首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent of multi‐year sea ice impacts climate processes worldwide, such as ocean–atmosphere carbon dioxide exchange and deep ocean current formation. Reconstructing these processes in the past, and assessing the distribution of ecologically and climatically significant features, such as polynas, requires recognition of sediments deposited under multi‐year sea ice, but little is known about their characteristics. Textural analysis of subaerial and sea floor sediment in Explorers Cove, McMurdo Sound, at the mouth of Taylor Valley, Antarctica, augmented with observations of sedimentary structures and faunal components, elucidates how sediment is transported to the sea floor and allows characterization of the deposits. Comparison of grain‐size characteristics of subaerial (moraine, delta and sea‐ice surface) sediment and sea floor sediment from short cores taken at depths of 7 to 25 m indicates that the likely source of the moderately to poorly sorted sea floor sand is deltaic sediment; small glacial meltwater streams have built deltas since Taylor Valley became ice‐free ca 7000 years ago. Windblown sediment accumulating on the multi‐year sea ice close to the coast typically is coarser grained than sediment on the sea floor; this suggests that the transport of sediment through the ice to the sea floor is not the predominant mode of sediment transfer. However, supra‐sea‐ice sediment does move to the sea floor through local fractures. The rate of sedimentation under multi‐year sea ice is low because of limited stream flow and biogenic sedimentation; the ice cover inhibits primary productivity and dampens waves, precluding physical re‐suspension. The upper centimetres of sea floor sediment are churned by epifaunal scallops and brittle stars that leave no telltale biogenic structures and whose calcite ossicles and shells may be poorly preserved. The resulting deposits under multi‐year sea ice are poorly sorted, massive sand that provides little evidence of the bioturbators that have masked the indicators of the original physical depositional processes.  相似文献   

2.
The sediment state of aeolian dune fields and sand seas at a basinal scale is defined by the separate components of sediment supply, sediment availability and the transport capacity of the wind. The sediment supply for aeolian systems is the sediment that contemporaneously or at some later point serves as the source material for the aeolian system. Numerous factors impact the susceptibility of grains on a surface to transport, but these are cumulatively manifested by the actual transport rate, which serves as a proxy for sediment availability. Transport capacity is the potential sediment transport rate of the wind. Because the three aspects of sediment state can be given as a volumetric rate, they are directly comparable. Plotted simultaneously against time, the generated curves define nine possible classes of sediment state. Sediment supply that is stored occurs because it is transport or availability limited, or generated at a rate greater than the potential or actual transport rates respectively. Contemporaneous or lagged influx to an aeolian system may be limited by sediment availability, but cannot exceed the transport capacity of the wind. For the Kelso dune field in the Mojave Desert of California, a variety of stratigraphic and geomorphic evidence is used to approximate the sediment state of the system. The sediment supply was generated during the latest Pleistocene and earliest Holocene during humid periods of enhanced discharge by the Mojave River to form the Lake Mojave fan delta or terminal fan, and has been calculated over time from the sedimentation rate and the frequency of floods. Estimation of transport capacity over time was based upon modern wind data, with an allowance for greater winds during the Pleistocene based upon climatic models. Sediment availability was approximated by calculation of a modern dune mobility index, with variation over time based upon climatic inferences. While quantifying the Kelso or any natural system is subject to numerous uncertainties, the sediment state approach reflects the temporal and spatial disjointed nature of accumulations at Kelso, as well as illuminating questions for future research.  相似文献   

3.
Perennially ice‐covered lakes can have significantly different facies than open‐water lakes because sediment is transported onto the ice, where it accumulates, and sand grains preferentially melt through to be deposited on the lake floor. To characterize the facies in these lakes, sedimentary deposits from five Antarctic perennially ice‐covered lakes were described using lake‐bottom observations, underwater video and images, and sediment cores. One lake was dominated by laminated microbial mats and mud (derived from an abutting glacier), with disseminated sand and rare gravel. The other four lakes were dominated by laminated microbial mats and moderately well to moderately sorted medium to very coarse sand with sparse granules and pebbles; they contained minor interstitial or laminated mud (derived from streams and abutting glaciers). The sand was disseminated or localized in mounds and 1 m to more than 10 m long elongate ridges. Mounds were centimetres to metres in diameter; conical, elongate or round in shape; and isolated or deposited near or on top of one another. Sand layers in the mounds had normal, inverse, or no grading. Nine mixed mud and sand facies were defined for perennially ice‐covered lakes based on the relative proportion of mud to sand and the style of sand deposition. While perennially ice‐covered lake facies overlap with other ice‐influenced lakes and glaciomarine facies, they are characterized by a paucity of grains coarser than granules, a narrow range in sand grain sizes, and inverse grading in the sand mounds. These facies can be used to infer changes in ice cover through time and to identify perennially ice‐covered lakes in the rock record. Ancient perennially ice‐covered lakes are expected on Earth and Mars, and their characterization will provide new insights into past climatic conditions and habitability.  相似文献   

4.
The Lower Permian Wasp Head Formation (early to middle Sakmarian) is a ~95 m thick unit that was deposited during the transition to a non‐glacial period following the late Asselian to early Sakmarian glacial event in eastern Australia. This shallow marine, sandstone‐dominated unit can be subdivided into six facies associations. (i) The marine sediment gravity flow facies association consists of breccias and conglomerates deposited in upper shoreface water depths. (ii) Upper shoreface deposits consist of cross‐stratified, conglomeratic sandstones with an impoverished expression of the Skolithos Ichnofacies. (iii) Middle shoreface deposits consist of hummocky cross‐stratified sandstones with a trace fossil assemblage that represents the Skolithos Ichnofacies. (iv) Lower shoreface deposits are similar to middle shoreface deposits, but contain more pervasive bioturbation and a distal expression of the Skolithos Ichnofacies to a proximal expression of the Cruziana Ichnofacies. (v) Delta‐influenced, lower shoreface‐offshore transition deposits are distinguished by sparsely bioturbated carbonaceous mudstone drapes within a variety of shoreface and offshore deposits. Trace fossil assemblages represent distal expressions of the Skolithos Ichnofacies to stressed, proximal expressions of the Cruziana Ichnofacies. Impoverished trace fossil assemblages record variable and episodic environmental stresses possibly caused by fluctuations in sedimentation rates, substrate consistencies, salinity, oxygen levels, turbidity and other physio‐chemical stresses characteristic of deltaic conditions. (vi) The offshore transition‐offshore facies association consists of mudstone and admixed sandstone and mudstone with pervasive bioturbation and an archetypal to distal expression of the Cruziana Ichnofacies. The lowermost ~50 m of the formation consists of a single deepening upward cycle formed as the basin transitioned from glacioisostatic rebound following the Asselian to early Sakmarian glacial to a regime dominated by regional extensional subsidence without significant glacial influence. The upper ~45 m of the formation can be subdivided into three shallowing upward cycles (parasequences) that formed in the aftermath of rapid, possibly glacioeustatic, rises in relative sea‐level or due to autocyclic progradation patterns. The shift to a parasequence‐dominated architecture and progressive decrease in ice‐rafted debris upwards through the succession records the release from glacioisostatic rebound and amelioration of climate that accompanied the transition to broadly non‐glacial conditions.  相似文献   

5.
Laminated sediments in Lake Ohau, Mackenzie Basin, New Zealand, offer a potential high‐resolution climate record for the past 17 kyr. Such records are particularly important due to the relative paucity of detailed palaeoclimate data from the Southern Hemisphere mid‐latitudes. This paper presents outcomes of a study of the sedimentation processes of this temperate lake setting. Hydrometeorological, limnological and sedimentological data were collected over a 14 month period between 2011 and 2013. These data indicate that seasonality in the hydrometeorological system in combination with internal lake dynamics drives a distinct seasonal pattern of sediment dispersal and deposition on a basin‐wide scale. Sedimentary layers that accumulate proximal to the lake inflow at the northern end of the lake form in response to discrete inflow events throughout the year and display an event stratigraphy. In contrast, seasonal change in the lake system controls accumulation of light (winter) and dark (summer) laminations at the distal end of the lake, resulting in the preservation of varves. This study documents the key processes influencing sediment deposition throughout Lake Ohau and provides fundamental data for generating a high‐resolution palaeoclimate record from this temperate lake.  相似文献   

6.
Glacial mélange in the open-cast mine at Amsdorf, central Germany, consists of several square meters of large, sorted sediment blocks embedded in till. The blocks are composed of largely intact to slightly deformed glaciofluvial and glaciolacustrine sand, silt and clay, initially deposited in a proglacial lake (2–3 km up-ice) and subsequently overridden by a glacier. The blocks typically have cuboid to subrounded outlines, are randomly distributed in the till, and the contacts with the surrounding till are distinctly sharp. Underneath the mélange are varved clays which exhibit strong deformations occasionally intervening with entirely undisturbed areas. It is suggested that the blocks were entrained into debris-rich basal-ice by bulk freeze-on when the glacier sole was lowered onto the bottom of an overridden lake. After entrainment the blocks were transported englacially and re-deposited (with far-traveled till matrix) as a melt-out till from stagnant ice. The glacier moved mainly by sliding enhanced by low-permeability varved clays in the substratum. The glacier is believed to have been of a polythermal type. These results show that bulk freeze-on can lead to entrainment of soft sediment blocks at least 20 m2 in size, and that these blocks can be englacially transported with little or no deformation for several kilometers and more. The occurrence of deformed and undeformed clays under the till mélange indicates a possible mosaic of coupled and decoupled ice, the latter caused by a thin, transient subglacial water film separating the bed from the glacier.  相似文献   

7.
Identifying the driving mechanisms of soft‐sediment deformation in the geological record is the subject of debate. Thawing of ice‐rich clayey silt above permafrost was proved experimentally to be among the processes capable of triggering deformation. However, previous work has failed so far to reproduce similar structures in sand. This study investigates fluidization and intrusive ice formation from soil models in the laboratory. Experimental conditions reproduce the growth of ice‐cored mounds caused by pore water pressure increase during freeze‐back of sand in a permafrost context. Excess pore water pressure causes hydraulic fracturing and the development of water lenses beneath the freezing front. Later freezing of the water lenses generates intrusive ice. The main structures consist of sand dykes and sills formed when the increase in pore water pressure exceeds a critical threshold, and soft‐sediment deformations induced by subsidence during ice melt. The combination of processes has resulted in diapir‐like structures. The experimental structures are similar to those described in Pleistocene sites from France. These processes constitute a credible alternative to the seismic hypothesis evoked to explain soft‐sediment deformation structures in other European regions subjected to Pleistocene cold climates.  相似文献   

8.
The British Isles have been the focus of a number of recent modelling studies owing to the existence of a high‐quality sea‐level dataset for this region and the suitability of these data for constraining shallow earth viscosity structure, local to regional ice sheet histories and the magnitude/timing of global meltwater signals. Until recently, the paucity of both glaciological and relative sea‐level (RSL) data from Ireland has meant that the majority of these glacial isostatic adjustment (GIA) modelling studies of the British Isles region have tended to concentrate on reconstructing ice cover over Britain. However, the recent development of a sea‐level database for Ireland along with emergence of new glaciological data on the spatial extent, thickness and deglacial chronology of the Irish Ice Sheet means it is now possible to revisit this region of the British Isles. Here, we employ these new data to constrain the evolution of the Irish Ice Sheet. We find that in order to reconcile differences between model predictions and RSL evidence, a thick, spatially extensive ice sheet of ~600–700 m over much of north and central Ireland is required at the LGM with very rapid deglaciation after 21 k cal. yr BP. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
白涛  慕鹏飞  张明 《水科学进展》2020,31(2):194-202
黄河是世界上含沙量最高的河流,其上游沙漠宽谷河段的冲沙输沙效应受来水来沙和地形条件变化等影响。为研究高含沙河流在低温条件下的输沙效应,通过引入水温因子,建立了黄河上游沙漠宽谷河段巴彦高勒站的输沙率模型。基于First Optimization平台的通用全局优化算法率定参数,验证了输沙率模型,量化了高含沙河流的低温输沙效应。结果表明:①水温越低(1~7℃),河道输沙率越大,表明水温对河道输沙率的影响主要表现在低水温时期;②任意一种工况下,水温1℃时河道输沙率约为25℃时的2.5倍;③低水温(5℃)较常温(16.6℃)下的河道输沙率提高了40.7%,在黄河上游开河低温期进行大流量冲沙输沙是水沙调控的最佳时机。研究成果以期为黄河上游沙漠宽谷河段低水温高效冲沙输沙和其他寒区高含沙河流的治理提供技术支撑。  相似文献   

10.
The existence of a mid‐Cretaceous erg system along the western Tethyan margin (Iberian Basin, Spain) was recently demonstrated based on the occurrence of wind‐blown desert sands in coeval shallow marine deposits. Here, the first direct evidence of this mid‐Cretaceous erg in Europe is presented and the palaeoclimate and palaeoceanographic implications are discussed. The aeolian sand sea extended over an area of 4600 km2. Compound crescentic dunes, linear draa and complex aeolian dunes, sand sheets, wet, dry and evaporitic interdunes, sabkha deposits and coeval extradune lagoonal deposits form the main architectural elements of this desert system that was located in a sub‐tropical arid belt along the western Tethyan margin. Sub‐critically climbing translatent strata, grain flow and grain fall deposits, pin‐stripe lamination, lee side dune wind ripples, soft‐sediment deformations, vertebrate tracks, biogenic traces, tubes and wood fragments are some of the small‐scale structures and components observed in the aeolian dune sandstones. At the boundary between the aeolian sand sea and the marine realm, intertonguing of aeolian deposits and marine facies occurs. Massive sandstone units were laid down by mass flow events that reworked aeolian dune sands during flooding events. The cyclic occurrence of soft sediment deformation is ascribed to intermittent (marine) flooding of aeolian dunes and associated rise in the water table. The aeolian erg system developed in an active extensional tectonic setting that favoured its preservation. Because of the close proximity of the marine realm, the water table was high and contributed to the preservation of the aeolian facies. A sand‐drift surface marks the onset of aeolian dune construction and accumulation, whereby aeolian deposits cover an earlier succession of coastal coal deposits formed in a more humid period. A prominent aeolian super‐surface forms an angular unconformity that divides the aeolian succession into two erg sequences. This super‐surface formed in response to a major tectonic reactivation in the basin, and also marks the change in style of aeolian sedimentation from compound climbing crescentic dunes to aeolian draas. The location of the mid‐Cretaceous palaeoerg fits well to both the global distribution of other known Cretaceous erg systems and with current palaeoclimate data that suggest a global cooling period and a sea‐level lowstand during early mid‐Cretaceous times. The occurrence of a sub‐tropical coastal erg in the mid‐Cretaceous of Spain correlates with the exposure of carbonate platforms on the Arabian platform during much of the Late Aptian to Middle Albian, and is related to this eustatic sea‐level lowstand.  相似文献   

11.
白涛  慕鹏飞  张明 《水科学进展》1990,31(2):194-202
黄河是世界上含沙量最高的河流,其上游沙漠宽谷河段的冲沙输沙效应受来水来沙和地形条件变化等影响。为研究高含沙河流在低温条件下的输沙效应,通过引入水温因子,建立了黄河上游沙漠宽谷河段巴彦高勒站的输沙率模型。基于First Optimization平台的通用全局优化算法率定参数,验证了输沙率模型,量化了高含沙河流的低温输沙效应。结果表明:① 水温越低(1~7 ℃),河道输沙率越大,表明水温对河道输沙率的影响主要表现在低水温时期;② 任意一种工况下,水温1 ℃时河道输沙率约为25 ℃时的2.5倍;③ 低水温(5 ℃)较常温(16.6 ℃)下的河道输沙率提高了40.7%,在黄河上游开河低温期进行大流量冲沙输沙是水沙调控的最佳时机。研究成果以期为黄河上游沙漠宽谷河段低水温高效冲沙输沙和其他寒区高含沙河流的治理提供技术支撑。  相似文献   

12.
Cross‐shore grading of sediment has been observed on the surface of estuarine beaches but the swash zone processes responsible for this grading have not been measured. This study was conducted to provide an explanation for the cross‐shore grading of sediment on a predominantly sandy estuarine foreshore. Data on wave and swash characteristics and sediment trapped in the uprush and backwash during 25 swash events were gathered from mid‐rising to mid‐falling tide on a small transgressive barrier in Delaware Bay, New Jersey, USA. Sediment is predominantly quartz and feldspar, medium to coarse sands with a gravel fraction of granules and pebbles. Wave energies increased with tidal rise. The percentage of gravel in transport in the uprush and backwash is similar (11% and 13%) during the rising tide when the swash zone is at mid‐foreshore, decreases in the uprush (9%) and increases in the backwash (18%) when the swash zone is on the upper foreshore. When the swash zone is at mid‐foreshore on the falling tide, the quantity of gravel in the backwash (30%) is greater than in the uprush (24%). The low proportion of gravel within the foreshore prior to trapping, and the increase in the percentage of gravel when the waves and swash are on the upper foreshore, suggests that the step is the primary source of gravel high on the foreshore. The size of the step increases as wave heights increase with tidal rise. The rate of delivery of gravel into the swash is enhanced by sediment entrained during wave breaking and interaction of the uprush with the previous backwash. The lag in the rate of step migration relative to breaker migration during the falling tide increases the likelihood of mining gravel from the step and subsequent transport in the uprush and backwash. These findings are important for low energy estuarine beaches sensitive to small changes in tidal range and wave energy that cause sedimentological change across the foreshore.  相似文献   

13.
14.
黄河内蒙古河段输沙量与淤积量计算方法   总被引:2,自引:0,他引:2       下载免费PDF全文
基于多沙河流"多来多排"输沙基本公式,建立了考虑上站来沙量、前期累计淤积量、临界输沙水量及干支流泥沙粒径影响的输沙量一般表达式。进而根据黄河内蒙古河段1953—2010年实测水沙资料,得到了内蒙古巴彦高勒—头道拐全河段及巴彦高勒—三湖河口和三湖河口—头道拐分河段的年输沙量公式,并根据输沙率法采用建立的输沙量公式计算了各河段1953—2010年的逐年冲淤量。选取三湖河口—头道拐河段的计算结果分析表明,在输沙基本公式基础上增加前期累计淤积量、临界输沙水量及干支流泥沙粒径参数,所得公式计算的年冲淤量与实测值之间的相关系数R2由基本公式的0.41依次提高到0.50、0.75和0.80,说明在基本公式基础上进一步考虑这些参数的必要性。此外,全河及分河段输沙公式计算所得输沙量及各河段冲淤量和累计淤积量与实测值的符合程度均较好,表明建立的输沙公式能够用于不同水沙条件下的输沙量和冲淤量计算,可为分析内蒙古河段的输沙特性和长期淤积趋势提供参考。  相似文献   

15.
16.
为研究淤泥质河口的水沙运动规律,建立了用于模拟淤泥质河口水沙运动的二维数学模型。该模型采用基于无结构三角网格下的有限体积法对方程组进行离散,结合Roe-MUSCL方法及时间方向的预测-校正格式,使模型在时空方向具有二阶计算精度。模型中分别采用不同方法计算粘性和非粘性泥沙的输移源项,并引入粘性泥沙的起动流速和冲刷率计算公式。采用已有的概化水槽试验数据对模型进行了初步验证。然后模拟了1995年10月小潮及大潮期间海河口的潮流运动与泥沙输移过程,计算得到的潮位、潮流速及含沙量过程与实测过程符合较好,结果表明模型能够用来模拟淤泥质河口粘性和非粘性泥沙的不平衡输移过程。同时还比较了泥沙输移源项的不同处理方式对计算结果的影响,计算表明在淤泥质河口水沙运动数学模型中必须同时考虑粘性和非粘性泥沙的输移。  相似文献   

17.
The diffusion equation of suspended sediment concentration in a wide sediment‐laden stream flow is dependent on the vertical gradient of streamwise velocity and the sediment diffusivity. This study aims at investigating the influence of the streamwise velocity laws on the suspended sediment concentration distributions, resulting from the solution of the diffusion equation. Firstly, the sediment concentration distributions are obtained numerically from the solution of the diffusion equation using different velocity laws and compared with the experimental data. It is found that the power‐law approximation produces good computational results for the concentration distributions. The accuracy of using a power‐law velocity model is comparable with the results obtained from other classical velocity laws, namely log‐law, log wake‐law and stratified log‐law. Secondly, a novel analytical solution is proposed for the determination of sediment concentration distribution, where a power‐law, wall‐concentration profile is coupled with a concentration wake function. The power‐law model (for velocity and concentration) is calibrated using the experimental data, and then a generalized wake function is obtained by choosing a suitable law. The developed power‐law model involving the wake function adjusted by an exponent predicts the sediment concentration distributions quite satisfactorily. Finally, a new explicit formula for the suspended‐load transport rate is derived from the proposed theory, where numerical computation of integrals, as needed in the Einstein theory, is avoided.  相似文献   

18.
19.
While contributing <1 m equivalent eustatic sea‐level rise the British Isles ice sheet produced glacio‐isostatic rebound in northern Britain of similar magnitude to eustatic sea‐level change, or global meltwater influx, over the last 18 000 years. The resulting spatially variable relative sea‐level changes combine with observations from far‐field locations to produce a rigorous test for quantitative models of glacial isostatic adjustment, local ice‐sheet history and global meltwater influx. After a review of the attributes of relative sea‐level observations significant for constraining large‐scale models of the isostatic adjustment process we summarise long records of relative sea‐level change from the British Isles and far‐field locations. We give an overview of different global theoretical models of the isostatic adjustment process before presenting intercomparisons of observed and predicted relative sea levels at sites in the British Isles and far‐field for a range of Earth and ice model parameters in order to demonstrate model sensitivity and the resolving power available from using evidence from the British Isles. For the first time we show a good degree of fit between relative sea‐level observations and predictions that are based upon global Earth and ice model parameters, independently derived from analysis of far‐field data, with a terrain‐corrected model of the British Isles ice sheet that includes extensive glaciation of the North Sea and western continental shelf, that does not assume isostatic equilibrium at the Last Glacial Maximum and keeps to trimline constraints of ice surface elevation. We do not attempt to identify a unique solution for the model lithosphere thickness parameter or the local‐scale detail of the ice model in order to provide a fit for all sites, but argue that the next stage should be to incorporate an ice‐sheet model that is based on quantitative, glaciological model simulations. We hope that this paper will stimulate this debate and help to integrate research in glacial geomorphology, glaciology, sea‐level change, Earth rheology and quantitative modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
High‐resolution multi‐proxy analyses of a sediment core section from Lake Jeserzersee (Saissersee) in the piedmont lobe of the Würmian Drau glacier (Carinthia, Austria) reveal pronounced climatic oscillations during the early late glacial (ca. 18.5–16.0k cal a BP). Diatom‐inferred epilimnetic summer water temperatures show a close correspondence with temperature reconstructions from the adjacent Lake Längsee record and, on a hemispheric scale, with fluctuations of ice‐rafted debris in the North Atlantic. This suggests that North Atlantic climate triggered summer climate variability in the Alps during the early late glacial. The expansion of pine (mainly dwarf pine) between ca. 18.5 and 18.1k cal a BP indicates warming during the so‐called ‘Längsee oscillation’. The subsequent stepwise climate deterioration between ca. 18.1 and 17.6k cal a BP culminated in a tripartite cold period between ca. 17.6 and 16.9k cal a BP with diatom‐inferred summer water temperatures 8.5–10 °C below modern values and a shift from wet to dry conditions. This period probably coincides with a major Alpine glacier advance termed the Gschnitz stadial. A warmer interval between ca. 16.9 and 16.4k cal a BP separates this cold phase from a second, shorter and less pronounced cold phase between ca. 16.4 and 16.0k cal a BP, which is thought to correlate with the Clavadel/Senders glacier advance in the Alps. The following temperature increase, coupled with wet (probably snow‐rich) conditions, caused the expansion of birch during the transition period to the late glacial interstadial. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号