首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Riedel, synthetic and antithetic type faults, principal displacement zones (PDZ), pull-apart basins (such as lazy-S shaped releasing bend, extensive and rhomboidal shaped and releasing sidestep basins) and minor folds located oblique to the main trace of the Algeciras Fault System (AFS) are interpreted from Landsat TM 5 images and geological mapping. These tectonic features are affecting Quaternary deposits and are related to major historical earthquakes and recent registered seismic events, indicating neotectonic activity of the structure.The AFS is classified as a right lateral wrench complex structure, with an important vertical component in which sedimentary cover and basement rocks are involved. In addition, the system represents a simple shear caused by the oblique convergence between the Nazca Plate and the northern Andes. The transpressive boundary in SW Colombia was previously located along the Eastern Frontal Fault System. However, this paper shows that the AFS constitutes the actual boundary of the current transpressive regime along the Northern Andes, which begins at the Gulf of Guayaquil in Ecuador and continues into Colombia and Venezuela.  相似文献   

2.
In order to provide mantle and crustal constraints during the evolution of the Colombian Andes, Sr and Nd isotopic studies were performed in xenoliths from the Mercaderes region, Northern Volcanic Zone, Colombia. Xenoliths are found in the Granatifera Tuff, a deposit of Cenozoic age, in which mantle- and crustal-derived xenoliths are present in bombs and fragments of andesites and lamprophyres compositions. Garnet-bearing xenoliths are the most abundant mantle-derived rocks, but websterites (garnet-free xenoliths) and spinel-bearing peridotites are also present in minor amounts. Amphibolites, pyroxenites, granulites, and gneisses represent the lower crustal xenolith assemblage. Isotopic signatures for the mantle xenoliths, together with field, petrographic, mineral, and whole-rock chemistry and pressure–temperature estimates, suggest three main sources for these mantle xenoliths: garnet-free websterite xenoliths derived from a source region with low P and T (16 kbar, 1065 °C) and MORB isotopic signature, 87Sr/86Sr ratio of 0.7030, and 143Nd/144Nd ratio of 0.5129. Garnet-bearing peridotite and websterite xenoliths derived from two different sources in the mantle: i) a source with intermediate P and T (29–35 kbar, 1250–1295 °C) conditions, similar to that of sub-oceanic geotherm, with an OIB isotopic signature (87Sr/86Sr ratio of 0.7043 and 143Nd/144Nd ratio of 0.5129); and ii) another source with P and T conditions similar to those of a sub-continental geotherm (>38 kbar, 1140–1175 °C) and OIB isotopic characteristics (87Sr/86Sr ratio=0.7041 and 143Nd/144Nd ratio=0.5135).  相似文献   

3.
A ~400 km long deep crustal reflection seismic survey was acquired in central Victoria, Australia, in 2006. It has provided information on crustal architecture across the western Lachlan Orogen and has greatly added to the understanding of the tectonic evolution. The east-dipping Moyston Fault is confirmed as the suture between the Delamerian and western Lachlan Orogens, and is shown to extend down to the Moho. The Avoca Fault, the boundary between the Stawell and Bendigo Zones, is a west-dipping listric reverse fault that intersects the Moyston Fault at a depth of about 22 km, forming a V-shaped geometry. Both the Stawell and Bendigo Zones can be divided broadly into a lower crustal region of interlayered and imbricated metavolcanic and metasedimentary rocks and an upper crustal region of tightly folded metasedimentary rocks. The Stawell Zone was probably part of a Cambrian accretionary system along the eastern Gondwanaland margin, and mafic rocks may have been partly consumed by Cambrian subduction. Much of the Early Cambrian oceanic crust beneath the Bendigo Zone was not subducted, and is preserved as a crustal-scale imbricate thrust stack. The seismic data have shown that a thin-skinned structural model appears to be valid for much of the Melbourne Zone, whereas the Stawell and Bendigo Zones have a thick-skinned structural style. Internal faults in the Stawell and Bendigo Zones are mostly west-dipping listric faults, which extend from the surface to near the base of the crust. The Heathcote Fault Zone, the boundary between the Bendigo and Melbourne Zones, extends to at least 20 km, and possibly to the Moho. A striking feature in the seismic data is the markedly different seismic character of the mid to lower crust of the Melbourne Zone. The deep seismic reflection data for the Melbourne Zone have revealed a multilayered crustal structure that supports the Selwyn Block model.  相似文献   

4.
朝鲜半岛北部的狼林地块一直被认为是中朝克拉通的重要组成部分。传统认为,它向南与我国辽东半岛的辽南太古宙地体相接,与其北部的鞍山-辽北-吉南太古宙地体(龙岗地块)具有基本类似的物质组成。两大太古宙地体之间是著名的以辽河群、集安群和老岭群为代表的辽吉古元古代岩系。辽吉岩系目前最主要的学术争论是,它是原本一体的太古宙地体的裂解产物,还是两个性质不同的太古宙地体拼合的结果。无论采用何种模型,学术界都普遍接受狼林地块主要由太古代岩石组成这一基本假定。为准确厘定狼林地块的地壳性质与形成时代,本文选择大同江、清川江、城川江、长津江、厚州川、厚昌江和秃鲁江中的河沙样品作为研究对象。这些河流均发源于狼林山脉,是狼林地块的核心区域,因而这些河流沉积物能够较好地全面反映狼林地块的物质组成情况。上述河流不同部位8件样品的分析结果显示,狼林地块主要由18~19亿年的古元古代岩石组成,太古宙岩石比例极为有限。但锆石Hf同位素模式年龄集中在28亿年左右,与华北克拉通全岩样品的Nd同位素模式年龄基本一致。结合狼林地块大量麻粒岩相变质表壳岩系和古元古宙花岗岩的发育,本文认为狼林地块是与辽吉岩系基本类似的古元古代地体,它可能是华北克拉通在古元古代期间东南大陆边缘的巨型造山带,我们可将其简称为辽-吉-朝古元古代造山带。因此,先前认为狼林地块主要由太古宙岩石组成的观点需要重新检查和认识。  相似文献   

5.
A detailed kinematic study in the Piedras–Girardot area reveals that approximately 32 km of ENE–WSW oblique convergence is accommodated within a northeast-trending transpressional shear zone with a shear strain of 0.8 and a convergence factor of 2. Early Campanian deformation is marked by the incipient propagation of northeast-trending faults that uplifted gentle domes where the accumulation of sandy units did not take place. Maastrichtian unroofing of a metamorphic terrane to the west is documented by a conglomerate that was deformed shortly after deposition developing a conspicuous intragranular fabric of microscopic veins that accommodates less than 5% extension. This extensional fabric, distortion of fossil molds, and a moderate cleavage accommodating less than 5% contraction, developed concurrently, but before large-scale faulting and folding. Paleogene folding and southwestward thrust sheet propagation are recorded by syntectonic strata. Neogene deformation took place only in the western flank of this foldbelt. The amount, direction, and timing of deformation documented here contradict current tectonic models for the Cordillera Oriental and demand a new tectonic framework to approach the study of the structure of the northern Andes. Thus, an alternative model was constructed by defining three continental blocks: the Maracaibo, Cordillera Central, and Cordillera Oriental blocks. Oblique deformation imposed by the relative eastward and northeastward motion of the Caribbean Plate was modeled as rigid-body rotation and translation for rigid blocks (derived from published paleomagnetic and kinematic data), and as internal distortion and dilation for weak blocks (derived from the Piedras–Girardot area). This model explains not only coeval dextral and sinistral transpression and transtension, but also large clockwise rotation documented by paleomagnetic studies in the Caribbean–northern Andean region.  相似文献   

6.
Metamorphic rocks from two sections through the North Andean Cordillera Real in Ecuador contain phengites as relics of high-pressure (HP) metamorphism. Their maximum Si contents per formula unit are (1) 3.25 in Al-rich metapelites, (2) 3.35 in ordinary metapelites and garnet-rich metabasites, and (3) 3.45 in garnet-bearing orthogneisses. Detailed pressure–temperature paths were derived by calculating PT pseudosections. Garnet-bearing metapelite and metabasite yielded a PT path starting at 1.4 GPa and 525°C. Peak temperature conditions were 560°C at <1.4 GPa. The retrograde path passed through 0.7–0.8 GPa at 500°C. An adjacent metagranitoid experienced a similar PT evolution at slightly lower temperatures of about 30–50°C. This is the first reported occurrence of HP metamorphism in the Cordillera Real; it is widespread and evidently was the result of continental collision. We hypothesize that a single microcontinent collided with the South American continental margin in Early Cretaceous time. In contrast to our findings, previous models have simply suggested the amalgamation of several terranes in the late Mesozoic or earlier in the region of Ecuador. Therefore, we propose that a widespread search for HP relics should be undertaken. Such relics provide a general criterion for defining subducted terranes and their respective boundaries.  相似文献   

7.
Epigenetic gold mineralization occurs in the Marmato mining district, within the Calima Terrain of the Setentrional Andes, Colombia. Regional rocks associated with this mineralization include: graphite- and chlorite-schists of the Arquia Complex; metamorphosed during the Cretaceous, Miocene sandstones, shales and conglomerates of the Amagá Formation; as well as pyroclastic rocks (clasts of basalt, andesites and mafic lavas) and subvolcanic andesitic/dacitic bodies of the Combia Formation (9 to 6 Ma). The subvolcanic Marmato stock hosts mesothermal and epithermal low-sulfidation Au–Ag ores in the form of distensional veins, stockwork, and quartz veinlets within brecciated zones. Ore minerals are pyrite, sphalerite and galena with subordinate chalcopyrite, arsenopyrite, pyrrhotite, argentite and native gold/electrum.Sericitized plagioclase from a porphyry dacite yielded a K–Ar age of 5.6 ± 0.6 Ma, interpreted as the age of ore deposition. This is in close agreement with the age of reactivation of the Cauca–Romeral Fault System (5.6 ± 0.4 Ma), which bounds the Calima Terrain. A porphyry andesite–dacite (6.7 ± 0.1 Ma), hosting the Au–Ag veins, shows a measured 87Sr/86Sr between 0.70440 and 0.70460, εNd between + 2.2 and + 3.2 and 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of 18.964 to 19.028; 15.561 to 15.570; and 38.640 to 38.745, respectively. The 87Sr/86Sr and εNd values of rocks from the Arquia Group range from 0.70431 to 0.73511 and − 12.91 to + 10.0, respectively, whereas the corresponding Pb isotopic ratios (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb) range from 18.948 to 19.652; 15.564 to 15.702; and 38.640 to 38.885, respectively. 87Sr/86Sr and εNd values obtained on sulfides from the gold quartz veins, which occur at shallow and intermediate levels, range from 0.70500 to 0.71210 and from − 1.11 to + 2.40. In the deepest veins, εNd values lie between + 1.25 and + 3.28 and the 87Sr/86Sr of calcite and pyrite fall between 0.70444 and 0.70930. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of all mineralization are in the ranges 18.970 to 19.258; 15.605 to 15.726 and 38.813 to 39.208, respectively. Carbonates have an average 87Sr/86Sr ratio of 0.70445, which is within the range of values measured in the host dacite. The Sr isotopic data indicate that carbonic fluids have a restricted hydrothermal circulation within the host igneous body, while the Sr, Pb and Nd isotopic compositions of the sulfides suggest that the fluids not only circulated within the Marmato stock, but also throughout the Arquia Complex, inferring that these rocks offer a potential target for mineral exploration. Based on geological and geochronological evidence, the epizonal Marmato gold ores formed during the Miocene to Pliocene, as a result of cooling of the Marmato stock and reactivation along a crustal-scale fault zone related to thermal processes in an accretionary oceanic–continental plate orogen.  相似文献   

8.
《International Geology Review》2012,54(14):1597-1634
The Miocene Chalcatzingo trondhjemitic volcanic field, sited along the southern margin of the Trans-Mexican Volcanic Belt, is a newly discovered locality with deep-seated crustal xenoliths that provide fundamental petrologic information on the nature of the unexposed metamorphic basement. The volcanic field lies along the eastern edge of the Cretaceous Guerrero-Morelos platform, which juxtaposes the Guerrero and Mixteco terranes of southern Mexico. Xenoliths consist of high temperature to ultra-high temperature metapelites as well as mafic and quartzofeldspathic gneisses, all of which show evidence of multiple granulite to amphibolite facies metamorphism and ductile deformation. A detailed petrologic study of representative xenoliths indicates a metamorphic evolution that apparently followed a clockwise pressure–temperature path leading from biotite-sillimanite1/kyanite(?)-quartz assemblages (M1) to the assemblage plagioclase-garnet-sillimanite2-rutile/ilmenite (M2) with a peak at ~9–11 kbar and >870°C. These conditions were followed by rapid uplift to <6 kbar and >800°C, which produced the decompression assemblage spinel-cordierite-sillimanite3-corundum ± orthopyroxene ± quartz (M3) before shallow emplacement of the xenolith-bearing trondhjemitic magma. Three possible sources for the xenoliths are considered: (1) early Mesozoic metasediments buried in the middle crust; (2) Precambrian lower crust; and (3) subducted Cenozoic sediments trapped in the mantle wedge. Based on the deep-seated, polymetamorphic nature of the xenoliths, the Nd depleted mantle model age of an orthogneissic xenolith, and on regional tectonostratigraphic considerations, we suggest that the xenolith source was Proterozoic continental crust. Although old zircon inheritance in the host trondhjemite is minimal, it may be explained by a lack of interaction of the magma with the traversed lithosphere. Studies of Palaeogene shallow intrusions exposed 140 km west of Chalcatzingo in the Guerrero terrane (Pepechuca plug) and 80 km southeast of that place in the Mixteco terrane (Puente Negro dikes) reveal the presence of similar very high-grade aluminous xenoliths. However, these magmas were probably generated by partial melting of Triassic–Jurassic metasediments of the Guerrero terrane underplated by basaltic magmas in Jurassic–earliest Cretaceous times or from Precambrian crust assimilated by underplated mafic magmas of Oligocene age, respectively.  相似文献   

9.
Despite the various opening models of the southwestern part of the East Sea (Japan Sea) between the Korean Peninsula and the Japan Arc, the continental margin of the Korean Peninsula remains unknown in crustal structure. As a result, continental rifting and subsequent seafloor spreading processes to explain the opening of the East Sea have not been adequately addressed. We investigated crustal and sedimentary velocity structures across the Korean margin into the adjacent Ulleung Basin from multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data. The Ulleung Basin shows crustal velocity structure typical of oceanic although its crustal thickness of about 10 km is greater than normal. The continental margin documents rapid transition from continental to oceanic crust, exhibiting a remarkable decrease in crustal thickness accompanied by shallowing of Moho over a distance of about 50 km. The crustal model of the margin is characterized by a high-velocity (up to 7.4 km/s) lower crustal (HVLC) layer that is thicker than 10 km under the slope base and pinches out seawards. The HVLC layer is interpreted as magmatic underplating emplaced during continental rifting in response to high upper mantle temperature. The acoustic basement of the slope base shows an igneous stratigraphy developed by massive volcanic eruption. These features suggest that the evolution of the Korean margin can be explained by the processes occurring at volcanic rifted margins. Global earthquake tomography supports our interpretation by defining the abnormally hot upper mantle across the Korean margin and in the Ulleung Basin.  相似文献   

10.
Manizales, intermediate city in the Andes of Colombia, is exposed to three major natural phenomena: frequent landslides, earthquakes and, to a lesser extent, floods, all sometimes causing catastrophic disasters. The city was established in 1849 on a high ridge between two rivers (interfluve). This narrow plateau has steep slopes that have been occupied since the early 1940's. Since then, a lack of sites approved for construction has not stopped urban expansion, which continues affecting unstable areas, even when geotechnic works have been realized in those areas. The people most frequently affected by hazards live in `sub-integrated' districts (shantytowns) situated in the more sloping lands. Nevertheless, recent disasters have occurred in the new developments where the middle classes live, showing the role of the urban growth in the creation of a growth of vulnerability and risk. The investigation consists of perfecting a method of analysis of the relationships between the urban process and the installation of such a situation. Using statistical tools (PCA and Bertin matrices), we estimated the global vulnerability of the city and represented it, at the scale of the neighbourhood level, in an integrated map. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
New U–Pb SHRIMP ages in zircon, Ar–Ar ages in micas and amphiboles, Nd–Sr isotopes, and major and REE geochemical analyses in granitic gneisses and granitic stocks of the Central Cordillera of Colombia indicate the presence of a collisional orogeny in Permo-Triassic times in the Northern Andes related to the construction of the Pangea supercontinent. The collision is recorded by metamorphic U–Pb SHRIMP ages in inherited zircons around 280 Ma and magmatic U–Pb SHRIMP ages in neoformed zircons around 250 Ma within syntectonic crustal granitic gneisses. Magmatic U–Pb SHRIMP and Ar–Ar Triassic ages around 228 Ma in granitic stocks indicate the presence of late tectonic magmatism related to orogenic collapse and the beginning of the breakup of the supercontinent. During this period, the Central Cordillera of Colombia would have been located between the southern United States and northern Venezuela, in the leading edge of the Gondwana supercontinent.  相似文献   

12.
Five lineaments on the volcanic Vøring Margin, NE Atlantic, have been identified in crustal scale models derived from Ocean Bottom Seismograph (OBS) data. It is suggested that the Vøring Basin can be divided in four compartments bounded by the Jan Mayen Fracture Zone/Lineament, a new lineament defined from this study, the Gleipne Lineament, the Surt Lineament and the Bivrost Lineament. The NW–SE trending Jan Mayen-, Gleipne- and Bivrost lineaments probably represent old zones of weakness controlling the onset of the early Eocene seafloor spreading, whereas the Surt- and New lineaments, rotated ca. 30° symmetrically from the azimuth of the Gleipne Lineament, may represent adjustment features related to the early Cretaceous/early Tertiary rifting. The longest landward extent of a lower crustal high-velocity body, assumed to represent intrusions related to the last phase of rifting, is found between the New Lineament and the Gleipne Lineament, where the body extends across the Helland Hansen Arch. Northeastwards in the Vøring Basin, the landward limit of the body steps gradually seawards, closely related to the interpreted lineaments. Northeast of the Gleipne Lineament, the body terminates close to the Fles Fault Complex, north of the Surt Lineament, it extends across the Nyk High, and northeast of the Bivrost Lineament the intrusions terminate around the Vøring Escarpment. Evidence for an interplay between active and passive rifting components is found on regional and local scales on the margin. The active component is evident through the decrease in magmatism with increased distance from the Icelandic plume, and the passive component is documented through the fact that all found crustal lineaments to a certain degree acted as barriers to magma emplacement. The increased thickness of the continental crust on the seaward side of the Vøring Escarpment, the upwarping of Moho and thinning of the lower crustal high-velocity layer in the western part of the Vøring Basin, as well as a strong shallowing of the Moho observed in parts of the area between the Jan Mayen Fracture Zone/Lineament and the New Lineament, can be explained by lithospheric delamination models.  相似文献   

13.
In 1995–1998 and 2003–2005, detailed deep seismic soundings were undertaken in the Barents-Kara Region along geotraverses 1-AR, 2-AR, 3-AR with a total length of over 3000 km. Seismic cross-sections, up to 50 km deep as an average, were obtained using the software package GODOGRAPH designed at the Department of Seismometry and Geoacoustics of the Lomonosov Moscow State University. The study was based on refraction traveltime curves with approximately 100 curves per profile. The sections obtained along the 1-AR and 2-AR traverses were geologically interpreted. The main crustal boundaries, fold-thrust structural features of the lower crust and a suture zone between the North Barents Basin and the Caledonian Orogenic Belt were distinguished. Based on our data, the structure of the suture can be interpreted as an ancient subduction zone. The possible pattern of tectonic movements of the Barents Plate is characterized.  相似文献   

14.
A sequence of small earthquakes occurred in Central Mexico, at the northern edge of the Trans-Mexican Volcanic Belt (TMVB) in the State of Queretaro, during the first 3 months of 1998. Medium to large events in the continental regime of central Mexico are not common, but the seismic history of the region demonstrates that faults there are capable of generating destructive events. The sequence was analyzed using data from a temporary network with the goals of identifying the causative fault and its relation to regional tectonics. Employing a waveform inversion scheme adapted from a method used for regional studies, we found that the source mechanisms conform to the style of faulting (i.e. extension in the E–W direction) representative of the Taxco–San Miguel Allende Fault system. This system has been proposed as the southernmost extension of the Basin and Range (BR) Province. The spatial distribution of hypocenters and source mechanisms indicate that the seismogenic segment was a fault with an azimuth of approximately 334° with almost pure dip slip. Since events which occurred just south from this region show features which are consistent with TMVB tectonics (i.e. extension in an N–S direction), the sequence may mark the boundary between the TMVB and BR stress domains.  相似文献   

15.
Palaeomagnetic and geochronological data from an Early Palaeozoic high grade metamorphic complex (Jorgina Formation) and Jurassic layered basic intrusion (Moreno Complex) are reported from the Mejillones Peninsula of northern Chile (23–23°30'S). 40Ar–39Ar dates from the Lower Palaeozoic Jorgina Formation and the Moreno Complex are between 170 and 158 Ma, coincident with a phase of emplacement of the north Chilean coastal batholith. This suggests that intrusion and magnetization of the Moreno Complex and the metamorphism and remagnetization of the Jorgina Formation were related to batholith emplacement. Extracted stable components of magnetization from all units (17 sites) define site-mean directions with a scattered distribution. The scatter in site-mean directions is interpreted as being due to minor, localized, non-uniform, block-fault related (normal or strike-slip, or both) rotation after 158 Ma. The palaeomagnetic and geochronological data indicate that no significant large-scale latitudinal translation of crustal blocks has taken place in this part of northern Chile since the Late Jurassic. In addition, they indicate that the uniform clockwise rotation after the mid-Cretaceous which affected the adjacent Cordillera de la Costa either did not extend into the Mejillones Peninsula or took the form of localized block-fault rotations. The restriction of palaeomagnetically defined styles of rotation to discrete areas within the north Chilean forearc indicates that forearc wide block-fault rotation models are not applicable to the Pacific margin of northern Chile.  相似文献   

16.
邱啸飞 《地质学报》2022,96(11):3784-3798
扬子克拉通前泥盆纪地壳演化过程一直是地学界研究的热点。本文报道了扬子克拉通北部武汉地区玉笋山剖面的志留系坟头组和泥盆系云台观组碎屑沉积岩中锆石U- Pb年龄和Hf同位素组成。结果表明,武汉地区坟头组和云台观组样品中最年轻的碎屑锆石年龄分别为430±5 Ma和415±5 Ma,将该地区坟头组和云台观组的沉积时代各限定在中志留世和晚泥盆世。碎屑锆石Hf同位素特点表明,沉积物源区在中太古代、新太古代以及新元古代形成了少量初生地壳,而古老地壳的再造主要发生在新太古代、新元古代和古生代,区域上最显著的初生地壳生长时期则是古元古代。综合对比扬子克拉通北部东、西两侧具有明显不同的锆石U- Pb年龄、微量元素和Hf同位素组成,暗示扬子克拉通可能由多个相对独立地壳演化过程的部分构成,而不具有统一的早前寒武纪基底。  相似文献   

17.
For over 50 years, several models based on diverse geologic concepts and variable quality of data have been proposed to explain the major structure and history of the Mérida Andes (MA), in western Venezuela. Lately, this chain growth and associated flexural basins deepening have been related to incipient type-A subductions of either polarity, accounting for the across-chain asymmetry. However, these recent models have not well integrated the present tectonically active setting driven by neighboring major plate interactions. At present, this chain exhibits ongoing strain partitioning where cumulative right-lateral slip along chain axis is as much as half of, or about the same, as the transverse shortening since late Miocene, thus implying that the NNE-directed Maracaibo block extrusion with respect to the South America (SA) plate is not a secondary feature. Consequently, this paper discusses some limitations exhibited by the SE-directed continental subduction models—Maracaibo crust underthrusting the Mérida Andes—in the light of available geological and geophysical data. Besides, it is herein proposed that the Mérida Andes structuration is related to a NW-directed, gently dipping, incipient type-A subduction, where chain growth and evolution are similar to those of a sedimentary accretionary wedge (i.e., Barbados), but at crustal scale and with ongoing strain partitioning. This continental subduction is the SE portion of a major orogenic float that also comprises the Perijá range and the Santa Marta block.  相似文献   

18.
SW Iberia is interpreted as an accretionary magmatic belt resulting from the collision between the South Portuguese Zone and the autochthonous Iberian terrane in Variscan times (350 to 330 Ma). In the South Portuguese Zone, pull-apart basins were filled with a thick sequence of siliciclastic sediments and bimodal volcanic rocks that host the giant massive sulphides of the Iberian Pyrite Belt. Massive sulphides precipitated in highly efficient geochemical traps where metal-rich but sulphur-depleted fluids of dominant basinal derivation mixed with sulphide-rich modified seawater. Massive sulphides formed either in porous/reactive volcanic rocks by sub-seafloor replacement, or in dark shale by replacement of mud or by exhalation within confined basins with high biogenic activity. Crustal thinning and magma intrusion were responsible for thermal maturation and dehydration of sedimentary rocks, while magmatic fluids probably had a minor influence on the observed geochemical signatures.The Ossa Morena Zone was a coeval calc-alkaline magmatic arc. It was the site for unusual mineralization, particularly magmatic Ni–(Cu) and hydrothermal Fe-oxide–Cu–Au ores (IOCG). Most magmatism and mineralization took place at local extensional zones along first-order strike-slip faults and thrusts. The source of magmas and IOCG and Ni–(Cu) deposits probably lay in a large mafic–ultramafic layered complex intruded along a detachment at the boundary between the upper and lower crust. Here, juvenile melts extensively interacted with low-grade metamorphic rocks, inducing widespread anatexis, magma contamination and further exsolution of hydrothermal fluids. Hypersaline fluids (δ18Ofluid > 5.4‰ to 12‰) were focused upward into thrusts and faults, leading to early magnetite mineralization associated with a high-temperature (> 500 °C) albite–actinolite–salite alteration and subsequent copper–gold-bearing vein mineralization at somewhat lower temperatures. Assimilation of sediments by magmas led in turn to the formation of immiscible sulphide and silicate melts that accumulated in the footwall of the layered igneous complex. Further injection of both basic and sulphide-rich magmas into the upper crust led to the formation of Ni–(Cu)-rich breccia pipes.Younger (330 to 280 Ma?) peraluminous granitoids probably reflect the slow ascent of relatively dry and viscous magmas formed by contact anatexis. These granitoids have W–(Sn)- and Pb–Zn-related mineralization that also shows geochemical evidence of major mantle–crust interaction. Late epithermal Hg–(Cu–Sb) and Pb–Zn–(Ag) mineralization was driven by convective hydrothermal cells resulting from the high geothermal gradients that were set up in the zone by intrusion of the layered igneous complex. In all cases, most of the sulphur seems to have been derived from leaching of the host sedimentary rocks (δ34S = 7‰ to 20‰) with only limited mixing with sulphur of magmatic derivation.The metallogenic characteristics of the two terranes are quite different. In the Ossa Morena Zone, juvenile magmatism played a major role as the source of metals, and controlled the styles of mineralization. In the South Portuguese Zone, magmas only acted as heat sources but seem to have had no major influence as sources of metals and fluids, which are dominated by crustal signatures. Most of the magmatic and tectonic features related to the Variscan subduction and collision seem to be masked by those resulting from transpressional deformation and deep mafic intrusion, which led to the development of a metallogenic belt with little resemblance to other accretionary magmatic arcs.  相似文献   

19.
Quartz-rich xenoliths in lavas and pyroclastic rocks from VulcanoIsland, part of the Aeolian arc, Italy, contain silicic meltinclusions with high SiO2 (73–80 wt %) and K2O (3–6wt %) contents. Two types of inclusions can be distinguishedbased on their time of entrapment and incompatible trace element(ITE) concentrations. One type (late, ITE-enriched inclusions)has trace element characteristics that resemble those of themetamorphic rocks of the Calabro-Peloritano basement of theadjacent mainland. Other inclusions (early, ITE-depleted) havevariable Ba, Rb, Sr and Cs, and low Nb, Zr and rare earth element(REE) contents. Their REE patterns are unfractionated, witha marked positive Eu anomaly. Geochemical modelling suggeststhat the ITE-depleted inclusions cannot be derived from equilibriummelting of Calabro-Peloritano metamorphic rocks. ITE-enrichedinclusions can be modelled by large degrees (>80%) of meltingof basement gneisses and schists, leaving a quartz-rich residuerepresented by the quartz-rich xenoliths. Glass inclusions inquartz-rich xenoliths represent potential contaminants of Aeolianarc magmas. Interaction between calc-alkaline magmas and crustalanatectic melts with a composition similar to the analysed inclusionsmay generate significant enrichment in potassium in the magmas.However, ITE contents of the melt inclusions are comparablewith or lower than those of Vulcano calc-alkaline and potassicrocks. This precludes the possibility that potassic magmas inthe Aeolian arc may originate from calc-alkaline parents throughdifferent degrees of incorporation of crustal melts. KEY WORDS: melt inclusions; crustal anatexis; magma assimilation; xenoliths; Vulcano Island  相似文献   

20.
The Parashi granitoid of northeasternmost Colombia intrudes the Upper Cretaceous to Lower Paleocene accretionary complex formed by the collision of the Caribbean arc and the continental margin of South America. This granitoid presently separated of the continental margin includes a major quartzdiorite body with andesite to dacite dikes and mafic enclaves. Zircon U–Pb LA-MC-ICP-MS and K–Ar geochronology on the quartzdiorite and the dikes suggest that crystallization extended from ca. 47 to 51 Ma. Major and trace elements are characterized by a medium-K, immature continental arc signature and high Al2O3, Na2O and Ba–Sr contents. Initial 87Sr/86Sr isotopic values range between 0.7050 and 0.7054, with 143Nd/144Nd = 0.51235–0.51253, εNd and εHf values from −0.81 to −4.40 and −4.4 and −5.2. Major and trace element ratios and isotopic modeling suggest that sedimentary and/or quartzofeldspathic crustal sources were mixed with a mafic melt input. The petrotectonic and geological constraints derived from this granitoid suggest that Parashi plutonism records an immature, oblique subduction-zone setting in which the presence of a high-temperature mantle realm and strong plate coupling associated to upper crust subduction caused the partial fusion of a previously tectonically underplated mafic crust and associated metasediments exposed in the continental margin. The limited temporal expression of this magmatism and the transition to a regional magmatic hiatus are related to a subsequent change to strongly and slow oblique tectonics in the Caribbean–South America plate interactions and the underflow of a relatively thick slab of Caribbean oceanic crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号