首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The following paper describes the goals and some preliminary work in the Bani sustainability study, an ongoing project in Mali, West Africa. Rural communities in Mali are increasingly relying on hand-pumps, which tap groundwater resources, as a means of obtaining potable water. The long-term sustainable yield of groundwater resources is not known but can be evaluated in sustainability study. In 2005, a groundwater sustainability study was established along the Bani River of Mali. The Bani study collected groundwater levels that were used in a conceptual groundwater flow model—the Bani model—to develop an understanding of current aquifer conditions and to make limited predictions of sustainability under various future scenarios. The Bani model showed the climatic parameters of recharge (derived from precipitation) and evapotranspiration to influence simulated groundwater levels and groundwater volume available, while increased pumping rates, due to population growth, showed little effect. When considered in the context of the actual Bani sustainability study area, the change in groundwater levels resulting from climatic parameters may have negative implications, especially during several consecutive years of decreased precipitation, such as drought, or if downward trends anticipated for precipitation continue.  相似文献   

2.
Artificial recharge of groundwater: hydrogeology and engineering   总被引:25,自引:4,他引:25  
Artificial recharge of groundwater is achieved by putting surface water in basins, furrows, ditches, or other facilities where it infiltrates into the soil and moves downward to recharge aquifers. Artificial recharge is increasingly used for short- or long-term underground storage, where it has several advantages over surface storage, and in water reuse. Artificial recharge requires permeable surface soils. Where these are not available, trenches or shafts in the unsaturated zone can be used, or water can be directly injected into aquifers through wells. To design a system for artificial recharge of groundwater, infiltration rates of the soil must be determined and the unsaturated zone between land surface and the aquifer must be checked for adequate permeability and absence of polluted areas. The aquifer should be sufficiently transmissive to avoid excessive buildup of groundwater mounds. Knowledge of these conditions requires field investigations and, if no fatal flaws are detected, test basins to predict system performance. Water-quality issues must be evaluated, especially with respect to formation of clogging layers on basin bottoms or other infiltration surfaces, and to geochemical reactions in the aquifer. Clogging layers are managed by desilting or other pretreatment of the water, and by remedial techniques in the infiltration system, such as drying, scraping, disking, ripping, or other tillage. Recharge wells should be pumped periodically to backwash clogging layers. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s10040-001-0182-4. Electronic Publication  相似文献   

3.
Rising saline shallow groundwater and associated soil salinization problems are widespread especially in arid and semiarid areas. There have been numerous studies on groundwater-associated salinity, but more information is required on the effects of groundwater frequent and high fluctuations on soil salinization. In the present study, laboratory experiments and numerical simulations using HYDRUS-1D model were carried out for this purpose. The experimental and modeling results showed that groundwater fluctuation caused not only the accumulation of more salt in the soil profile compared to stable groundwater, but also an enhancement of the mechanism. Water table fluctuation induced a much greater spreading of the bromide (Br) tracer within the column than the constant water table. The Br content was on average five orders of magnitude greater under a fluctuating water table than under a constant one. Further, the numerical simulations showed that an increase in the groundwater fluctuation frequency brought about an increase in soil surface salinization under the same evaporation boundary conditions. Additional simulations with HYDRUS-1D were used to study the effects of various management strategies on soil salinization induced by shallow groundwater. Hence, by reducing the evaporation rate through the application of surface mulching, a significant reduction of salt concentration at the soil surface was observed. Moreover, frequent irrigations with small quantities were effective to reduce soil surface salt accumulation induced by saline shallow groundwater.  相似文献   

4.
Large benthic foraminifera are major carbonate components in tropical carbonate platforms, important carbonate producers, stratigraphic tools and powerful bioindicators (proxies) of environmental change. The application of large benthic foraminifera in tropical coral reef environments has gained considerable momentum in recent years. These modern ecological assessments are often carried out by micropalaeontologists or ecologists with expertise in the identification of foraminifera. However, large benthic foraminifera have been under-represented in favour of macro reef-builders, for example, corals and calcareous algae. Large benthic foraminifera contribute about 5% to modern reef-scale carbonate sediment production. Their substantial size and abundance are reflected by their symbiotic association with the living algae inside their tests. When the foraminiferal holobiont (the combination between the large benthic foraminifera host and the microalgal photosymbiont) dies, the remaining calcareous test renourishes sediment supply, which maintains and stabilizes shorelines and low-lying islands. Geological records reveal episodes (i.e. late Palaeocene and early Eocene epochs) of prolific carbonate production in warmer oceans than today, and in the absence of corals. This begs for deeper consideration of how large benthic foraminifera will respond under future climatic scenarios of higher atmospheric carbon dioxide (pCO2) and to warmer oceans. In addition, studies highlighting the complex evolutionary associations between large benthic foraminifera hosts and their algal photosymbionts, as well as to associated habitats, suggest the potential for increased tolerance to a wide range of conditions. However, the full range of environments where large benthic foraminifera currently dwell is not well-understood in terms of present and future carbonate production, and impact of stressors. The evidence for acclimatization, at least by a few species of well-studied large benthic foraminifera, under intensifying climate change and within degrading reef ecosystems, is a prelude to future host–symbiont resilience under different climatic regimes and habitats than today. This review also highlights knowledge gaps in current understanding of large benthic foraminifera as prolific calcium carbonate producers across shallow carbonate shelf and slope environments under changing ocean conditions.  相似文献   

5.
Groundwater mounds and hinge lines are important features related to the interaction of groundwater and lakes. In contrast to the transient formation of groundwater mounds, numerical simulations indicate that permanent groundwater mounds form between closely spaced lakes as the natural consequence of adding two net sinks to a groundwater flow system. The location of the groundwater mound and the position of the hinge lines between the two lakes are intimately related. As the position of the mound changes there is a corresponding shift in the position of the hinge line. This results in a change in the ratio of groundwater inflow to outflow (Qi/Qo) for the lake. The response of the lake is an increase or decrease in the lake level. Our simulations indicate that the movement of the hinge line in a natural system is a consequence of the dynamic interrelationships between recharge, the slope of the water table upgradient and downgradient of the lake, and the loss of water from the lake by evaporation. The extent of the seasonal movement of the hinge line will vary from one year to the next depending on local changes in the magnitude of the hydrologic variables. Electronic Publication  相似文献   

6.
Shallow groundwater (>30 mbgl) is an essential source of drinking water to rural communities in the Ndop plain, northwest Cameroon. As a contribution to water management, the effect of seasonal variation on the groundwater chemistry, hydrochemical controls, drinking quality and recharge were investigated during the peaks of the dry (January) and rainy (September) seasons. Field measurements of physical parameters were preceded by sampling 58 groundwater samples during both seasons for major ions and stable isotope analyses. The groundwater, which was barely acidic (mean pH of 6) and less mineralised (TDS < 272 mg/l), showed no significant seasonal variation in temperature, pH and TDS during the two seasons. The order of cation abundance (meq/l) was Na+ > Ca2+ > Mg2+ > K+ and Na+ > Mg2+ > Ca2+ > K+ in the dry and rainy seasons, respectively, but that of anions ( \( {\text{HCO}}_{3}^{ - } \)  >  \( {\text{NO}}_{3}^{ - } \)  > Cl? >  \( {\text{SO}}_{4}^{2 - } \)  > F?) was similar in both seasons. This suggests a negligible effect of seasonal variations on groundwater chemistry. The groundwater, which was CaMgHCO3 and NaHCO3, is chemically evolved rainfall (CaMgSO4Cl) in the area. Silicate mineral dissolution and cation-exchange were the main controls on groundwater chemistry while there was little anthropogenic influence. The major ions and TDS concentrations classified the water as suitable for human consumption as per WHO guidelines. The narrow cluster of δ18O and δD of same groundwater from both seasons between the δ18O and δD values of May–June precipitation along the Ndop Meteoric Water Line indicates meteoric origin, rapid recharge (after precipitation) and timing of recharge between May and June rainfall. Diffuse groundwater recharge mainly occurs at low altitudes (<1,400 m asl) within the plain. Besides major ions and TDS, the similar δ18O and δD of groundwater from both seasons indicate a consistent groundwater recharge and flow pattern throughout the year and resilience to present day short-term seasonal climatic variations. However, controlled groundwater abstraction is recommended given the increasing demand.  相似文献   

7.
This study focuses on denitrification in a sandy aquifer using geochemical analyses of both sediment and groundwater, combined with groundwater age dating (3H/3He). The study sites are located underneath cultivated fields and an adjacent forested area at Oostrum, The Netherlands. Shallow groundwater in the region has high nitrate concentrations (up to 8 mM) due to intense fertilizer application. Nitrate removal from the groundwater below cultivated fields correlates with sulfate production, and the release of dissolved Fe2+ and pyrite-associated trace metals (e.g. As, Ni, Co and Zn). These results, and the presence of pyrite in the sediment matrix within the nitrate removal zone, indicate that denitrification coupled to pyrite oxidation is a major process in the aquifer. Significant nitrate loss coupled to sulfate production is further confirmed by comparing historical estimates of regional sulfate and nitrate loadings to age-dated groundwater sulfate and nitrate concentrations, for the period 1950-2000. However, the observed increases in sulfate concentration are about 50% lower than would be expected from complete oxidation of pyrite to sulfate, possibly due to the accumulation of intermediate oxidation state sulfur compounds, such as elemental sulfur. Pollutant concentrations (NO3, Cl, As, Co and Ni) measured in the groundwater beneath the agricultural areas in 1996 and 2006 show systematic decreases most likely due to declining fertilizer use.  相似文献   

8.
In coral islands, groundwater is a crucial freshwater resource for terrestrial life, including human water supply. Response of the freshwater lens to expected climate changes and subsequent vegetation alterations is quantified for Grande Glorieuse, a low-lying coral island in the Western Indian Ocean. Distributed models of recharge, evapotranspiration and saltwater phytotoxicity are integrated into a variable-density groundwater model to simulate the evolution of groundwater salinity. Model results are assessed against field observations including groundwater and geophysical measurements. Simulations show the major control currently exerted by the vegetation with regards to the lens morphology and the high sensitivity of the lens to climate alterations, impacting both quantity and salinity. Long-term changes in mean sea level and climatic conditions (rainfall and evapotranspiration) are predicted to be responsible for an average increase in salinity approaching 140 % (+8 kg m?3) when combined. In low-lying areas with high vegetation density, these changes top +300 % (+10 kg m?3). However, due to salinity increase and its phytotoxicity, it is shown that a corollary drop in vegetation activity can buffer the alteration of fresh groundwater. This illustrates the importance of accounting for vegetation dynamics to study groundwater in coral islands.  相似文献   

9.
New research results are presented on the processes of carbonate sedimentation in shallow saline lakes of Western Transbaikalia by the example of the Holocene bottom sediments of Sul’fatnoe Lake (the Selenga Dauria). The techniques of X-ray diffractometry (XRD), IR spectroscopy, laser granulometry, and isotope and elemental analyses were used. By means of decomposition the XRD profiles using the Pearson VII function, the carbonate phases were identified and their quantitative ratios were determined. The evolution of the lake basin caused by climate changes in the Holocene was reconstructed by comparing the carbonate record to the concentrations determined for the 18O and 13C stable isotopes and to lithological, geochemical, and palynological data in the dated sedimentary section.  相似文献   

10.
Groundwater resources are important sources of drinking water in Africa, and they are hugely important in sustaining urban livelihoods and supporting a diverse range of commercial and agricultural activities. Groundwater has an important role in improving health in sub-Saharan Africa (SSA). An estimated 250 million people (40% of the total) live in urban centres across SSA. SSA has experienced a rapid expansion in urban populations since the 1950s, with increased population densities as well as expanding geographical coverage. Estimates suggest that the urban population in SSA will double between 2000 and 2030. The quality status of shallow urban groundwater resources is often very poor due to inadequate waste management and source protection, and poses a significant health risk to users, while deeper borehole sources often provide an important source of good quality drinking water. Given the growth in future demand from this finite resource, as well as potential changes in future climate in this region, a detailed understanding of both water quantity and quality is required to use this resource sustainably. This paper provides a comprehensive assessment of the water quality status, both microbial and chemical, of urban groundwater in SSA across a range of hydrogeological terrains and different groundwater point types. Lower storage basement terrains, which underlie a significant proportion of urban centres in SSA, are particularly vulnerable to contamination. The relationship between mean nitrate concentration and intrinsic aquifer pollution risk is assessed for urban centres across SSA. Current knowledge gaps are identified and future research needs highlighted.  相似文献   

11.
12.
Division of sedimentary strata according to groundwater chemistry is discussed with implications for petroleum reservoir potential. It is suggested to process multiparametric water chemistry data from West Siberia using formalized clustering techniques. The efficiency of this approach has been tested for Neocomian clinoform reservoirs with reference to regional-scale appraisal and subregional petroleum division.  相似文献   

13.
14.
A three-dimensional groundwater flow model was implemented to quantify the temporal variation of shallow groundwater levels in response to combined climate and water-diversion scenarios over the next 40 years (2011–2050) in Beijing-Tianjin-Hebei (Jing-Jin-Ji) Plain, China. Groundwater plays a key role in the water supply, but the Jing-Jin-Ji Plain is facing a water crisis. Groundwater levels have declined continuously over the last five decades (1961–2010) due to extensive pumping and climate change, which has resulted in decreased recharge. The implementation of the South-to-North Water Diversion Project (SNWDP) will provide an opportunity to restore the groundwater resources. The response of groundwater levels to combined climate and water-diversion scenarios has been quantified using a groundwater flow model. The impacts of climate change were based on the World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset for future high (A2), medium (A1B), and low (B1) greenhouse gas scenarios; precipitation data from CMIP3 were applied in the model. The results show that climate change will slow the rate of decrease of the shallow groundwater levels under three climate-change scenarios over the next 40 years compared to the baseline scenario; however, the shallow groundwater levels will rise significantly (maximum of 6.71 m) when considering scenarios that combine climate change and restrictions on groundwater exploitation. Restrictions on groundwater exploitation for water resource management are imperative to control the decline of levels in the Jing-Jin-Ji area.  相似文献   

15.
16.
About 3 % of India’s total land surface is occupied by carbonate rocks which are mostly karstified and constitute a significant source of groundwater. The groundwater drawn from these aquifers matches the water demand of ~35 million people living in 106 districts of the country and also the water needs of livestock, irrigation and industry. The studies on karst in India carried out so far have mostly addressed geology, hydrology and groundwater contamination. A literature survey suggests that there is a need for detailed research, applying new approaches and techniques for proper carbonate aquifer identification, characterization and management. Such specific approaches will improve modeling, exploitation and protection of karst groundwater. An overview of the research carried out on groundwater resources of karst formations in India is presented, which also throws light on the protection of karst aquifers from existing anthropogenic activities such as mining and groundwater over-exploitation.  相似文献   

17.
Adaptive governance is the use of novel approaches within policy to support experimentation and learning. Social learning reflects the engagement of interdependent stakeholders within this learning. Much attention has focused on these concepts as a solution for resilience in governing institutions in an uncertain climate; resilience representing the ability of a system to absorb shock and to retain its function and form through reorganisation. However, there are still many questions to how these concepts enable resilience, particularly in vulnerable, developing contexts. A case study from Uganda presents how these concepts promote resilient livelihood outcomes among rural subsistence farmers within a decentralised governing framework. This approach has the potential to highlight the dynamics and characteristics of a governance system which may manage change. The paper draws from the enabling characteristics of adaptive governance, including lower scale dynamics of bonding and bridging ties and strong leadership. Central to these processes were learning platforms promoting knowledge transfer leading to improved self-efficacy, innovation and livelihood skills. However even though aspects of adaptive governance were identified as contributing to resilience in livelihoods, some barriers were identified. Reflexivity and multi-stakeholder collaboration were evident in governing institutions; however, limited self-organisation and vertical communication demonstrated few opportunities for shifts in governance, which was severely challenged by inequity, politicisation and elite capture. The paper concludes by outlining implications for climate adaptation policy through promoting the importance of mainstreaming adaptation alongside existing policy trajectories; highlighting the significance of collaborative spaces for stakeholders and the tackling of inequality and corruption.  相似文献   

18.
The paper examines: (a) trends in climatic variations and variability with particular emphasis on rainfall (b) the characteristics of climatic events, including floods and droughts, (c) seasonal variations in river flows, (d) mean annual trends in river flows and discharges, (e) local variations of extremes of rainfall and river discharges, (f) the effects of climatic variability and climate change on ground water variations, (g) the problems of acute shortage of freshwater, and (h) the prevalence of water stress whose characteristics would be worsened with the projected impacts of climate change. The results show that: (i) there are a lot of spatial and temporal variations in the characteristics of rainfall and the hydrological systems locally and regionally, although in general, there have been downward trends in rainfall and increases in water deficits and drought events, (ii) that flood events, which also have impacted adversely in many parts of the region, have also been witnessed. The paper then produces projections for future urban and rural water supplies in Nigeria, which is an epitome of West Africa and examines the two main categories of adaptation measures needed to improve water management, namely, those involving the water supply and water demand systems in the study region. Finally, the paper discusses the need to address a number of mechanisms for implementation of the various adaptation measures including: (a) building capacity and manpower, (b) promoting education and public awareness, (c) public participation and the involvement of stakeholders, (d) the establishment of both national and regional co-operation, and (e) the need for climatic and other environmental data collection and monitoring. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
In 1986, carbon dioxide gas exploded from Lake Nyos and killed about 1,800 people. After that disaster, various administrative and research activities have been conducted to mitigate subsequent disasters. However, none of those endeavors have characterized the groundwater chemistry to identify hydrogeochemical processes that control the water chemistry, and the quality of the water for domestic and agricultural uses that support the lives of un-official resettlers around Lake Nyos. Conventional hydrochemical techniques coupled with statistical and graphical analysis were therefore employed to establish the baseline hydrochemical conditions, assess processes controlling solutes distribution in shallow groundwater in the Lake Nyos catchment and explore its usability. Groundwater samples were analyzed for their physical and chemical properties. The wide ranges of electrical conductivity and total dissolved solid values reveal the heterogeneous distribution of groundwater within the watershed. The relative abundance of major dissolved species was Ca > Mg > Na > K for cations and HCO3 >>> Cl > SO4 > NO3 for anions. Piper diagram classified almost all water samples into mixed CaMg–HCO3 water type. Major ion geochemistry reveals that, in addition to silicates weathering (water–rock interaction), ion exchange processes regulate the groundwater chemistry. Principal component analysis supports the occurrence of water rock interaction. Hierarchical cluster analysis showed that the chemistry of groundwater in the study area is controlled by three main factors, and suggests no hydraulic connectivity between deep lake water and groundwater in the catchment. The quality assessment of the groundwater showed that groundwater parameters are within the acceptable limit of the World Health Organization and Nigeria guidelines for drinking and domestic uses, and water found to be good for irrigation.  相似文献   

20.
Euphrates Flood Plain sediments are recorded in Barwana city which is 6 km south of Haditha City. Much vegetation and climatic and archaeological evidences in this study pointed to several stages of old human settlements in that area. Palynological evidences show the livelihood of those humans before the great Noah Deluge of the period 10,500 years before present (BP). Their food was gathered by collecting crops and hunting animals in a steppe region along the valleys. As a result of this suffering from deluge and climatic variations that affected the region, humans had taken the search for a new way of living by trying to settle in the areas near the Euphrates river and attempted cultivation of this land, where the study showed the first appearance of field crop (cereals) pollens, such as wheat, barley, corn …, etc., at depth of 475–500 cm of the studies section, which represents a warm–humid climate with summer precipitation during the period of 10,000–5,000 years BP. These environmental conditions helped the ancient humans to settle in the agriculture village of Barwana, living on cultivation of the land and domesticating animals, such as grazing animals, for their main forms of food. Evolving palm cultivation and record of many archaeological ceramic pieces in the sample at a depth of 250 cm emphasized his attempt to establish industrial culture in the region after a period of changing climate to warm and dry which affected the region since 6,000 years BP and changed the Barwana settlements to an industrial village. The grasses and tree exploitation for sheep shepherding, building houses, and fire use, as well as dam building and Naoor manufacture for irrigation added evidences for ancient cities developments such as Hanat (Presently Ana) and Heet since about 5000 Y.BP. The desertification manifestation of that warm and dry climate continued from that time to the present with drought increased and deficiency in the rainfall, as well as the human irresponsible activities, as evidenced by increased pollen and spores of Compositae and Bongardia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号