首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of structurally controlled hydrothermal mineralization have occurred during folding of fissile schist in southern New Zealand: fold-related mineralization and normal fault-related mineralization. Both types have the same mineralogy and textures, and are dominated by quartz–ankerite veins and silicified breccias with ankeritic alteration. Most mineralized zones are thin (centimetre scale), although host schist is commonly impregnated with ankerite up to 20 m away. Thick (up to 5 m wide) mineralized zones are generally gold-bearing and contain pyrite and arsenopyrite with stibnite pods locally. Some of these auriferous zones have been extensively mined historically despite rugged topography and difficult access. Mineralization occurred during regional tectonic compression in the initial stages of development of the Southern Alps mountain belt at the Pacific–Australian plate boundary in the Miocene. Most of the gold-bearing deposits occur in east to south-east, striking normal faults that cut across mesoscopic folds in a belt that coincides with the southern termination of a regional-scale north trending antiform. Mineralized zones have similar structural control and relative timing to a nearby swarm of Miocene lamprophyre dykes and carbonatites. Limited stable isotopic data (C and O) and trace element geochemistry suggest that there was probably no genetic link between the igneous activity and gold mineralization. However, these two types of fluid flow have been controlled by the same tectonically created crustal plumbing system. This Miocene hydrothermal activity and gold deposition demonstrates that orogenic (mesothermal) mineralization can occur during the inception of an orogenic belt, not just in the latter stages as is commonly believed. These Miocene structures have been preserved in the orogen because the locus of uplift has moved northwards, so the early-formed gold deposits have not yet been structurally overprinted or eroded.  相似文献   

2.
Orogenic gold-bearing quartz veins in the middle Tertiary Bullendale Fault Zone, New Zealand were mined historically for coarse gold in a narrow zone (ca. 5 m thick). However, recent drilling has revealed a broad hydrothermal alteration zone extending into the host schist, in which disseminated sulphide and gold mineralisation has occurred. The evidence of alteration is first seen over 150 m across strike from the fault zone, and the best-developed alteration halo is about 50 m wide. The extent and intensity of alteration is strongly controlled by local structures that developed during regional Tertiary kink folding of the pervasively foliated and fissile metasedimentary schist host. The earliest structures are foliation-parallel microshears (micron to millimeter scale) formed during flexural-slip folding. Later, but related, structures are predominantly normal faults and associated shear zones that have formed extensional sites during the regional folding event. All these structures facilitated hydrothermal fluid penetration and rock alteration, with localised vein formation and brecciation. Where fluid has followed structures, metamorphic chlorite, phengite, and titanite have been altered to hydrothermal ankerite, rutile, and muscovite or kaolinite. Ankerite with Fe/(Fe + Mg) < 0.4 formed in host rocks with Fe/(Fe + Mg) of 0.6, and iron released by ankerite alteration possibly formed pyrite and arsenopyrite that host disseminated gold. Fault zones were extensively silicified and veined with quartz, albite, sulphides, and gold. Host rocks have wide compositional variations because of centimeter-scale metamorphic segregation. However, the alteration halo is characterised by elevated CO2 and S, as measured by loss-on-ignition (doubled to ca. 6 wt.%), elevated As (100–10,000 ppm), and weakly elevated Sb (up to 14 ppm). Strontium is elevated and Ba depleted in many altered rocks, so Sr/Ba ratio increases from < 1 (host rocks) to > 3 in the most altered and silicified rocks. Many altered and mineralised rocks have low Sr/Ba (< 0.5) as well. The subtle geochemical signature is not useful as a vector to ore because of the strong microstructural control on alteration. Likewise, there is no evidence for spatial mineralogical zonation across the alteration halo, although the most intense alteration is centred on the main fault zone, and intensity of alteration is controlled by microstructures at all scales. As documented in previous studies, hydrothermal alteration haloes enlarge the exploration target for some orogenic gold deposits, and may include disseminated gold, as in this Bullendale example.  相似文献   

3.
《Journal of Structural Geology》2004,26(6-7):1067-1086
Structural controls on the distribution of gold in the Witwatersrand Basin can be seen at scales ranging from that of thin sections up to regional seismic data sets. At the thin section scale, gold occurs largely in fractures with hydrocarbons. These fractures are associated with pulses of thrusting deformation that occurred in the latter stages of the basin's development. The distribution of thrust–fracture networks (and therefore gold) is controlled by the mechanical attributes of the host stratigraphy. Thrust displacements are generally very low, with structures exploiting depositional contacts and mesoscale sedimentary bedforms. Many of the small faults are isolated from each other with bimodal vergence between larger-scale thrusts of the same age. Early-formed faults and fractures become folded and faulted by subsequent propagation of larger-scale thrusts. These characteristics are consistent with formation of the mineralised thrust–fracture networks in the frontal, low-displacement parts of a thrust system. In the Carletonville goldfield, the prospectivity of the Ventersdorp Contact Reef (VCR) has been evaluated by using underground observations to pinpoint the structural habitat of gold, and therefore characterise the size of prospective zones around structures intersecting the VCR, mapped within 3D seismic data. In the Welkom goldfield, the controls on gold distribution at the Tshepong mine have been characterised from 3D seismic data, drilling and underground observations, and used to develop an ore-body model that aids reserve estimation and production planning.  相似文献   

4.

造山型金矿具有重要经济价值, 其成矿理论研究对全球金矿勘查和开采具有重要意义。为了更好的理解挤压和伸展背景下深成-中成-浅成造山型金矿成矿过程中控矿断裂形成过程、构造控制流体流动、流体就位机制以及矿化样式之间的关系, 本文系统综述了岩石破裂原理、挤压和伸展体制断裂网络结构, 全面梳理全球不同构造体制和成矿深度造山型金矿的构造控矿样式、矿脉几何学和蚀变矿化网络结构, 取得以下认识: (1)在挤压背景下, 深成金矿通常受韧-脆性逆冲剪切带控制, 发育窄蚀变带、大脉状和层压状矿石以及黑云母-角闪石-磁黄铁矿等蚀变矿化组合; 中成金矿受脆-韧性逆冲剪切带、褶皱转折端的滑脱空间和里德尔剪切派生裂隙控制, 发育窄-中等宽度蚀变带、层压状和网脉状矿石以及绿泥石-方解石-绢云母-黄铁矿化蚀变矿化组合; 浅成金矿受脆性剪切带和次级毛细裂隙控制, 发育宽蚀变带、角砾状和浸染状矿石以及绢云母-碳酸盐-硫化物(黄铁矿、毒砂)等蚀变矿化组合。研究表明上述不同成矿深度金矿构造-蚀变-矿化差异由构造、流体压力、水岩反应强度和岩石抗张强度等共同控制, 流体就位和矿质沉淀机制由深部的强构造流体互馈、弱水岩反应强度向浅部的弱构造流体互馈、强水岩反应强度转换。(2)在伸展背景下, 深成金矿通常受韧-脆性张剪断裂带控制, 发育窄蚀变带、大脉状矿石以及黑云母-角闪石-斜长石-磁黄铁矿等蚀变矿化组合; 中成金矿受脆-韧性张剪断裂带控制, 发育窄-中等宽度蚀变带、断层充填脉和网脉状矿石以及绢云母化-硅化-绿泥石化蚀变矿化组合; 浅成金矿受脆性断层角砾破碎带控制, 发育宽蚀变带、角砾状和浸染状矿石以及绢云母-碳酸盐-硫化物(黄铁矿、毒砂)等蚀变矿化组合。伸展体制控矿构造多为先存断裂改造和再活化, 当先存断裂优选定向时断裂发生再活化, 成矿流体以充填断裂成矿为主, 当先存断裂差异定向时流体压力驱动水力破裂形成新的断裂并改造先存构造。造山型金矿构造控矿研究已由传统的二维空间定性精细刻画逐渐向三维空间定量可视化拓展。

  相似文献   

5.
The world famous Klondike goldfields are located in the unglaciated part of west-central Yukon, Canada. Since their discovery over 100 years ago, they have produced an estimated 311 tonnes of gold, primarily from bench and creek placers that are fluvial in origin and range from Pliocene to Holocene in age. Historically, the placers are classified into three levels of gravel with four main units. These include the high-level White Channel Gravel (Pliocene), presently the most important gold-bearing unit, which sits nonconformably on an erosional bedrock surface (i.e., the ‘White Channel strath’) and is overlain and interbedded with the glaciofluvial Klondike Gravel (Pliocene); the intermediate-level gravel (Pleistocene), the least important economically; and the low-level gravel (Pleistocene–Holocene), historically the most important gold-bearing unit, but it has been mined three or four times now. The goldfields originated from the weathering and erosion of early Cretaceous, discordant mesothermal quartz veins, and the light grey color of the matrix of the White Channel Gravel is due mainly to weathering and diagenetic alteration by groundwater flow. The concentration of placer gold is related to a hierarchy of physical scales: at the lithofacies scale (metres), bed roughness determined sites of gold deposition; at the element scale (tens of metres), gravel bars were preferentially enriched in gold; at the reach scale (hundreds of metres), stream gradient was an important factor; at the system scale (hundreds of km), braided river environments transported large amounts of gold; and at the sequence scale (thousands of km), economic placers formed initially in the high-level White Channel Gravel and later in the intermediate-level and low-level gravel. The White Channel strath is interpreted as an erosional ‘tectonic’ terrace that formed during isostatic uplift and under conditions of dynamic equilibrium. The high-level White Channel Gravel and Klondike Gravel are interpreted as a depositional ‘climatic’ terrace that formed during a reversal in the tectonically induced downcutting, which is attributed to the initial and most extensive of the pre-Reid glaciations (3 Ma) in the Yukon. The intermediate-level gravel is interpreted as minor erosional ‘complex response’ terraces that formed during static equilibrium when there were pauses in valley-floor degradation, which are attributed to the subsequent and less extensive pre-Reid glaciations. The low-level gravel formed also during valley-floor degradation and may represent a return to dynamic equilibrium conditions. Hence, the dominant forcing mechanisms controlling the evolution of the goldfields were isostatically compensated exhumation and climatic change related to the repeated glaciation of the Yukon. In addition, the lowering of baselevel from high-level, to intermediate-level and finally to low-level gravel was accompanied by a decrease in accommodation space (as indicated by a decrease in gravel thickness), which resulted in an increase in the concentration of the placer gold.  相似文献   

6.
Hydrothermal activity and mesothermal-styled gold mineralisation occurs near the main topographic divide of most active or young collisional mountain belts. The Southern Alps of New Zealand is used in this study as a model for the mineralising processes. The collisional tectonics results in a two-sided wedge-shaped orogen into which rock is transported horizontally. Upper crustal rocks pass through the orogen and leave the orogen by erosion, whereas lower crustal rocks are deformed into the mountain roots. High relief drives meteoric water flow to near the brittle–ductile transition. Lower to upper greenschist facies metamorphic reactions, driven by deformation at the crustal decollement and in the root, release water-rich fluids that rise through the orogen. Intimate chemical interaction between fluid and rock results in dissolution and later precipitation of gold, arsenic and sulphur. Fluid flow and mineralisation in the topographic divide region is facilitated by a network of steeply dipping faults and associated rock damage zones where oblique strike-slip faults intersect the thrust faults that strike subparallel to the main mountain range.The Nanga Parbat massif of the western Himalaya is an example of an active collisional zone which hosts hydrothermal activity but no gold mineralisation. The lack of gold mineralisation is due to the following factors: CO2-dominated rising metamorphic fluid in dehydrated amphibolite-granulite facies metamorphic rocks does not dissolve gold and arsenic; hot (up to 400 °C) meteoric water confined to fractures in the gneiss limits dissolution of gold and arsenic; low density of hot water/dry steam, and low reduced sulphur content of fluid, restrict solubility of gold and arsenic; absence of fracture networks in the core of the massif and the small volumes of circulating fluid limit metal concentration; and lack of reactive rock compositions limits chemically mediated metal deposition.  相似文献   

7.
Stratiform quartz-sulphide-gold veins, locally termed reefs are hosted within the Proterozoic Transvaal Sequence sedimentary succession, in the Sabie-Pilgrim's Rest goldfield, eastern Transvaal. These deposits have produced about 180 tonnes of gold and share many characteristics with those of Telfer, Western Australia. Detailed examination of the Elandshoogte Mine shows that gold deposition occurred in two stages, both linked to bedding-parallel thrust faulting within the sedimentary pile. Deformation being concentrated within incompetent shale beds, interlayered within more competent units. The majority of gold was introduced in the second stage of mineralisation and occurs within fractures in early-formed sulphide minerals. Deposition of competent quartz veins accompanying early sulphide and gold mineralisation resulted in a change in deformation style within the reef zone, from early shearing in shales to later duplex faulting of the quartz-reef. Fluids accompanying faulting are implied to have transported gold, and a magmatic source of mineralisation is suggested.  相似文献   

8.
Young orogenic gold mineralisation in active collisional mountains, Taiwan   总被引:1,自引:0,他引:1  
Gold-bearing vein systems in the high mountains of Taiwan are part of the youngest tectonic-hydrothermal system on Earth. Tectonic collision initiated in the Pliocene has stacked Eocene–Miocene marine sedimentary rocks to form steep mountains nearly 4 km high. Thinner portions of the sedimentary pile (∼5 km) are currently producing hydrocarbons in a fold and thrust belt, and orogenic gold occurs in quartz veins in thicker parts of the pile (∼10 km) in the Slate Belt that underlies the mountains. Metamorphic fluids (2–5 wt.% NaCl equivalent) are rising from the active greenschist facies metamorphic zone and transporting gold released during rock recrystallisation. Metamorphic fluid flow at the Pingfengshan historic gold mine was focussed in well-defined (4 km3) fracture zones with networks of quartz veins, whereas large surrounding volumes of rock are largely unveined. Gold and arsenopyrite occur in several superimposed vein generations, with ankeritic alteration of host rocks superimposed on chlorite–calcite alteration zones as fluids cooled and became out of equilibrium with the host rocks. Mineralising fluids had δ18O near +10‰, δ13C was between −1‰ and −6‰ and these fluids were in isotopic equilibrium with host rocks at ∼350°C. Ankeritic veins were emplaced in extensional sites in kink fold axial surfaces, formed as the rock mass was transported laterally from compressional to extensional regimes in the orogen. Rapid exhumation (>2 mm/year) of the Slate Belt is causing a widespread shallow conductive thermal anomaly without igneous intrusions. Meteoric water is penetrating into the conductive thermal anomaly to contribute to crustal fluid flow and generate shallow boiling fluids (∼250°C) with fluid temperature greater than rock temperature. The meteoric-hydrothermal system impinges on, but causes only minor dilution of, the gold mineralisation system at depth.  相似文献   

9.
Chemical analyses suggest that the metavolcanic rocks of the Almas Greenstone Belt (AGB), Tocantins State, Brazil have a continental affinity, possibly related to a continental rift environment. They were metamorphosed to amphibolite facies during a regional tectono-metamorphic event (Dn), retrogressed to greenschist facies assemblages and then hydrothermally altered within dextral strike–slip shear zones (Dn+1). Fracture sets related to Dn+2 intersect Sn+1.The Paiol Gold Mine is one of several mineralised zones within metabasic and meta-intermediate rocks of the AGB. It exploits shoots of sulphide–Au–quartz mineralisation that occupy dilational zones approximately perpendicular to an elongation lineation (Ln+1) within mylonitic foliation Sn+1 (Sn+1=S within the S–C fabric). The dilational zones probably formed due to dextral displacement on sinistrally en echelon C surfaces. Minor amounts of gold may have been introduced or remobilised during Dn+2.Coexisting primary and pseudosecondary fluid inclusions in mineralised quartz veins from ore shoots comprise a high-salinity three-phase type (Type II) and a lower salinity two-phase type (Type I). Homogenisation temperatures for Type II inclusions range from 200 to 410 °C and Type I from 90 to 320 °C. The inclusions and their temperature ranges are believed to reflect heat exchange and some mixing between the two fluid types under relatively constant ambient temperatures, but variable (though broadly declining) fluid temperatures. This took place late in Dn+1 in conjunction with greenschist facies retrogression and localised hydrothermally induced metasomatism.  相似文献   

10.
New 40Ar/39Ar geochronological data support, and significantly expand upon, preliminary age data that were interpreted to suggest an episodic and diachronous emplacement of gold across the western Lachlan fold belt, Australia. These geochronological data indicate that mineralisation in the central Victorian gold province occurred in response to episodic, eastward progressing deformation, metamorphism and exhumation associated with the formation of the western Lachlan fold belt. Initial gold formation throughout the Stawell and the Bendigo structural zones can be constrained to a broad interval of time between 455 and 435 Ma, with remobilisation of metals into new structures and/or new pulses of mineralisation occurring between 420 and 400 Ma, and again between 380 and 370 Ma, linked to episodic variations in the regional stress-field and during intrusion of felsic dykes and plutons. This separation of ages is incompatible with the view that gold emplacement in the western Lachlan fold belt was the result of a single, orogen-wide event during the Devonian. A distinct phase of gold mineralisation, characterised by elevated Cu, Mo, Sb or W, is associated with both Late Silurian to Early Devonian (~420 to 400 Ma) and Middle to Late Devonian (~380 to 370 Ma) magmatism, when crustal thickening and shortening during the ongoing consolidation of the western Lachlan Fold Belt led to extensive melt development in the lower crust and resulted in widespread magmatism throughout central Victoria. These ~420 to 400 Ma and ~380 to 370 Ma occurrences, best exemplified by the Wonga deposit in the Stawell structural zone and many of the Woods Point deposits in the Melbourne structural zone, but also evidenced by occurrences at Fosterville and Maldon in the Bendigo structural zone, clearly formed synchronous with, or post-date, the emplacement of plutons and dykes, and thus are spatially (if not genetically) related to melt generation at depth. This later, magmatic-associated and polymetallic type of gold mineralisation is economically subordinate to the earlier, metamorphic-associated type of gold deposition in the Stawell and Bendigo structural zones, but tends to be the dominant style in the Melbourne Zone. These new geochronological constraints, together with zircon U-Pb data from felsic intrusive rocks of known relationship to gold mineralisation, demonstrate that initial hydrothermal alteration associated with gold emplacement in the western Lachlan fold belt was metamorphic-related, predating the emplacement of granite plutons by as much as 80 million years. This timing differs from other important orogenic gold districts where gold deposition is closely associated spatially with felsic magmatism. The early introduction of metamorphically derived fluids well before magmatism may reflect variations in the timing of peak metamorphic conditions at different crustal levels in an accretionary prism undergoing simultaneous deformation and erosion. Consequently, no genetic link exists between the main phase(s) of gold mineralisation and magmatism in the central Victorian gold province. With the exception of formation of a minor magmatism-related and geochemically-distinct mineralisation style at about 420 to 400 Ma, and again at about 380 to 370 Ma, the apparent spatial relationship between gold mineralisation and felsic intrusions is merely the result of melts and fluids being channelised along the same structures.  相似文献   

11.
Orogenic or mesothermal quartz lodes in lower Palaeozoic Greenland Group metasedimentary rocks of the Reefton area have produced 67 tonnes (t) of gold prior to 1951, and recent exploration has identified new gold resources in several deposits, including the largest past producers, Blackwater and Globe-Progress. The metasedimentary rocks consist of alternating sandstone and mudstone beds that were metamorphosed to lower greenschist facies prior to being hydrothermally altered adjacent to the quartz lodes. The sandstones are feldspathic litharenites averaging Q65-F10-R25, with detrital grains of quartz, rock fragments, muscovite, and plagioclase and biotite that were altered to albite and chlorite, respectively, during metamorphism. Accessory minerals are graphite, apatite, zircon, tourmaline and titanite. Hydrothermal alteration of the sandstones has developed a mineral assemblage of K-mica, carbonate (dolomite, ankerite, ferroan magnesite and magnesian siderite), chlorite, pyrite and arsenopyrite. The abundance of hydrothermal chlorite is greater at Blackwater than at the other prospects studied. Hydrothermal alteration associated with the quartz lodes is marked by bleaching, magnesian siderite spots, disseminated arsenopyrite and pyrite and thin carbonate, quartz and sulphide veins. These trends are accompanied by increasing concentrations of S, As and Sb and decreasing Na, and a decrease of Fe and Mg in K-mica. The alkali alteration indices 3K/Al (representing K-mica) and Na/Al (representing albite) generally show antipathetic trends, with 3K/Al increasing near the lodes and Na/Al decreasing. These trends reflect the replacement of albite by K-mica. Carbonate alteration indices CO2/(Ca + Mg +Fe) and CO2/[Ca + Mg + Fe -0.5(S + As)] quantify the abundance of hydrothermal carbonates, but they show variable correlation with the lodes. They increase the width of the alteration halo in the hanging wall of the lodes at the Globe-Progress and General Gordon prospects, but the peak values are as far as 150 m from the lodes. By contrast, peak values of the carbonate alteration indices are within 10 and 2 m of the lodes, respectively, at the Merrijigs and Blackwater deposits. Data show that for deposits with wide hydrothermal alteration halos, such as at the Globe-Progress and General Gordon prospects, the use of a suite of geochemical indicators can assist exploration by indicating trends in hydrothermal alteration that provide vectors to mineralisation. They also increase the size of the exploration target. By contrast, the alteration halo of the Blackwater deposit is restricted to within less than 5 m of the quartz lode and, therefore, the geochemical indicators are of more limited assistance to exploration.  相似文献   

12.
曹恒  张玉清 《江苏地质》2014,38(1):98-105
加拿大萨斯喀彻温省的金矿主要分为4种类型:层控型金矿、浅层热液金(银-贱金属)低硫化亚型金矿、钙碱性斑岩Cu-Mo-Au-W型金矿、构造控制中温脉型金矿。主要从地质环境和矿床特征的角度对各类型矿床进行描述,并列举各类型金矿的实例。  相似文献   

13.
The Sumatra Fault System provides a unique geologic setting to evaluate the influence of structural controls on geothermal activity. Whereas most of the geothermal systems in Indonesia are controlled by volcanic activity, geothermal systems at the Sumatra Fault System might be controlled by faults and fractures. Exploration strategies for these geothermal systems need to be verified because the typical pattern of heat source and alteration clays are missing so that conventional exploration with magnetotelluric surveys might not provide sufficient data to delineate favorable settings for drilling. We present field geological, structural and geomorphological evidence combined with mapping of geothermal manifestations to allow constraints between fault dynamics and geothermal activity in the Tarutung Basin in north central Sumatra. Our results indicate that the fault pattern in the Tarutung Basin is generated by a compressional stress direction acting at a high angle to the right-lateral Sumatra Fault System. NW–SE striking normal faults possibly related to negative flower structures and NNW-SSE to NNE-SSW oriented dilative Riedel shears are preferential fluid pathways whereas ENE–WSW striking faults act as barriers in this system. The dominant of geothermal manifestations at the eastern part of the basin indicates local extension due to clockwise block rotation in the Sumatra Fault System. Our results support the effort to integrate detailed field geological surveys to refined exploration strategies even in tropical areas where outcrops are limited.  相似文献   

14.
Gold mineralisation in classic Australian slate belt gold deposits at Ballarat, Bendigo, St. Arnaud and Inglewood occurred very late in the orogenic history of these rocks rather than during formation of the main slaty cleavage. This has been revealed through the examination of microstructural relationships in gold-bearing quartz veins and their host rocks from these deposits, which has established a D1 to D4 deformation-stage history and consistent timing for gold mineralisation over a wide area. The gold was deposited synorogenically but during the fourth deformation stage (D4) of the orogeny, a relatively weak event occurring two deformations after the main slaty cleavage producing event, D2. Previously, D2 had been regarded as both the source and control of gold mineralisation as most of the quartz veins that occur in these deposits formed before or during this deformation event. However, most gold is hosted in breccia veins that formed during D4. The wallrock clasts within these breccia veins contain a young rotated foliation and the breccia veins are spatially associated with a paragenetically consistent alteration of the host rocks in the deposits. This alteration both crosscuts and preferentially mineralises wallrock S4 allowing the timing of the breccia veins, alteration and gold deposition to be defined as syn-D4 in age.  相似文献   

15.
The Villalcampo shear system is a regional dextral strike-slip fault zone that affects Late Variscan granites and their metamorphic country rocks over an area of about 150 km2. The detailed geometry of this subvertical north-west—south-east shear zone is outlined. The system forms an extensional fan to the northwest and extends to the south-east as a broad extensional duplex. Particular attention is focused on the distribution of fault rocks and associated veins in its north-west splay. A structural study of the shear bands (encompassing both geometric and kinematic criteria) and a microscopic study of the fault rocks has led to the interpretation of the system as a brittle—ductile shear zone. Calculations give a shear strain value of = 1.5 and a minimum displacement of s = 3700 m. The localization of gold mineralization in mylonite-filled subvertical extensional veins is a product of the formation of the Villalcampo shear system. The subvertical faults and veins underwent a process of cyclical sealing and reopening. As such they acted as valves controlled by fluid pressure regulating fluid—rock interactions and gold deposition. Conditions favouring these processes occur near the base of the seismogenic zone in the vicinity of the frictional—quasi-plastic transition at mid-greenschist metamorphic conditions (T = 350°C and 10–15 km depth).  相似文献   

16.
The West African craton is known for its structurally hosted Au deposits in Ghana, Burkina Faso, Côte d'Ivoire, Mali and Niger. The Essakane goldfield in northeast Burkina Faso has produced 1 606,000 oz of gold since 2010 from the Essakane Main Zone. The Essakane goldfield is made up of several exploration and artisanal sites that include; Essakane Main Zone, Gossey, Falagountou, Sokadie, Tin Zoubratan, Essakane North and South, Korizéna, Bom Kodjélé, Tin Taradat, Tassiri, Gaigou, and Takabangou. Gold mineralisation in sheeted and stockworks quartz–carbonate and tourmaline veins occurs with pyrite, arsenopyrite, and traces of pyrrhotite, galena and hematite. It is hosted in sheared, folded and contact metamorphosed volcanic, volcanoclastic and sedimentary Birimian Supergroup sequences. The maximum age of gold mineralisation in the Essakane goldfield is syn-deformational and formed during the Eburnean Orogeny (D2) at 2130–1980 Ma.  相似文献   

17.
40Ar/39Ar data for muscovite separates and hydrothermally altered whole‐rock samples from the Ballarat West and the Ballarat East goldfields indicate that mesothermal gold mineralisation at Ballarat occurred during several episodic pulses, ranging in age from the Late Ordovician to the Early Devonian. Initial formation of auriferous structures in the Ballarat goldfields coincided with folding and thrusting associated with the development of the western Lachlan Fold Belt between 460 and 440 Ma. Subsequent fault reactivation and magmatism resulted in remobilisation and additional mineralisation between 410 and 380 Ma, and around 370 Ma. The results presented herein are in agreement with findings for other major gold deposits in central Victoria and further constrain the history of deformation, metamorphism and mineralisation in the western subprovince of the Lachlan Fold Belt.  相似文献   

18.
A highly faulted and fractured rock mass has developed at the intersection of the Alpine and Hope faults, two major active faults in the South Island, New Zealand. The Alpine Fault is an oblique dextral reverse fault at the late Cenozoic-Recent Pacific-Australian plate boundary. The Hope Fault is a strike-slip fault parallel to the plate convergence vector. Hydrothermal fluids driven by the active tectonic processes have passed through the fractured rock mass, causing localised rock alteration and vein formation. Mylonites in the Alpine Fault zone are crosscut by cm-scale veins of quartz and/or ankerite with minor sulphides, with cemented breccias in dilational jogs. Breccia clasts and immediate (cm-scale) host rocks have been variably impregnated with carbonates and quartz. This generation of veins, breccias and altered rocks is post-dated by cataclasite and fault gouge zones which have been cemented by calcite, illite, smectite and chamosite. Ankerite and calcite have 18O between +10 and +30, and 13C between 0 and –8. These minerals are inferred to have formed from water with variable components of both meteoric and crustally exchanged fluid. Rock alteration associated with ankerite–quartz veins has added arsenic (up to 200 ppm As), strontium, and some Y to the rocks. Host-rock mylonites (<2 ppm As) have been depleted in arsenic compared to their precursors (5–15 ppm As). This depletion of arsenic in the middle crust provides the source for arsenic in shallower-level vein systems.Editorial handling: N. White  相似文献   

19.
Ages of giant gold systems (>500 t gold) cluster within well-defined periods of lithospheric growth at continental margins, and it is the orogen-scale processes during these mainly Late Archaean, Palaeoproterozoic and Phanerozoic times that ultimately determine gold endowment of a province in an orogen. A critical factor for giant orogenic gold provinces appears to be thickness of the subcontinental lithospheric mantle (SCLM) beneath a province at the time of gold mineralisation, as giant gold deposits are much more likely to develop in orogens with subducted oceanic or thin continental lithosphere. A proxy for the latter is a short pre-mineralisation crustal history such that thick SCLM was not developed before gold deposition. In constrast, orogens with protracted pre-mineralisation crustal histories are more likely to be characterised by a thick SCLM that is difficult to delaminate, and hence, such provinces will normally be poorly endowed. The nature of the lithosphere also influences the intrinsic gold concentrations of potential source rocks, with back-arc basalts, transitional basalts and basanites enriched in gold relative to other rock sequences. Thus, segments of orogens with thin lithosphere may enjoy the conjunction of giant-scale fluid flux through gold-enriched sequences. Although the nature of the lithosphere plays the crucial role in dictating which orogenic gold provinces will contain one or more giant deposits, the precise siting of those giants depends on the critical conjunction of a number of province-scale factors. Such features control plumbing systems, traps and seals in tectonically and lithospherically suitable terranes within orogens.  相似文献   

20.
We use numerical modelling codes to simulate aspects of some current hypotheses for the origin of gold deposits and hydrothermal systems in the Yilgarn Craton of Western Australia. In particular, we investigate conceptual models advocating vertically continuous hydrothermal systems as well as those invoking extensive lateral flow and possible links with advection of heat by late orogenic granitic magmatism. Numerical models of part of the Eastern Goldfields Province and Southern Cross Province have been built with FLAC3D, to simulate crustal‐scale coupled interaction between deformation and fluid flow. These illustrate the potential for fluid focusing and mixing in shear zones, including downflow of meteoric water, lateral fluid flow driven by topographic elevation and upwards flow of fluids derived from melting and metamorphism in the deep crust. In some cases, downflow also occurs within the middle crust, at depths where fluid influx might trigger melting if the geothermal gradient were appropriate. The models indicate that tectonic wedging within a layered crust and diverging thrust systems that generate ‘pop‐up’ wedges may be important in facilitating efficient fluid upflow and downflow during uplift, while topographic elevation related to asymmetric thrust migration and loading tends to promote lateral fluid flow. However, the effect of topography appears more important than the precise depth or location of the site of fluid production in the deep crust. The effects of thermal convection and fluid‐fluid interaction have also been numerically modelled for a simplified section across the Kalgoorlie Terrane. Modelling under both hydrostatic and lithostatically overpressured pore‐pressure gradients has effectively delineated domains of convective fluid flow within the middle and upper crust, and has identified two generic sites that are favourable for fluid mixing, notably hangingwall and footwall environments in major shear zones, such as the Bardoc Shear, and in broad antiforms, such as the Goongarrie ‐ Mt Pleasant Antiform. The thermal effect of small plutons embedded in a regional metamorphic regime can cause significant lateral displacement of fluid convection patterns, over distances greater than pluton diameter, as well as more proximal effects on precipitation and dissolution of mineral species. However, these results are highly dependent on the pore‐pressure gradient and the permeability structure of the crust, and require magmatic and metamorphic fluid generation to be precisely timed with respect to deformation, thus reinforcing the dynamic feedback between deformation, magmatism and fluid production and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号