger, post‐glacial deposits, are rare in pre‐last glacial maximum core sections, possibly due to a lack of open framework suitable for colonization by microbes. In pre‐last glacial maximum deposits of holes M0032A and M0033A (>20 kyr bp ), marine diagenetic features are dominant; samples consist largely of aragonite and high‐magnesium calcite. Holes M0042A and M0057A, which contain the oldest rocks (>169 kyr bp ), are characterized by meteoric diagenesis and samples mostly consist of low‐magnesium calcite. Holes M0042A, M0055A and M0056A (>30 kyr bp ), and a horizon in the upper part of hole M0057A, contain both marine and meteoric diagenetic features. However, only one change from marine to meteoric pore water is recorded in contrast with the changes in diagenetic environment that might be inferred from the sea‐level history. Values of stable isotopes of oxygen and carbon are consistent with these findings. Samples from holes M0032A and M0033A reflect largely positive values (δ18O: ?1 to +1‰ and δ13C: +1 to +4‰), whereas those from holes M0042A and M0057A are negative (δ18O: ?4 to +2‰ and δ13C: ?8 to +2‰). Holes M0055A and M0056A provide intermediate values, with slightly positive δ13C, and negative δ18O values. The type and intensity of meteroric diagenesis appears to have been controlled both by age and depth, i.e. the time available for diagenetic alteration, and reflects the relation between reef deposition and sea‐level change.  相似文献   

19.
张云峰  王清晨 《地质科学》2007,42(3):570-578
对济阳坳陷奥陶系碳酸盐原岩及孔洞缝中充填方解石进行了C、O同位素测定,结果表明孔洞缝充填方解石的δ13C和δ18O值比原岩偏负。奥陶系三山子组和马家沟组孔缝中充填的方解石C、O同位素演化有很大区别,前者的δ13C和δ18O值均为负值,δ13C向较高负值偏移,δ18O值向较低负值偏移;马家沟组八陡段孔缝充填方解石的δ13C和δ18O值也多为负值,δ13C向较正值方向偏移,δ18O值向较高负值偏移。奥陶系碳酸盐岩孔缝充填方解石形成于大气淡水环境和埋藏成岩环境,次生孔洞可能主要形成于早期表生阶段,裂缝形成于中-新生代的构造运动,方解石主要充填于埋藏环境中。次生孔缝的主要形成时期早于油气大量运移期,对古潜山油藏的形成有利。  相似文献   

20.
Petrography demonstrates the presence of three types of fibrous calcite cement in buildup deposits of the Kullsberg Limestone (middle Caradoc), central Sweden. Translucent fibrous calcite has intrinsic blue luminescence (CL) indicative of pure calcite. This cement has 2–5 mol% MgCO3, low Mn and Fe (≤ 100 p.p.m.), and is considered to be slightly altered to unaltered, primary low- to intermediate-Mg calcite. Grey turbid fibrous calcite has variable but generally low MgCO3 content (most analyses <2 mol%) and variable CL response, with Mn and Fe concentrations up to 1200 and 500 p.p.m., respectively. The heterogeneous characteristics of this variety of fibrous calcite are caused by diagenetic alteration of a translucent fibrous calcite precursor. Light-brown turbid fibrous calcite has low MgCO3 (near 1 mol%) and variable Mn (up to 800 p.p.m.) and Fe (up to 500 p.p.m.) concentrations, with an abundance of bright luminescent patches, which formed during alteration caused by reducing diagenetic fluids. The δ13C and δ18O values of all fibrous calcite form a tight field (δ13C=1·7 to 3·1‰ PDB, δ18O= ? 2·6 to ? 4·1‰ PDB) compared with fibrous calcite isotope values from other units. Fibrous calcite δ18O values are larger than adjacent meteoric or burial cements, which have δ18O δ ? 8‰ PDB. Consequently, most diagenetic alteration of Kullsberg fibrous calcite is interpreted to have occurred in the marine diagenetic realm. First-generation equant and bladed calcite cements, which pre-date fibrous calcite, are interpreted as unaltered, low-Mg calcite marine cements based on δ13C and δ18O data (δ13C = 2·3 to 2·7‰ PDB, δ18O= ? 2·8 to ? 3·5‰ PDB). Unlike fibrous cement, which reflects global sea water chemistry, first-generation equant and bladed calcite are indicators of localized modification of seawater chemistry in restricted settings. Kullsberg abiotic marine cements have larger δ18O values than most Caradoc marine precipitates from equatorial Laurentia. Positive Kullsberg δ18O values are attributed to lower seawater temperatures and/or slightly elevated salinity on the Baltic platform relative to seawater from which other marine precipitates formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号