首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The quiescent‐phase surge‐type glacier, Kongsvegen, flows confluent with the continuously fast‐flowing Kronebreen in northwestern Spitsbergen. The lower regions of Kongsvegen overlie glaciomarine sediments, which have been incorporated into the ice during multiple surge events. The resulting englacial structures are exposed at the surface and on a cliff section. These structures have variously been interpreted as thrusts, formed by compression, or sediment‐filled crevasses, formed by extension. We collected a grid of closely spaced ground‐penetrating radar profiles in the area adjacent to the cliff section. Several structures were imaged in 3‐D, including a strong subhorizontal basal reflector, which was underlain by a second, weaker subhorizontal reflector. The basal reflector was occasionally reverse faulted, suggesting compression. Clear englacial features extended upwards from it, dipping up‐glacier at angles of <40° and steepening towards the glacier surface; they had complex geometries that changed rapidly cross‐glacier. The structures were orientated at ~30° to ice flow, suggesting modification by lateral compression from Kronebreen. Some of these englacial structures clearly crossed the basal reflector. We conclude that the englacial features imaged are not likely to be derived from crevasse filling and were probably formed by thrusting. The results contribute to our understanding of surge initiation and termination processes, and interpretation of features in the palaeorecord. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Ground‐penetrating radar has not been applied widely to the recognition of ancient carbonate platform geometries. This article reports the results of an integrated study performed on an Upper Jurassic outcrop from the south‐east Paris basin, where coral bioherms laterally change into prograding depositional sequences. Ground‐penetrating radar profiles illustrate the different bedding planes and major erosional unconformities visible at outcrop. A ground‐penetrating radar profile conducted at the base of the cliff displays a palaeotopographic surface on which the outcropping bioherms settled. The excellent penetration depths of the ground‐penetrating radar (20 m with a monostatic 200 MHz antenna) images the carbonate platform geometries, ranging between outcrop workscale (a few metres) and seismic scale (several hundreds of metres). This study supports recent evidence of icehouse conditions and induced sea‐level fluctuations controlling the Upper Jurassic carbonate production.  相似文献   

3.
《Sedimentology》2018,65(5):1413-1446
Turbidites within Holocene lacustrine sediment cores occur worldwide and are valued deposits that record a history of earthquakes or storms. Without sedimentary architecture, however, interpretation of the cause, provenance and behaviour of their parent turbidity currents are speculative. Here, these interpretations are made from two‐dimensional ground‐penetrating radar images of ‘shore to shore’ architecture beneath three, previously cored lakes within the low seismicity New England (USA ) region. Shallow depths, low water and sediment conductivities, and signal sensitivity to density contrasts uniquely provided up to 30 m of sediment signal penetration. Core comparisons and signal analysis reveal that most horizons represent multidecimetre‐thick clusters of Holocene turbidites, which are denser than their organic‐rich silt matrix. Some horizons also represent erosional unconformities and sediment bypass interfaces. The key, common, architectural consequences of turbidity current activity include limited foreset progradation, conformably pinched or unconformable layers of organic‐rich sediment onlapped against slopes beneath 5 to 6 m of water, and mounded stratified sediments beneath rises. These features indicate that turbidity currents repeatedly bypassed the same slope without deposition and regardless of dip, and then simultaneously armoured and bypassed inter‐turbidite sediment along rises and basins to provide basinward, generally age‐conformable accumulation. The mounding precludes significant basinward focusing. Variable horizon amplitude suggests metre‐scale changes in armouring density. Unconformities localized near breaks in dip beneath slopes suggest erosive hydraulic jumps. One lake shows evidence of historically maintained channels associated with specific deltas. Shelf strata indicating inland current generation, similar key architecture in other, uncored lakes, countable, lake‐wide horizons, and absent slumps, slides and faults are consistent with storm‐driven turbidity currents, and with previous, core‐based conclusions that severe, Holocene storms were episodic throughout this region. The results generalize marine bypass and armouring to lacustrine settings, and so probably occur worldwide in lakes subject only to storms, including lakes where ground‐penetrating radar may locate core sites.  相似文献   

4.
《Sedimentology》2018,65(4):1170-1212
Barrier‐island system evolution is controlled by internal and external forcing mechanisms, and temporal changes in these mechanisms may be recorded in the sedimentary architecture. However, the precise role of individual forcing mechanisms is rarely well understood due to limited chronological control. This study investigates the relative role of forcing conditions, such as antecedent topography, sea‐level rise, sediment supply, storms and climate changes, on the evolution of a Holocene wave‐dominated barrier‐island system. This article presents temporal reconstruction of the depositional history of the barrier‐island system of Rømø in the Wadden Sea in unprecedented detail, based on ground‐penetrating radar profiles, sediment cores, high‐resolution dating and palynological investigations, and shows that ca 8000 years ago the barrier island formed on a Pleistocene topographic high. During the initial phase of barrier evolution, the long‐term sea‐level rise was relatively rapid (ca 9 mm year−1) and the barrier was narrow and frequently overwashed. Sediment supply kept pace with sea‐level rise, and the barrier‐island system mainly aggraded through the deposition of a ca 7 m thick stack of overwash fans. Aggradation continued for ca 1700 years until sea‐level rise had decreased to <2 mm year−1. In the last ca 6000 years, the barrier prograded 4 to 5 km through deposition of a 10 to 15 m thick beach and shoreface unit, despite a long‐term sea‐level rise of 1 to 2 mm year−1. The long‐term progradation was, however, interrupted by a transgression between 4000 years and 1700 years ago. These results demonstrate that the large‐scale morphology of the Danish Wadden Sea shoreline influences the longshore sediment transport flux and the millennial‐scale dispersal of sediment along the shoreline. On decadal to centennial timescales, major storms induced intense beach and shoreface erosion followed by rapid recovery and progradation which resulted in a highly punctuated beach and shoreface record. Major storms contributed towards a positive sediment budget, and the sustained surplus of sediment was, and still is, instrumental in maintaining the aggradational–progradational state of the barrier island.  相似文献   

5.
《Sedimentology》2018,65(3):721-744
Storm surges generated by tropical cyclones have been considered a primary process for building coarse‐sand beach ridges along the north‐eastern Queensland coast, Australia. This interpretation has led to the development of palaeotempestology based on the beach ridges. To better identify the sedimentary processes responsible for these ridges, a high‐resolution chronostratigraphic analysis of a series of ridges was carried out at Cowley Beach, Queensland, a meso‐tidal beach system with a >3 m tide range. Optically stimulated luminescence ages indicate that 10 ridges accreted seaward over the last 2500 to 2700 years. The ridge crests sit +3·5 to 5·1 m above Australian Height Datum (ca mean sea‐level). A ground‐penetrating radar profile shows two distinct radar facies, both of which are dissected by truncation surfaces. Hummocky structures in the upper facies indicate that the nucleus of the beach ridge forms as a berm at +2·5 m Australian Height Datum, equivalent to the fair‐weather swash limit during high tide. The lower facies comprises a sequence of seaward‐dipping reflections. Beach progradation thus occurs via fair‐weather‐wave accretion of sand, with erosion by storm waves resulting in a sporadic sedimentary record. The ridge deposits above the fair‐weather swash limit are primarily composed of coarse and medium sands with pumice gravels and are largely emplaced during surge events. Inundation of the ridges is more likely to occur in relation to a cyclone passing during high tide. The ridges may also include an aeolian component as cyclonic winds can transport beach sand inland, especially during low tide, and some layers above +2·5 m Australian Height Datum are finer than aeolian ripples found on the backshore. Coarse‐sand ridges at Cowley Beach are thus products of fair‐weather swash and cyclone inundation modulated by tides. Knowledge of this composite depositional process can better inform the development of robust palaeoenvironmental reconstructions from the ridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号