首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The paleomagnetic results obtained in 23 sites from red beds of the northern border of the inverted Cameros Basin (northern Iberian Peninsula) prove a Cretaceous widespread remagnetization. Paleomagnetic and rock magnetic analyses indicate that the Natural remanent magnetization (NRM) is dominated by a stable and always normal polarity component carried by haematite. Two conglomerate test and five-fold test indicate that this component is a syn-tectonic overprint dated between Albian and Santonian times, most probably Albian, contemporary with a low-grade metamorphism. Remagnetization was acquired before compressional deformation and post-dates the main extensional stage of basin formation (Berriasian–Albian). Incremental fold tests provide best clustering solutions showing dispersed results and far from the expected direction. An alternative procedure to obtain fold test solution was applied considering asymmetric limb rotation. Mean directions obtained from these “asymmetric solutions” are consistent with the expected direction and yield a statistical value for significant grouping at the 95% confidence level in all fold tests performed. This reconstruction allows to determine the tilting of beds at the moment of acquisition of magnetization. These original dips were used to reconstruct the original geometry of the northern basin border, later modified during the Tertiary inversion stage. This extensional geometry can be characterised as a large-scale syn-sedimentary normal fault drag, with a minor roll-over anticline. The procedure developed in this paper should be tested in other inverted basins that also have undergone burial remagnetizations.  相似文献   

2.
In this work, the recently developed “second-order” self-consistent method [Liu, Y., Ponte Castañeda, P., 2004a. Second-order estimates for the effective behavior and field fluctuations in viscoplastic polycrystals. J. Mech. Phys. Solids 52 467–495] is used to simulate texture evolution in halite polycrystals. This method makes use of a suitably optimized linear comparison polycrystal and has the distinguishing property of being exact to second order in the heterogeneity contrast. The second-order model takes into consideration the effects of hardening and of the evolution of both crystallographic and morphological texture to yield reliable predictions for the macroscopic behavior of the polycrystal. Comparisons of these predictions with full-field numerical simulations [Lebensohn, R.A., Dawson, P.R., Kern, H.M., Wenk, H.R., 2003. Heterogeneous deformation and texture development in halite polycrystals: comparison of different modeling approaches and experimental data. Tectonophysics 370 287–311], as well as with predictions resulting from the earlier “variational” and “tangent” self-consistent models, included here for comparison purposes, provide insight into how the underlying assumptions of the various models affect slip in the grains, and therefore the texture predictions in highly anisotropic and nonlinear polycrystalline materials. The “second-order” self-consistent method, while giving a softer stress-strain response than the corresponding full-field results, predicts a pattern of texture evolution that is not captured by the other homogenization models and that agrees reasonably well with the full-field predictions and with the experimental measures.  相似文献   

3.
We present evidence of accumulation of calcareous cyanobacterial “microspheroids” as predominant components of the Cenomanian-Turonian Indidura Formation of northeastern Mexico. The unit at Parras de la Fuente includes a sequence of limestones and marls with well-defined light-dark rhythms at the decimetric to millimetric scale, in which CaCO3 and total organic carbon vary between 43–78% and 0.3–3.6%, respectively.A distinctive feature of the section is the presence of abundant millimeter-scale microlaminae arranged in nearly even-parallel white and dark gray “varve like” dual lamination less than 3 mm thick, in which the darker units contain scattered planktonic foraminifera and radiolaria, whereas the lighter microlaminae are dominated by calcitic microspheroids (20–40 μm). The white laminae are evidently the result of recurring cycles of calcareous cyanobacterial blooms, possibly associated with fluvial dilution of surface waters.The organic carbon-rich laminated marlstones and laminated biocalcilutites of the Indidura Formation document paleoceanographic conditions favorable to unusual cyanobacterial productivity cycles that were also characterized by strong dysoxic/anoxic bottom conditions.  相似文献   

4.
Understanding the influence of natural climatic variability on modern fisheries is complicated by over a century of industrial fishing. Archaeological data provide unique opportunities for assessing precolonial and preindustrial fisheries. Records show that anchoveta-vs sardine-dominated fisheries correlate with 20th-century climate change in the Pacific Basin and are linked to multidecadal climatic variability. The “anchovy regime” is characterized by cooler conditions and lower frequency El Niño/Southern Oscillation (ENSO) events, while the “sardine regime” is associated with warmer conditions and higher frequency ENSO. Fish remains excavated at Lo Demás, an Inca-period (ca. A.D. 1480–1540) fishing site at 13°25′S on the Peruvian coast, document a shift from an anchoveta-to a sardine-dominated fishery at about A.D. 1500. This shift correlates with records for increasing ENSO frequency at the same time. Middle and late Holocene sites have archaeofish assemblages that also suggest regime changes. Here we show that changes in fish regimes can result from natural variability and we support the potential role of archaeological assemblages in tracking multidecadal climate change in the Pacific Basin throughout the Holocene (0–11,500 cal yr B.P.).  相似文献   

5.
Sasol has been operating the Sasol–Lurgi fixed bed coal gasification process for more than fifty years, and with ninety seven units in operation still remains the world's largest commercial application of this technology. The combined operational and engineering expertise vested in Sasol represents a formidable capability in the field of coal and gasification science. Coal is a crucial feedstock for South Africa's unique synfuels and petrochemicals industry, and is used by Sasol as a feedstock to produce synthesis gas (CO and H2) via the Sasol–Lurgi fixed bed dry bottom gasification process.South Africa, as well as many other countries in the world, will for many years to come rely on its abundant coal resources for energy and specifically for the production of petrochemical products. Synthesis gas production through gasification is growing at a rate of approximately 10% per annum [Office of Fossil Energy, National Energy Technology Laboratory and the Gasification Technologies Council, 2000. Gasification: Worldwide use and acceptance. Contract DE-AMO1-98FE65271], indicating that gasification is definitely not a dying technology. The Sasol plants located in Secunda and Sasolburg (South Africa) gasify > 30 million tons per annum of bituminous coal to synthesis gas, which is converted to fuels and chemicals via the Fischer–Tropsch process. The production of chemicals is currently the dominant application for synthesis gas, followed by power generation, Fischer–Tropsch synthesis and gaseous fuels.Sasol–Lurgi gasifiers are extremely robust devices, and coal from sources with widely varying properties (e.g. ash content < 10% to as high as 35% or “brown coal” with moisture content of approximately 30%) can be gasified provided that certain operational changes are implemented. Other properties, like high caking propensity for example, require blending to acceptable levels and /or mechanical modifications. Interpretation of coal characterization data gives an indication of expected gasifier performance and the suitability of a specific coal source for Sasol–Lurgi Fixed Bed Gasification process. It is therefore critically important to gain an accurate and fundamental understanding of the properties and expected behavior of the targeted coal feedstock in order to (1) prepare a suitable conceptual flow scheme and (2) to maximize the eventual probability of success in any proposed gasification venture and (3) to optimize the operation and profitability of existing plants and (4) effectively address the environmental aspects.It is the view of the authors that fixed bed gasification technology has a bright future in the areas mentioned above and that Sasol has a unique role in the future application and commercialization of gasification technology globally. The unique skills of Sasol could however be complementary to those of other parties who share our view on the future of gasification and related technologies.  相似文献   

6.
Leping coal is known for its high content of “barkinite”, which is a unique liptinite maceral apparently found only in the Late Permian coals of South China. “Barkinite” has previously identified as suberinite, but on the basis of further investigations, most coal petrologists conclude that “barkinite” is not suberinite, but a distinct maceral. The term “barkinite” was introduced by (State Bureau of Technical Supervision of the People's Republic of China, 1991, GB 12937-91 (in Chinese)), but it has not been recognized by ICCP and has not been accepted internationally.In this paper, elemental analyses (EA), pyrolysis-gas chromatography, Rock-Eval pyrolysis and optical techniques were used to study the optical features and the hydrocarbon-generating model of “barkinite”. The results show that “barkinite” with imbricate structure usually occurs in single or multiple layers or in a circular form, and no definite border exists between the cell walls and fillings, but there exist clear aperture among the cells.“Barkinite” is characterized by fluorescing in relatively high rank coals. At low maturity of 0.60–0.80%Ro, “barkinite” shows strong bright orange–yellow fluorescence, and the fluorescent colors of different cells are inhomogeneous in one sample. As vitrinite reflectance increases up to 0.90%Ro, “barkinite” also displays strong yellow or yellow–brown fluorescence; and most of “barkinite” lose fluorescence at the maturity of 1.20–1.30%Ro. However, most of suberinite types lose fluorescence at a vitrinite reflectance of 0.50% Ro, or at the stage of high volatile C bituminous coal. In particular, the cell walls of “barkinite” usually show red color, whereas the cell fillings show yellow color under transmitted light. This character is contrary to suberinite.“Barkinite” is also characterized by late generation of large amounts of liquid oil, which is different from the early generation of large amounts of liquid hydrocarbon. In addition, “barkinite” with high hydrocarbon generation potential, high elemental hydrogen, and low carbon content. The pyrolysis products of “barkinite” are dominated by aliphatic compounds, followed by low molecular-weight aromatic compounds (benzene, toluene, xylene and naphthalene), and a few isoprenoids. The pyrolysis hydrocarbons of “barkinite” are mostly composed of light oil (C6–C14) and wet gas (C2–C5), and that heavy oil (C15+) and methane (C1) are the minor hydrocarbon.In addition, suberinite is defined only as suberinized cell walls—it does not include the cell fillings, and the cell lumens were empty or filled by corpocollinites, which do not show any fluorescence. Whereas, “barkinite” not only includes the cell walls, but also includes the cell fillings, and the cell fillings show bright yellow fluorescence.Since the optical features and the hydrocarbon-generating model of “barkinite” are quite different from suberinite. We suggest that “barkinite” is a new type of maceral.  相似文献   

7.
M.S. Paterson   《Tectonophysics》2007,445(3-4):273-280
The localization of plastic deformation in rock is of particular interest in geology in connection with the formation of “ductile” shear zones. It is commonly conjectured that strain softening, as evidenced by a falling stress–strain curve at constant strain rate, is likely to lead to strain localization. Yet observations in torsion tests at constant twist rate fail to show such an effect. However, a more sophisticated analysis using the theory of Fressengeas and Molinari (J. Mech. Phys. Solids 1987, 35, 185–211) for material showing strain-rate dependence of the flow stress does show that, when the boundary conditions are specified in terms of displacements, no localization is predicted in case of strain softening. In contrast, if the boundary conditions are set in terms of forces, localization can be expected for a strain softening material. This prediction needs experimental testing.  相似文献   

8.
A newly identified skarn occurrence is described from the Neoproterozoic rocks of the SW Arabian shield. It is exposed to the SE, E and NE of the Al-Madhiq town. The skarn attributes correspond to those typical of the calcic skarns that host W-deposits. It is characterized as an exoskarn of the proximal type, related to a granitoid contact close to an impure quartzite bed within the regional metamorphic rocks of mixed sedimentary and volcanic derivation. The skarn is localized along a shear zone parallel to the regional faults and other major shear zones. Samples from the studied area contain characteristic skarn minerals that include both the prograde (brownish red grossular, ferrosalite, aluminian titanite-grothite, albite-oligoclase, scapolite), and retrograde (epidote, quartz, hornblende, calcite) assemblages. The pyroxenes are ferrosalites, Mn-bearing, and more like those from “oxidized” skarns; although garnets indicate it to be a “reduced” type skarn. Epidote mimicks that from typical skarns, as it bears a pistacite content of 15.9–20.7%. Grossular composition reflects a largely reduced genetic environment; as it is in solid solution with 6.5–21.6% andradite, 0–0.15% uvarovite, 0–0.47% pyrope, 4.33–18.75% almandine, and 0.4–8.58% spessartine molecules. Titanite composition varies from aluminian titanite to grothite, that may be analogous to the newly described Al-rich titanite from the low-pressure calc-silicate rocks.  相似文献   

9.
J. -B. Edel   《Tectonophysics》2003,363(3-4):225-241
Generally, the lack of bedding criteria in basement units hampers the interpretation of paleomagnetic results in terms of geotectonics. Nevertheless, this work demonstrates that successive remagnetizations recorded in Early Carboniferous metamorphic and plutonic units, without clear bedding criteria, can be used to constrain a polyphased tectonic evolution consisting of a regional clockwise rotation, followed by a folding phase, a tilting phase and a second regional clockwise rotation.Metamorphic, ultrabasic, tonalitic and granitic rocks from different parts of Limousin (western French Massif central; 45.5°N/1.25°E), which underwent metamorphism during Devonian–Early Carboniferous or were intruded in the Early–Middle Carboniferous, were sampled in order (a) to identify the magnetic overprinting phases and the related tectono-magmatic events and (b) to constrain the regional and plate tectonic evolution of Limousin. Paleomagnetic results from 32 new and 26 sites investigated previously show that at least 90% of the magnetization isolated in rocks older than 330 Ma are overprints. In agreement with results from adjacent areas of the Variscan belt, the major overprinting phases occurred: (a) in the last stages of the major exhumation phase [332–328 Ma; mean Virtual Geomagnetic Pole (VGP) “Cp”: 37°N/70.5°E], (b) during the post-collisional syn-orogenic extension (325–315 Ma; VGP “B”: 11°N/114°E), (c) in the Latest Carboniferous and Early Permian (VGP “A1”: 27°N/149°E) and (d) in the Late Permian (VGP “A”: 48°N/146°E). The Middle–Late Carboniferous overprints “Cp” and “B” are contemporaneous with emplacement of leucogranitic, crustal derived plutons, and probably result from the hydro-thermal activity related to the magmatism. The drift from “Cp” directions to “B” directions implies that after 330 Ma, Limousin underwent a clockwise rotation by 65°, together with the Central Europe Variscides. The “Bt” components, the VGPs of which deviate from the mean apparent polar wander path (APWP) of the belt, are interpreted as “B” overprints tilted during Late Variscan tectonics, that is, in the time range 325–315 Ma. The first and most important generation of “Bt” overprints was tilted during NW–SE folding associated with NE–SW shortening, updoming and emplacement of leucogranitic plutons. The second generation reveals southeastward tilting due to NE-striking normal faulting. The drift from “B” to “A1” directions implies that Limousin has participated to the second clockwise rotation by 40° of the whole belt in Westphalian times.  相似文献   

10.
Mei-e Ren 《GeoJournal》1994,33(4):443-447
The Yellow River, China is known for its extremely heavy sediment load, about 8 times that of the Mississippi and very small flow, only 8% of that of the Mississippi.As to the prediction of climate change at regional level precision is subject to great uncertainty, human activities will have more significant effect on changes of flow and sediment of the river over the next 20 years. Owing to the development of irrigation and industry (particulary energy industry) and possible success of soil conservation in the Loess Plateau, it is expected that the flow of the Yellow River to the sea will be reduced to about half of the present amount and the sediment load decreased 4–5 × 108 tons/yr.Project Coding: SCIEL 21193111  相似文献   

11.
Thermally metamorphosed Tertiary age coals from Tanjung Enim in South Sumatra Basin have been investigated by means of petrographic, mineralogical and chemical analyses. These coals were influenced by heat from an andesitic igneous intrusion. The original coal outside the metamorphosed zone is characterized by high moisture content (4.13–11.25 wt.%) and volatile matter content (> 40 wt.%, daf), as well as less than 80 wt.% (daf) carbon and low vitrinite reflectance (VRmax = 0.52–0.76%). Those coals are of subbituminous and high volatile bituminous rank. In contrast the thermally metamorphosed coals are of medium-volatile bituminous to meta-anthracite rank and characterized by low moisture content (only < 3 wt.%) and volatile matter content (< 24 wt.%, daf), as well as high carbon content (> 80 wt.%, daf) and vitrinite reflectance (VRmax = 1.87–6.20%). All the studied coals have a low mineral matter content, except for those which are highly metamorphosed, due to the formation of new minerals.The coalification path of each maceral shows that vitrinite, liptinite and inertinite reflectance converge in a transition zone at VRmax of around 1.5%. Significant decrease of volatile matter occurs in the zone between 0.5% and 2.0% VRmax. A sharp bend occurs at VRmax between 2.0% and 2.5%. Above 2.5%, the volatile matter decreases only very slightly. Between VRr = 0.5% and 2.0%, the carbon content of the coals is ascending drastically. Above 2.5% VRr, the carbon content becomes relatively stable (around 95 wt.%, daf).Vitrinite is the most abundant maceral in low rank coal (69.6–86.2 vol.%). Liptinite and inertinite are minor constituents. In the high rank coal, the thermally altered vitrinite composes 82.4–93.8 vol.%. Mosaic structures can be recognized as groundmasss and crack fillings. The most common minerals found are carbonates, pyrite or marcasite and clay minerals. The latter consist of kaolinite in low rank coal and illite and rectorite in high rank coal. Change of functional groups with rank increase is reflected most of all by the increase of the ratio of aromatic C–H to aliphatic C–H absorbances based on FTIR analysis. The Oxygen Index values of all studied coals are low (OI < 5 mg CO2/g TOC) and the high rank coals have a lower Hydrogen Index (< 130 mg HC/g TOC) than the low rank coals (about 300 mg HC/g TOC). Tmax increases with maturity (420–440 °C for low rank coals and 475–551 °C for high rank coals).Based on the above data, it was calculated that the temperature of contact metamorphism reached 700–750 °C in the most metamorphosed coal.  相似文献   

12.
Detection limits of volatile elements are effectively lowered by the spectrographic method of using covered electrodes in conjunction with the arc concentration technique; the method presented allows for simultaneous multi-element batch determination. In the author's laboratory, measurements were made by using a plane-grating spectrograph, PGS-2 with an a.c. arc generator as an excitation source and a current of 13 A. The detection limits of the 37 elements determined basically meet the needs of regional geochemical exploration with a relative standard deviation of ±5–10% for most elements (except B and Ga, which are ±10–20%). The analytical results of geochemical standard reference samples (GSD 1–8 of China and GXR 1–6 of the USGS) by this method agree with their recommended (or certified) values with a relative error of ±30%.  相似文献   

13.
Paleoecological records from two Holocene peat bogs in northern Germany are linked by two microscopic volcanic ash layers, correlated by petrology and geochemistry to explosive volcanism on Iceland. The younger “Microlite tephra” cannot be correlated to any known eruption, while the older tephra layer is identified as a deposit of the Hekla 3 eruption. The tephra layers are dated by an age–depth regression of accelerator mass spectrometry 14C ages that have been calibrated and combined in probability distributions. This procedure gives an age of 730–664 cal yr B.C. for the “Microlite tephra” event and 1087–1006 cal yr B.C. for the Hekla 3 event. Accordingly, the tephra layers were deposited during the late Bronze Age. At this time, human settlement slowly increased pressure on the environment, as indicated by changes in woodland pollen composition at the two bogs. The tephra-marker horizons further show that the palynologically defined transition from the Subboreal to the Subatlantic Period is synchronous in the investigated area. However, the macroscopic visible marker in peat, the change from fibrous to sapric peat, the “Schwarztorf-Weißtorf-Kontakt,” is asynchronous. Bog vegetation did not immediately react in unison to a climatic change at this pollen zone boundary; instead, the timing of vegetation change depended on the location within the bog.  相似文献   

14.
Individual Pennsylvanian clastic sediment intervals above the Seelyville Coal were examined on electric logs from Sullivan County, Indiana, U.S.A. for vertical sequence, interval thickness, and sand content. This information was used to evaluate local variability of this area of the Illinois Basin depositional system.Each clastic interval is composed of a lateral association of vertical sequences of sediments, bounded above and below by a thin association of coal, limestone, black shale, and/or underclay. An “average” constructive clastic unit is characterized by the following thickness parameters: mean , standard deviation (s) = 3.4 m, minimum = 6.1 m, and
sand content, as measured by electric log resistivity, is 37%.Clastic sediment intervals characterized as “deep water” sediments tend to be clayrich, have the greatest lateral continuity, are composed of 50% to 90% coarsening upward sequences, are comprised of less than 16% fining upward sequences, and are composed of less than 10% of sequences of facies which are transitional between coarsening and fining upward. Sandstone channels are linear to coarsely dendritic and probably postdate lower portions of the coarsening upward sequences. One example of longshore shoaling between the Springfield and Houchin Creek coals was discovered. This is the youngest stratigraphic evidence of longshore currents in Illinois Basin clastic sediments. This milieu probably represents a distal delta position.Shallow-water sediments are sand-rich, complex, and gradational. They tend to be interfingered and to display poor lateral continuity. Coarsening upward sequences comprise less than 20% of the data sites. Fining upward fluvial sequences are represented by well-developed dendritic map patterns and constitute 20–30% of the sites. Transitional sequences between coarsening and fining upward log profiles are represented by both interfingered and gradational sequences and constitute 20–55% of the sites.Each constructive vertical sequence represents only a portion of the overall progradational deltatic environment.Destructive linear erosional channels are oriented downdip into the basin. The first occurrence in Indiana of the Trivoli Sandstone channel facies, located between the Ditney and West Franklin horizons, was delineated. Destructive channel sands are found commonly between the Houchin Creek and Colchester coals.Clastic subintervals locally began to develop when compacted unit thickness exceeded 18 m.Average regional wedging contributes 0.13 m/km to local sediment interval thickness variability. The average compacted clastic interval thickness has a local range of 19 m owing to local depositional environments. This variation is related closely to the overall clastic ratio of end-member sequences which are situated in close proximity. The average clastic unit varies in thickness of ± 1.4 m owing to the influence of compaction of the underlying Pennsylvanian sediment filling the Mississippian unconformity valleys. Compactional effects between clastic units become negligible as composite interval thickness exceeds 30 m.  相似文献   

15.
The destabilization of kaolinite suspension by anionic flocculant addition occurs in three zones; free settling, hindered settling and compression which usually includes a final bed raking process in mineral processing practice. This paper reports changes in the kaolinite aggregate and floc structures in the different settling and raking zones by cryo-vitrification/cryo-SEM techniques with image analysis combining micro- and macro-flocs. Cryo-SEM images indicate that, even during free settling, fine clay particles are bridged predominantly in edge–edge (E–E) with some face–face (F–F) configurations forming single, small flocs and some chain structures. When these small flocs and chains settle into the hindered settling zone, the collision between flocs and chains results in “honeycomb” network structures formed with lateral chain-like extension. The settled bed consists of these honeycomb structures with both inter-aggregate and intra-aggregate trapped water and has relatively low bed density (e.g. < 12 wt.% for a 2 wt.% slurry). The effect of the raking process in dramatically improving thickener underflow solids has been extensively studied but the structural changes in flocs and aggregates in this process are less well defined. Raking the compression zone for 1 h at 3 rpm can release some of the trapped water in the “honeycomb” structure and the bed density for 2 wt.% slurry improves dramatically to more than 36 wt.%. Cryo-SEM illustrates the extensive restructuring of flocs from predominantly E–E to predominantly F–F in many areas. The STructural IMage ANalysis (STIMAN) software is used to combine a series of images at magnifications from 1000× to 8000×, including both macro- and micro-flocs. This structural analysis comparing the un-raked and raked bed samples gives increases in total particle area of 30% and in relative particle area of 6%. The relatively low energy rake action of the shear stress results in the disruption of the E–E chains and the honeycomb structure, partly releasing the trapped water and inducing some E–E to F–F aggregate restructuring are clearly illustrated in these results.  相似文献   

16.
The earthquakes with magnitude M 6 which occurred in North China (30°–42°N, 105°–124°E) from 780 B.C. to 1978 A.D. have been analysed. Most of them appear in groups, each of which is confined to a definite region and period of time, called respectively the active region and active period. From 780 B.C. to 1000 A.D., groupings of earthquakes were not apparent, due to scanty data. Since 1000 A.D., 16 groups of earthquakes can be recognized. Statistics show that about 73% of the earthquakes occurred in groups. This implies that grouping of earthquakes of M 6 is a characteristic feature of seismic activity in North China. On this basis, a concept of a unified seismogenic process of major earthquakes has been proposed with the support of the geodetic data. Finally, the significance of this concept with regards to earthquake prediction has been discussed.  相似文献   

17.
The Tacuarembó Formation has yielded a fossil assemblage that includes the best known body fossils, consisting of isolated scales, teeth, spines, and molds of bones, recovered from thin and patchy bonebeds, from the Botucatu Desert, Parana Basin, South America. The remains are preserved in the sandstones widespread around the city of Tacuarembó. We propose a new formalized nomenclature for the Tacuarembó Formation, naming its “Lower” and “Upper” members as the Batoví (new name) and Rivera (new rank) members, respectively. An assemblage zone is defined for the Batoví Member (fluviolacustrine and aeolian deposits). In this unit, the freshwater hybodontid shark Priohybodus arambourgi D’Erasmo is well represented. This species was previously recorded in Late Jurassic–Early Cretaceous units of the Sahara and the southern Arabian Peninsula. Globally considered, the fossil assemblage of this member (P. arambourgi, dipnoan fishes, Ceratosaurus-like theropods, and conchostracans) is indicative of a Kimmeridgian–Tithonian age, which in combination with the stratigraphic relationships of the Tacuarembó Formation with the overlying basalts of the Arapey Formation (132 My average absolute age) implies that the latter was deposited during the Kimmeridgian–Hauterivian interval.  相似文献   

18.
Weak and strong ground motions were numerically predicted for three stations of the Ashigara Valley test site. The prediction was based on the records from a rock-outcrop station, one weak-motion record from a surface-sediments station, and the standard geotechnical model. The data were provided by the Japanese Working Group on the Effects of Surface Geology as a part of an international experiment. The finite-difference method for SH waves in a 2-D linear viscoelastic medium (a causalQ model) was employed.Comparison with the real records shows that at two stations the predictions fit better than at the third one. Strangely, the two better predictions were for stations situated at larger distances from the reference rock station (one station was on the surface, the other in a borehole). The strong ground motion (the peak acceleration of about 200 cm s–2) was not predicted qualitatively worse than the weak motion (8 cm s–2). A less sophisticated second prediction (not submitted during the experiment), in which we did not attempt to fit the available weak-motion record at the sedimentary station, agrees with the reality significantly better.  相似文献   

19.
The seismic data obtained during SUDETES 2003 experiment are analysed, and detailed crustal structure for profiles S02, S03 and S06 is presented using three different 2-D techniques: (1) “smooth” tomography of refracted waves travel times, (2) ray tracing of reflected and refracted waves, and (3) joint velocity and depth of reflector tomographic inversion. In spite of different interpretation techniques used, the models of the crustal structure show common characteristic features. The low velocity (Vp < 4 km/s) sedimentary layer was documented in the northeastern part of the study area. The topmost basement has in general a velocity of 5.8–6.0 km/s, and velocities at ca. 20 km depth are 6.15–6.25 km/s. The strong reflecting boundaries were found at 20–23 and 25–28 km depth with a velocity contrast about 0.4 km/s, and the highest velocities in the lowermost crust are 6.8–7.2 km/s. In general, the crust of the Bohemian Massif is slightly thicker (33–35 km) than in the northern part of the area. Velocities beneath Moho are relatively low, of 7.95 km/s. On the basis of well recorded reflected waves, mantle reflectors were discovered in the depth interval ca. 40–70 km. Apart of new results for the geology and tectonics of the area, some conclusion could be made about different techniques used. In the 2-D case the “clasical” ray tracing method with using all correlated phases gives the most adequate model of the structure, because of full, manual control of the model creation. The “smooth” first arrival travel times tomography, although very fast, is not satisfactory enough to describe the complex structure. So, the best candidate in 3-D case seems to be travel time tomography for both refracted and reflected waves in multi-layers models.  相似文献   

20.
Dimensions of Holocene relict channels and sedimentological characteristics of point bars associated with these relict channels were used to reconstruct a Holocene history of long-term changes in magnitudes of 1.58-yr floods in Upper Mississippi Valley watersheds of southwestern Wisconsin. The reconstructed record of floods shows relatively large and persistent (nonrandom) departures from contemporary long-term average flood magnitudes. The flood history indicates climatic changes that are broadly similar to climatic changes indicated from fossil pollen in the same region. The Holocene floods ranged from about 10–15% larger to 20–30% smaller than contemporary floods of the same recurrence frequency. Large floods were characteristic between about 6000 – 4500 and 3000 – 2000 yr B.P., and during a brief interval after 1200 yr B.P. Small floods were common between about 8000 – 6500, 4500 – 3000, and 2000 – 1200 yr B.P. These fluvial responses were found to be closely associated with a long-term episodic mobility and storage of sediments in the Wisconsin watersheds. During periods of relatively large floods, relatively rapid lateral channel migration either reworked or removed extensive tracts of valley bottom alluvium. In contrast, during periods of relatively small floods, relatively slow lateral channel migration is apparent and the channel and floodplain system appear to have been relatively stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号