首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Co‐genetic debrite–turbidite beds occur in a variety of modern and ancient turbidite systems. Their basic character is distinctive. An ungraded muddy sandstone interval is encased within mud‐poor graded sandstone, siltstone and mudstone. The muddy sandstone interval preserves evidence of en masse deposition and is thus termed a debrite. The mud‐poor sandstone, siltstone and mudstone show features indicating progressive layer‐by‐layer deposition and are thus called a turbidite. Palaeocurrent indicators, ubiquitous stratigraphic association and the position of hemipelagic intervals demonstrate that debrite and enclosing turbidite originate in the same event. Detailed field observations are presented for co‐genetic debrite–turbidite beds in three widespread sequences of variable age: the Miocene Marnoso Arenacea Formation in the Italian Apennines; the Silurian Aberystwyth Grits in Wales; and Quaternary deposits of the Agadir Basin, offshore Morocco. Deposition of these sequences occurred in similar unchannellized basin‐plain settings. Co‐genetic debrite–turbidite beds were deposited from longitudinally segregated flow events, comprising both debris flow and forerunning turbidity current. It is most likely that the debris flow was generated by relatively shallow (few tens of centimetres) erosion of mud‐rich sea‐floor sediment. Changes in the settling behaviour of sand grains from a muddy fluid as flows decelerated may also have contributed to debrite deposition. The association with distal settings results from the ubiquitous presence of muddy deposits in such locations, which may be eroded and disaggregated to form a cohesive debris flow. Debrite intervals may be extensive (> 26 × 10 km in the Marnoso Arenacea Formation) and are not restricted to basin margins. Such long debris flow run‐out on low‐gradient sea floor (< 0·1°) may simply be due to low yield strength (? 50 Pa) of the debris–water mixture. This study emphasizes that multiple flow types, and transformations between flow types, can occur within the distal parts of submarine flow events.  相似文献   

2.
《Sedimentology》2018,65(3):952-992
Hybrid event beds comprising both clean and mud‐rich sandstone are important components of many deep‐water systems and reflect the passage of turbulent sediment gravity flows with zones of clay‐damped or suppressed turbulence. ‘Behind‐outcrop’ cores from the Pennsylvanian deep‐water Ross Sandstone Formation reveal hybrid event beds with a wide range of expression in terms of relative abundance, character and inferred origin. Muddy hybrid event beds first appear in the underlying Clare Shale Formation where they are interpreted as the distal run‐out of the wakes to flows which deposited most of their sand up‐dip before transforming to fluid mud. These are overlain by unusually thick (up to 4·4 m), coarse sandy hybrid event beds (89% of the lowermost Ross Formation by thickness) that record deposition from outsized flows in which transformations were driven by both substrate entrainment in the body of the flow and clay fractionation in the wake. A switch to dominantly fine‐grained sand was accompanied initially by the arrest of turbulence‐damped, mud‐rich flows with evidence for transitional flow conditions and thick fluid mud caps. The mid and upper Ross Formation contain metre‐scale bed sets of hybrid event beds (21 to 14%, respectively) in (i) upward‐sandying bed set associations immediately beneath amalgamated sheet or channel elements; (ii) stacked thick‐bedded and thin‐bedded hybrid event bed‐dominated bed sets; (iii) associations of hybrid event bed‐dominated bed sets alternating with conventional turbidites; and (iv) rare outsized hybrid event beds. Hybrid event bed dominance in the lower Ross Formation may reflect significant initial disequilibrium, a bias towards large‐volume flows in distal sectors of the basin, extensive mud‐draped slopes and greater drop heights promoting erosion. Higher in the formation, hybrid event beds record local perturbations related to channel switching, lobe relocations and extension of channels across the fan surface. The Ross Sandstone Formation confirms that hybrid event beds can form in a variety of ways, even in the same system, and that different flow transformation mechanisms may operate even during the passage of a single flow.  相似文献   

3.
Seabed topography is ubiquitous across basin‐floor environments, and influences sediment gravity flows and sediment dispersal patterns. The impact of steep (several degrees) confining slopes on sedimentary facies and depositional architecture has been widely documented. However, the influence of gentle (fraction of a degree) confining slopes is less well‐documented, largely due to outcrop limitations. Here, exceptional outcrop and research borehole data from Unit A of the Permian Laingsburg Formation, South Africa, provide the means to examine the influence of subtle lateral confinement on flow behaviour and lobe stacking patterns. The dataset describes the detailed architecture of subunits A.1 to A.6, a succession of stacked lobe complexes, over a palinspastically restored 22 km across‐strike transect. Facies distributions, stacking patterns, thickness and palaeoflow trends indicate the presence of a south‐east facing low angle (fraction of a degree) lateral intrabasinal slope. Interaction between stratified turbidity currents with a thin basal sand‐prone part and a thick mud‐prone part and the confining slope results in facies transition from thick‐bedded sandstones to thin‐bedded heterolithic lobe fringe‐type deposits. Slope angle dictates the distance over which the facies transition occurs (hundreds of metres to kilometres). These deposits are stacked vertically over tens of metres in successive lobe complexes to form an aggradational succession of lobe fringes. Extensive slides and debrites are present at the base of lobe complexes, and are associated with steeper restored slope gradients. The persistent facies transition across multiple lobe complexes, and the mass flow deposits, suggests that the intrabasinal slope was dynamic and was never healed by deposition during Unit A times. This study demonstrates the significant influence that even subtle basin‐floor topography has on flow behaviour and depositional architecture of submarine lobe complexes. In addition, we present a new aggradational lobe fringe facies associations and recognition criteria for subtle confinement in less well‐exposed and subsurface basin fills.  相似文献   

4.
《Sedimentology》2018,65(1):151-190
This study documents the character and occurrence of hybrid event beds (HEBs) deposited across a range of deep‐water sub‐environments in the Cretaceous–Palaeocene Gottero system, north‐west Italy. Detailed fieldwork (>5200 m of sedimentary logs) has shown that hybrid event beds are most abundant in the distal confined basin‐plain domain (>31% of total thickness). In more proximal sectors, hybrid event beds occur within outer‐fan and mid‐fan lobes (up to 15% of total thickness), whereas they are not observed in the inner‐fan channelized area. Six hybrid event bed types (HEB‐1 to HEB‐6) were differentiated mainly on basis of the texture of their muddier and chaotic central division (H3). The confined basin‐plain sector is dominated by thick (maximum 9·57 m; average 2·15 m) and tabular hybrid event beds (HEB‐1 to HEB‐4). Their H3 division can include very large substrate slabs, evidence of extensive auto‐injection and clast break‐up, and abundant mudstone clasts set in a sandy matrix (dispersed clay ca 20%). These beds are thought to have been generated by highly energetic flows capable of delaminating the sea floor locally, and carrying large rip‐up clasts for relatively short distances before arresting. The unconfined lobes of the mid‐fan sector are dominated by thinner (average 0·38 m) hybrid event beds (HEB‐5 and HEB‐6). Their H3 divisions are characterized by floating mudstone clasts and clay‐enriched matrices (dispersed clay >25%) with hydraulically fractionated components (mica, organic matter and clay flocs). These hybrid event beds are thought to have been deposited by less energetic flows that underwent early turbulence damping following incorporation of mud at proximal locations and by segregation during transport. Although there is a tendency to look to external factors to account for hybrid event bed development, systems like the Gottero imply that intrabasinal factors can also be important; specifically, the type of substrate available (muddy or sandy) and where and how erosion is achieved across the system producing specific hybrid event bed expressions and facies tracts.  相似文献   

5.
Submarine turbidity currents are one of the most important processes for moving sediment across our planet; they are hazardous to offshore infrastructure, deposit petroleum reservoirs worldwide, and may record tsunamigenic landslides. However, there are few studies that have monitored these submarine flows in action, and even fewer studies that have combined direct monitoring with longer‐term records from core and seismic data of deposits. This article provides one of the most complete studies yet of a turbidity current system. The aim here is to understand what controls changes in flow frequency and character along the turbidite system. The study area is a 12 km long delta‐fed fjord (Howe Sound) in British Columbia, Canada. Over 100 often powerful (up to 2 to 3 m sec?1) events occur each year in the highly‐active proximal channels, which extend for 1 to 2 km from the delta lip. About half of these events reach the lobes at the channel mouths. However, flow frequency decreases rapidly once these initially sand‐rich flows become unconfined, and only one to five flows run out across the mid‐slope each year. Many of these sand‐rich, channelized, delta‐sourced flows therefore dissipated over a few hundred metres, once unconfined, rather than eroding and igniting. Upflow migrating bedforms indicate that supercritical flow dominated in the proximal channels and lobes, and also across the unconfined mid‐slope. These supercritical flows deposited thick sand beds in proximal channels and lobes, but thinner and finer beds on the unconfined mid‐slope. The distal flat basin records far larger volume and more hazardous events that have a recurrence interval of ca 100 years. This study shows how sand‐rich delta‐fed flows dissipate rapidly once they become unconfined, that supercritical flows dominate in both confined and unconfined settings, and how a second type of more hazardous, and much less frequent event is linked to a different scale of margin failure.  相似文献   

6.
The Marnoso Arenacea Formation provides the most extensive correlation of individual flow deposits (beds) yet documented in an ancient turbidite system. These correlations provide unusually detailed constraints on bed shape, which is used to deduce flow evolution and assess the validity of numerical and laboratory models. Bed volumes have an approximately log‐normal frequency distribution; a small number of flows dominated sediment supply to this non‐channelized basin plain. Turbidite sandstone within small‐volume (<0·7 km3) beds thins downflow in an approximately exponential fashion. This shape is a property of spatially depletive flows, and has been reproduced by previous mathematical models and laboratory experiments. Sandstone intervals in larger‐volume (0·7–7 km3) beds have a broad thickness maximum in their proximal part. Grain‐size trends within this broad thickness maximum indicate spatially near‐uniform flow for distances of ∼30 km, although the flow was temporally unsteady. Previous mathematical models and laboratory experiments have not reproduced this type of deposit shape. This may be because models fail to simulate the way in which near bed sediment concentration tends towards a constant value (saturates) in powerful flows. Alternatively, the discrepancy may be the result of relatively high ratios of flow thickness and sediment settling velocity in submarine flows, together with very gradual changes in sea‐floor gradient. Intra‐bed erosion, temporally varying discharge, and reworking of suspension fallout as bedload could also help to explain the discrepancy in deposit shape. Most large‐volume beds contain an internal erosion surface underlain by inversely graded sandstone, recording waxing and waning flow. It has been inferred previously that these characteristics are diagnostic of turbidites generated by hyperpycnal flood discharge. These turbidites are too voluminous to have been formed by hyperpycnal flows, unless such flows are capable of eroding cubic kilometres of sea‐floor sediment. It is more likely that these flows originated from submarine slope failure. Two beds comprise multiple sandstone intervals separated only by turbidite mudstone. These features suggest that the submarine slope failures occurred as either a waxing and waning event, or in a number of stages.  相似文献   

7.
Much of our understanding of submarine sediment‐laden density flows that transport very large volumes (ca 1 to 100 km3) of sediment into the deep ocean comes from careful analysis of their deposits. Direct monitoring of these destructive and relatively inaccessible and infrequent flows is problematic. In order to understand how submarine sediment‐laden density flows evolve in space and time, lateral changes within individual flow deposits need to be documented. The geometry of beds and lithofacies intervals can be used to test existing depositional models and to assess the validity of experimental and numerical modelling of submarine flow events. This study of the Miocene Marnoso Arenacea Formation (Italy) provides the most extensive correlation of individual turbidity current and submarine debris flow deposits yet achieved in any ancient sequence. One hundred and nine sections were logged through a ca 30 m thick interval of time‐equivalent strata, between the Contessa Mega Bed and an overlying ‘columbine’ marker bed. Correlations extend for 120 km along the axis of the foreland basin, in a direction parallel to flow, and for 30 km across the foredeep outcrop. As a result of post‐depositional thrust faulting and shortening, this represents an across‐flow distance of over 60 km at the time of deposition. The correlation of beds containing thick (> 40 cm) sandstone intervals are documented. Almost all thick beds extend across the entire outcrop area, most becoming thinly bedded (< 40 cm) in distal sections. Palaeocurrent directions for flow deposits are sub‐parallel and indicate confinement by the lateral margins of the elongate foredeep. Flows were able to traverse the basin in opposing directions, suggesting a basin plain with a very low gradient. Small fractional changes in stratal thickness define several depocentres on either side of the Verghereto (high) area. The extensive bed continuity and limited evidence for flow defection suggest that intrabasinal bathymetric relief was subtle, substantially less than the thickness of flows. Thick beds contain two distinct types of sandstone. Ungraded mud‐rich sandstone intervals record evidence of en masse (debrite) deposition. Graded mud‐poor sandstone intervals are inferred to result from progressive grain‐by‐grain (turbidite) deposition. Clast‐rich muddy sandstone intervals pinch‐out abruptly in downflow and crossflow directions, in a fashion consistent with en masse (debrite) deposition. The tapered shape of mud‐poor sandstone intervals is consistent with an origin through progressive grain‐by‐grain (turbidite) deposition. Most correlated beds comprise both turbidite and debrite sandstone intervals. Intrabed transitions from exclusive turbidite sandstone, to turbidite sandstone overlain by debrite sandstone, are common in the downflow and crossflow directions. This spatial arrangement suggests either: (i) bypass of an initial debris flow past proximal sections, (ii) localized input of debris flows away from available sections, or (iii) generation of debris flows by transformation of turbidity currents on the basin plain because of seafloor erosion and/or abrupt flow deceleration. A single submarine flow event can comprise multiple flow phases and deposit a bed with complex lateral changes between mud‐rich and mud‐poor sandstone.  相似文献   

8.
A common facies observed in deep‐water slope and especially basin‐floor rocks of the Neoproterozoic Windermere Supergroup (British Columbia, Canada) is structureless, coarse‐tail graded, medium‐grained to coarse‐grained sandstone with from 30% to >50% mud matrix content (i.e. matrix‐rich). Bed contacts are commonly sharp, flat and loaded. Matrix‐rich sandstone beds typically form laterally continuous units that are up to several metres thick and several tens to hundreds of metres wide, and commonly adjacent to units of comparatively matrix‐poor, scour‐based sandstone beds with large tabular mudstone and sandstone clasts. Matrix‐rich units are common in proximal basin‐floor (Upper Kaza Group) deposits, but occur also in more distal basin‐floor (Middle Kaza Group) and slope (Isaac Formation) deposits. Regardless of stratigraphic setting, matrix‐rich units typically are directly and abruptly overlain by architectural elements comprising matrix‐poor coarse sandstone (i.e. channels and splays). Despite a number of similarities with previously described matrix‐rich beds in the literature, for example slurry beds, linked debrites and co‐genetic turbidites, a number of important differences exist, including the stratal make‐up of individual beds (for example, the lack of a clean sandstone turbidite base) and their stratigraphic occurrence (present throughout base of slope and basin‐floor strata, but most common in proximal lobe deposits) and accordingly suggest a different mode of emplacement. The matrix‐rich, poorly sorted nature of the beds and the abundance and size of tabular clasts in laterally equivalent sandstones imply intense upstream scouring, most probably related to significant erosion by an energetic plane‐wall jet or within a submerged hydraulic jump. Rapid energy loss coupled with rapid charging of the flow with fine‐grained sediment probably changed the rheology of the flow and promoted deposition along the margins of the jet. Moreover, these distinctive matrix‐rich strata are interpreted to represent the energetic initiation of the local sedimentary system, most probably caused by a local upflow avulsion.  相似文献   

9.
The settling behaviour of particulate suspensions and their deposits has been documented using a series of settling tube experiments. Suspensions comprised saline solution and noncohesive glass‐ballotini sand of particle size 35·5 μm < d < 250 μm and volume fractions, φs, up to 0·6 and cohesive kaolinite clay of particle size d < 35·5 μm and volume fractions, φm, up to 0·15. Five texturally distinct deposits were found, associated with different settling regimes: (I) clean, graded sand beds produced by incremental deposition under unhindered or hindered settling conditions; (II) partially graded, clean sand beds with an ungraded base and a graded top, produced by incremental deposition under hindered settling conditions; (III) graded muddy sands produced by compaction with significant particle sorting by elutriation; (IV) ungraded clean sand produced by compaction and (V) ungraded muddy sand produced by compaction. A transition from particle size segregation (regime I) to suppressed size segregation (regime II or III) to virtually no size segregation (IV or V) occurred as sediment concentration was increased. In noncohesive particulate suspensions, segregation was initially suppressed at φs ~ 0·2 and entirely inhibited at φs ≥ 0·6. In noncohesive and cohesive mixtures with low sand concentrations (φs < 0·2), particle segregation was initially suppressed at φm ~ 0·07 and entirely suppressed at φm ≥ 0·13. The experimental results have a number of implications for the depositional dynamics of submarine sediment gravity flows and other particulate flows that carry sand and mud; because the influence of moving flow is ignored in these experiments, the results will only be applicable to flows in which settling processes, in the depositional boundary, dominate over shear‐flow processes, as might be the case for rapidly decelerating currents with high suspended load fallout rates. The ‘abrupt’ change in settling regimes between regime I and V, over a relatively small change in mud concentration (<5% by volume), favours the development of either mud‐poor, graded sandy deposits or mud‐rich, ungraded sandy deposits. This may explain the bimodality in sediment texture (clean ‘turbidite’ or muddy ‘debrite’ sand or sandstone) found in some turbidite systems. Furthermore, it supports the notion that distal ‘linked’ debrites could form because of a relatively small increase in the mud concentration of turbidity currents, perhaps associated with erosion of a muddy sea floor. Ungraded, clean sand deposits were formed by noncohesive suspensions with concentrations 0·2 ≤ φs ≤ 0·4. Hydrodynamic sorting is interpreted as being suppressed in this case by relatively high bed aggradation rates which could also occur in association with sustained, stratified turbidity currents or noncohesive debris flows with relatively high near‐bed sediment concentrations.  相似文献   

10.
11.
Current understanding of submarine sediment density flows is based heavily on their deposits, because such flows are notoriously difficult to monitor directly. However, it is rarely possible to trace the facies architecture of individual deposits over significant distances. Instead, bed‐scale facies models that infer the architecture of ‘typical’ deposits encapsulate current understanding of depositional processes and flow evolution. In this study, the distribution of facies in 12 individual beds has been documented along downstream transects over distances in excess of 100 km. These deposits were emplaced in relatively flat basin‐plain settings in the Miocene Marnoso Arenacea Formation, north‐east Italy and the late Quaternary Agadir Basin, offshore Morocco. Statistical analysis shows that the most common series of vertical facies transitions broadly resembles established facies models. However, mapping of individual beds shows that they commonly deviate from generalized models in several important ways that include: (i) the abundance of parallel laminated sand, suggesting deposition of this facies from both high‐density and low‐density turbidity current; (ii) three distinctly different types of grain‐size break, suggesting waxing flow, erosional hiatuses and bypass of silty sediment; (iii) the presence of mud‐rich debrites demonstrating hybrid flow deposition; and (iv) dune‐scale cross‐lamination in fine‐medium grained sandstones. Submarine sediment density flows in basin‐plain settings flow over relatively simple topography. Yet, their deposits record complex flow events, involving transformation between different flow types, rather than the simple waning surges often associated with the distal parts of turbidite systems.  相似文献   

12.
《Sedimentology》2018,65(4):1067-1096
Submarine landslides, including the basal shear surfaces along which they fail, and their subsequent infill, are commonly observed in modern seabed and seismic reflection data sets; their resultant relief impacts sediment routing and storage patterns on continental margins. Here, three stacked submarine landslides are documented from the Permian Ecca Group, Laingsburg depocentre, Karoo Basin, South Africa, including two superimposed lateral margins. The stratigraphic framework includes measured sections and correlated surfaces along a 3 km long, 150 m high outcrop. Two stacked 2·0 to 4·5 km wide and 90 m and 60 m deep erosion surfaces are recognized, with lateral gradients of 8° and 4°, respectively. The aim of this study was to understand the evolution of a submarine landslide complex, including: evolution of basal shear surfaces/zones; variation of infill confinement; and location of the submarine landslides in the context of basin‐scale sedimentation and degradation rates. Three stages of formation are identified: (i) failure of submarine landslide 1, with deposition of unconfined remobilized deposits; (ii) failure of submarine landslide 2, forming basal shear surface/zone 1, with infill of remobilized deposits and weakly confined turbidites; and (iii) failure of submarine landslide 3, forming basal shear surface/zone 2, with infill of remobilized deposits and confined turbidites, transitioning stratigraphically to unconfined deposits. The expression of basal shear varies laterally, from metres thick zones in silt‐rich strata to sharp stepped surfaces in sand‐rich strata. Faulting and rotation of overlying bedding suggest that the shear surfaces/zones were dynamic. Stacking of landslides resulted from multi‐phase slope failure, increasing down‐dip topography and confinement of infilling deposits. The failure slope was probably a low supply tilted basin margin evidenced by megaclast entrainment from underlying basin‐floor successions and the lack of channel systems. This study develops a generic model of landslide infill, as a function of sedimentation and degradation rates, which can be applied globally.  相似文献   

13.
The present study aims to improve current understanding of the sedimentation of subtidal point bars, analyzing interaction between tidal currents and waves in shaping a submerged meander bend of the microtidal Venice Lagoon (Italy), and it is based on coupling of sedimentological studies, geophysical analyses and numerical modelling. The Venice Lagoon is characterized by an average depth of about 1·5 m over subtidal platforms and a mean tidal range of about 1·0 m. The morphodynamic evolution of the lagoon is strongly affected by intense seasonal windstorms, which promote the formation of wind waves triggering sediment resuspension and bottom erosion. The study channel is 70 to 100 m wide, it has a radius of curvature of about 260 m and cuts through a permanently submerged subtidal platform. Water depth ranges from 1·0 to 5·0 m below mean sea level on the subtidal platform and channel thalweg, respectively. Different from classical architectural models, the study point‐bar beds do not show sigmoidal geometries, but consist of horizontally‐bedded deposits abruptly overlying clinostratified beds. Sedimentation in the study bar is hypothesized to stem from the interaction between the in‐channel secondary helical flow, as for most meander bends, and wave winnowing of the subaqueous overbank areas. Laterally accreting point‐bar deposits point out that the curvature‐induced helical flow redistributed sediment from the channel thalweg to the bar top and contributed to the development of the ‘classical’ fining‐upward grain size trend. The marked truncation surface, separating clinostratified bar deposits from overlying horizontally‐bedded platform sediments is interpreted here as due to bar top wave‐winnowing, which also possibly promoted bank collapses. In the proposed model, sediments remobilized from bar top and subaqueous overbank areas were transported into the channel, forming peculiar ‘apron‐like’ accumulations, where sand accumulated through avalanching processes and mud settled down from suspension.  相似文献   

14.
Shingled Quaternary debris flow lenses on the north-east Newfoundland Slope   总被引:1,自引:0,他引:1  
Debris flow deposits are the principal component of Quaternary continental slope sediments between the north-east Newfoundland Shelf and central Orphan Basin. In seismic profiles, these deposits occur as shingled, elongate, acoustically transparent lenses with their long axes orientated downslope. Deposits of individual flows form positive mounds on the sea floor; subsequent flows were diverted by the pre-existing topography into bathymetric lows between older debris flow deposits. These deposits show a large variation in the area of sea floor covered by individual flows (about 60–1000 km2), average thickness of deposits (9–37 m) and volume of sediment displaced (1–27 km3). The ratio of average thickness to a measure of deposit diameter, termed the aspect ratio, has a threefold variation from 0·0006 to 0·0021. Very low depositional slopes and low aspect ratios suggest relatively low viscosities, probably due to inmixing of water during downslope transport. Stratified sediments form three distinct horizons and are locally interbedded with the debris flow deposits. These are mainly hemipelagic deposits. The slope and rise to the west of the Orphan Basin are constructional in character. The apparent absence of upper slope erosional features and the abundance of debris flow deposits on the slope suggest that the supply of sediment to the continental slope occurred predominantly during times of maximum extent of Quaternary glacial ice. The ice sheet grounding line during several glacial maxima must have been situated at or near the present shelf break, supplying vast amounts of sediment directly to the upper slope. Oversteepening and subsequent slope failures fed material into deeper water.  相似文献   

15.
Hybrid event beds form when turbidity currents that transport or locally acquire significant quantities of mud decelerate. The mud dampens turbulence driving flow transformations, allowing both mud and sand to settle into dense, near-bed fluid layers and debris flows. Quantifying details of the mud distribution vertically in what are often complex tiered deposits is critical to reconstructing flow processes and explaining the diverse bed types left by mud-bearing gravity flows. High-resolution X-ray fluorescence core scanning provides continuous vertical compositional profiles that can help to constrain mud distribution at sub-millimetre scale, offering a significant improvement over discrete sampling. The approach is applied here to cores acquired from the Pennsylvanian Ross Sandstone Formation, western Ireland, where a range of hybrid event beds have been identified. Raw X-ray fluorescence counts are calibrated against element concentrations and mineral abundances determined on coincident core plugs, with element and element log-ratios used as proxies to track vertical changes in abundances of quartz, illite (including mica), chlorite and calcite cement. New insights include ‘stepped’ (to higher values) as opposed to ‘saw-tooth’ vertical changes in mud content and the presence of compositional banding that would otherwise be overlooked. Hybrid event beds in basin floor sheets that arrived ahead of the prograding fan system have significantly cleaner sandy components than those in mid-fan lobes. The latter may imply that the heads of the currents emerging from mid-fan channels entrained significant mud immediately before they collapsed. Many of the H3 debrites are bipartite with a sandier H3a division attributed to re-entrainment and mixing of a trailing debris or fluid mud flow (H3b) with sand left by the forward part of the flow. Hybrid event bed structure may thus partly reflect substrate interaction and mixing during deposition, and the texture of the bed divisions may not simply mirror those in the suspensions from which they formed.  相似文献   

16.
Abstract Analysis of extensive exposures of the Permian Laingsburg Formation, Karoo basin, South Africa, have enabled a detailed reconstruction of the base of slope stratigraphy and palaeoenvironments in a deep-water system characterized by a very narrow grain-size range (fine sandstone). The deposits include an ≈ 4 km wide and 80 m thick channel complex, fringed by sandy sheet deposits that extend laterally for at least 6 km across depositional strike. Within the channel complex, individual channel fills are marked by shallow basal erosion surfaces draped by thin, parallel-stratified beds of very fine sandstone and siltstone, interpreted as flow tails to largely bypassing flows. These thin beds are overlain by 0·4 to 5 m thick beds of structureless, fine-grained sandstone that represent the majority of the channel fills. The basal packages may be partially to completely removed by localized scour in the axial zone of the channel complex but can be mapped laterally into overbank areas where they thicken and are dominated by rippled fine sandstones with intercalated siltstones. Axial confinement resulted from subtle topography on the basin floor, whereby the lower, dense parts of the initially erosive and bypassing flows were partially confined in the lows and the more dilute, slower moving upper parts of the flows deposited sheet-like successions across slightly elevated overbank areas. The narrow grain-size distribution prohibited the formation ofcoarse-grained residual bypass deposits during the initial phases of channel formation. With decreasing magnitude, later flows became more depositional, filling remaining axial depressions with thick-bedded structureless sandstone. The smaller volumes of late-stage sediment were more axially focused, producing local scour-and-fill features and starvation of the overbank areas. Resulting grain-size vertical profiles are complex. The basal flow tail packages and overlying massive deposits form a thickening and slightly coarsening-upward trend in the channel fills. The overbank deposits show a thinning- and fining-upward profile as a result of less bypass plus late-stage starvation of sand. Application of traditional deep-water facies models could therefore potentially lead to erroneous interpretations of the channel complex as a prograding lobe and the overbank sheets as channel-fills.  相似文献   

17.
Sector-collapse structures ranging up to 27 km wide with up to 7.7 km bankward erosion (scalloped margins) and linear escarpments occur along the east-north-east-trending, south-facing margins of the Yangtze Platform and Great Bank of Guizhou. Exposure of one of the structures on the rotated limb of a syncline displays the geometry in profile view. Declivities range from 65° to 90° in the upper wall and decrease asymptotically to the toe. Catastrophic collapses of the margins in both platforms occurred during the late Ladinian as constrained by the ages of strata truncated along the margins and the siliciclastic turbidites that onlap collapse structures. Middle Triassic Anisian and Ladinian platform-edge reef facies and platform-interior facies were truncated along both the Yangtze and Great Bank of Guizhou margins. Lower Triassic facies were also truncated along the Great Bank of Guizhou margin. Gravity transport during the main episodes of collapse occurred as mud-rich debris-flows and as mud-free hyper-concentrated flows. Clasts, several to tens of metres and, exceptionally, hundreds of metres across, were transported to the basin. Following collapse, talus, carbonate turbidites and periplatform-mud accumulated at the toe of slope. Shedding of skeletal grains and carbonate mud indicates active carbonate factories at the margin. Preserved sections of the margins demonstrate that the platforms evolved high-relief, accretionary escarpments prior to collapse. High-relief, without buttressing by basin-filling sediments, predisposed the margins to collapse by development of tensile strain and fracturing within the margin due to the lack of confining stress. The linear geometry of margins and active tectonics in the region supports tectonic activity triggering the collapse. Collapse is thus interpreted to have been triggered by fault movement and seismic shock. Comparison with other systems indicates that evolution from high-relief accretion to tectonic collapse of largely lithified margins resulted in large sector-collapse structures and deposition of a coarse, generally mud-poor breccia apron.  相似文献   

18.
Sea‐floor topography of deep‐water folds is widely considered to have a major impact on turbidity currents and their depositional systems, but understanding the flow response to such features was limited mainly to conceptual notions inspired by small‐scale laboratory experiments. High‐resolution three‐dimensional numerical experiments can compensate for the lack of natural‐scale flow observations. The present study combines numerical modelling of thrusts with fault‐propagation folds by Trishear3D software with computational fluid dynamics simulations of a natural‐scale unconfined turbidity current by MassFlow‐3D? software. The study reveals the hydraulic and depositional responses of a turbidity current (ca 50 m thick) to typical topographic features that it might encounter in an orthogonal incidence on a sea‐floor deep‐water fold and thrust belt. The supercritical current (ca 10 m sec?1) decelerated and thickened due to the hydraulic jump on the fold backlimb counter‐slope, where a reverse overflow formed through current self‐reflection and a reverse underflow was issued by backward squeezing of a dense near‐bed sediment load. The reverse flows were re‐feeding sediment to the parental current, reducing its waning rate and extending its runout. The low‐efficiency current, carrying sand and silt, outran a downslope distance of >17 km with only modest deposition (<0·2 m) beyond the fold. Most of the flow volume diverted sideways along the backlimb to surround the fold and spread further downslope, with some overspill across the fold and another hydraulic jump at the forelimb toe. In the case of a segmented fold, a large part of the flow went downslope through the segment boundary. Preferential deposition (0·2 to 1·8 m) occurred on the fold backlimb and directly upslope, and on the forelimb slope in the case of a smaller fold. The spatial patterns of sand entrapment revealed by the study may serve as guidelines for assessing the influence of substrate folds on turbiditic sedimentation in a basin.  相似文献   

19.
The parautochthonous Cloridorme Formation is a syn-orogenic flysch succession that was deposited in an elongate foredeep basin as mainly lower middle-fan, outer-fan, and basin-floor deposits. The basin-floor deposits (about 1.5 km thick) are confined to members β1, β2 and γ1, and are characterized by graded, thick (1–10 m) mud-rich calcareous greywacke beds previously interpreted as deposits of concentrated, muddy, unidirectional turbidity currents that locally generated backset (antidune) lamination in internally stratified flows. The dominant flow directions were from east to west, but west to east transport also occurred, as seen in the orientation of ripples, climbing ripples, flutes, consistently overturned flames, and grain imbrication. We believe that the flows that deposited these thick calcareous greywacke beds reversed by roughly 180° one or more times during deposition of the lower sandy part of the beds. Flow reversals are consistent with the sharp grain-size breaks and mud partings within sandy divisions. Measurement of grain fabric relative to stratification in the most celebrated ‘antidune’ bedforms indicates flow from west to east; thus, the bedforms were produced by west-to-east migration of megaripples, not by the upcurrent migration of antidunes. The thick muddy beds were deposited by large-volume, muddy flows that were deflected and reflected from the side slopes and internal topographic highs of a confined basin floor, much like the ‘Contessa’ and similar beds of the Italian Apennines. Large quantities of suspended mud were ponded above the irregular basin floor and settled to produce the thick silty mudstone caps seen on each bed. Because of their mode of emplacement, we propose that these beds be called contained turbidites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号