首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed total-intensity aeromagnetic surveys of the Kuttyaro and Aso caldera regions, eastern Hokkaido and central Kyushu, were made during early 1964 under the auspices of the U.S.-Japan Co-operative Science Program in conjunction with a project for geophysical studies of calderas in Japan. Each caldera has a maximum diameter of about 22 km; the flights cover a 60 × 60 km rectangular area in each region. The Kuttyaro survey also encompasses the older caldera Akan, south-west of Kuttyaro, and the younger caldera Mashu to the east. All three lie within the Chīshīma (Kurile) volcanic zone. The isomagnetic contour map shows this zone as a belt of short wave-length anomaies which trends east-northeast across the region. Broad wavelength anomalies with trends intersecting the Chīshīma belt at an acute angle probably reflect structural relief on the Neogene volcanic basement concealed beneath Kuttyaro pyroclastic flows. The centre of Kuttyaro caldera coincides with the sharp southern termination of a strong basement high, whereas caldera faults and post-caldera domes have little magnetic expression. Mashu caldera is marked by a minimum in the position of the caldera lake; a symmetrical positive anomaly centering southeast of the caldera suggests either a buried older volcanic edifice or an intrusion. Akan caldera is represented by a magnetic depression encompassing a positive anomaly produced by its central post-caldera cone. The depression extends north of the geologically-deduced boundary of the caldera and may include an earlier collapse structure. Several volcanoes and lava sequences in the region produce negative anomalies due to inverse polarization. The most significant feature of the Aso isomagnetic map is a large, elongate positive anomaly that occupies the southern half of the caldera and extends about one caldera diameter to the south-west along the trend of the Median Tectonic Line of south-west Japan. Whether the anomaly represents the pre-Tertiary basement complex or a younger intrusion perhaps associated with Aso eruptive activity is uncertain. However, the causative body is abruptly truncated within the caldera by a major east-south-east structure passing through the eastern rim and coincident with the approximate locus of resurgent central vent eruptions. The structure may be a fault system that provided egress for the Aso pyroclastic flows. Superimposed on the basement anomaly are the effects of the topography of the caldera, the superficial caldera structure, and the post-caldera cones. An area of intense solfataric activity in the Kuju group of young volcanoes north of Aso has a pronounced negative anomaly. These two surveys illustrate the utility of the magnetic method for investigations of basement structure in caldera regions. They have served as a guide in interpreting reconnaissance aeromagnetic profiles flown concurrently for this project across some 14 other calderas or caldera-like structures in the Japanese islands.  相似文献   

2.
Published gravity data on active volcanoes generally reflecteither the low density scoriaceous/pumiceous deposits that are localized within ring-fracture collapse depressions, such as the calderas of mature silicic volcanoes,or the high density frozen magma conduits that occur beneath basaltic shields and cones. The intensive gravity surveys reported here over three complex andesite volcanoes reveal features of both types. Their multi-component gravity fields have crater-centred positive anomalies (1–2 km diameter) surrounded by broader zones of negative gravity with similar amplitudes but greater width (5–10 km). The former are thought to reflect sub-crater magma pipes ofnormal density (ca. 2.5–2.6 Mg m−3) surrounded by pyroclastic scoria, ashes and occasional lava flows of muchlower net density (1.8–2.4 Mg m−3) which, in turn, account for the negative anomalous zones because the deeper, more consolidated and older parts of these andesite volcano edifices have more normal densities (2.3–2.6 Mg m−3).The low density materials are particularly interesting because they appear to have filled topographic depressions to depths of several hundred metres, especially where old caldera-like structures have been postulated from the steep gravity gradients over perimeter ring faults. A model is developed whereby short periods of caldera collapse, associated with intermittent, large high level magma bodies, are interspersed by normal crater-like activity with narrow sub-surface magma pipes. Dominantly pyroclastic activity from summit craters generates the materials that gradually fill earlier-formed topographic depressions. This study demonstrates the unique value of detailed gravity surveys, combined with surface geological information, for modelling and understanding the evolution of active volcano summit regions.  相似文献   

3.
Abstract The Himeji–Yamasaki region in the Inner Zone of southwest Japan is underlain mainly by Late Cretaceous volcanic rocks called the Ikuno Group or the Hiromine and Aioi Groups. A new stratigraphic and geochronological study shows that the volcanic rocks in this area consist of 15 eroded caldera volcanoes between 82 and 65 Ma; they are, in order of decreasing age, the Hiromine, Hoden, Ibo, Okawachi, Seppikosan, Hayashida, Shinokubi, Fukusaki, Kurooyama, Ise, Fukadanigawa, Nagusayama, Matobayama, Yumesaki and Mineyama Formations. These calderas vary in diameter from 1 to 20 km and are bounded by steep unconformities; they coalesce and overlap each other. The individual caldera fills are composed mainly of single voluminous pyroclastic flow deposits, which are often interleaved with debris avalanche deposits and occasionally underlie lacustrine deposits. The intracaldera pyroclastic flow deposits are made up of massive, welded or non‐welded tuff breccia to lapilli tuff, and are characterized by their great thickness. The debris avalanche deposits are ill‐sorted breccia, generated by the collapse of the caldera wall toward the caldera floor during the pyroclastic‐flow eruption. The large calderas that are more than 10 km in diameter contain original values of approximately 100 km3 of intracaldera pyroclastic flow deposits. These large calderas are similar to the well‐known Valles‐type calderas in their dimensions, although it is uncertain whether their caldera floors are coherent plates or incoherent pieces. Conversely, the small calderas have diatreme‐like subsurface structures. The variety of the caldera volcanoes in this area is caused by the difference in the volume of caldera‐forming pyroclastic eruptions, as the large and small calderas coexisted. The caldera‐forming eruption rates in Late Cretaceous southwest Japan, including the studied area, were similar to those in late Cenozoic central Andes and northeast Honshu arc, Japan, but obviously smaller than those of late Cenozoic intracratonic caldera clusters in western North America and the Quaternary extensional volcanic arcs in Taupo, New Zealand. The widespread Late Cretaceous felsic igneous rocks in southwest Japan were generated by a long‐term accumulation of low‐rate granitic magmatism at the eastern margin of the Eurasian Plate.  相似文献   

4.
Accumulation of a huge amount of welded tuff and subsequent formation of calderas are typical examples of volcanisms on a large scale. Crustal structures which are related to the phenomena may be a key for the study of volcanisms on the earth. In Japan there are some 10 calderas of low gravity anomaly type, large and small in diameter, and accordingly in volume of their ejecta, welded tuff. The low gravity anomalies are very characteristic inside the calderas and just concentric with their rims, and are due to mass deficiency caused by eruptions of a huge amount of ejecta. The author (1957), hitherto, has clarified the subterranean structures resulting from the caldera formations by a gravimetric method. In this paper, the author describes the crustal structures beneath Sikotu Caldera in Hokkaido, Japan, deduced from the gravimetric, geomagnetic, seismic and geologic surveys. And referring several examples of the subterranean structures of the other calderas in Japan, the author wishes to discuss the crustal structures that would produce the caldera formations.  相似文献   

5.
A large caldera cluster consisting of at least four calderas (Omine, Odai, Kumano-North and Kumano calderas) existed in the central–southern part of the Kii Peninsula approximately 14–15 Ma. On the other hand, thick Middle Miocene ash-flow tuffs, referred to as the Muro Ash-flow Tuff and the Sekibutsu Tuff Member, are distributed in the northern part of the Kii Peninsula. Although these tuffs are considered to have erupted from the caldera cluster in the central-southern Kii Peninsula, identifying the source caldera in the cluster has been controversial because of similarities in the petrological characteristics and identical radiometric ages of the volcaniclastic rocks of these calderas. We successfully discriminated the characteristics of the eruptive products of each caldera in the caldera cluster based on the apatite trace-element compositions of the pyroclastic dikes and ash-flow tuffs of the calderas. We also demonstrated that the source caldera of at least the lower main part of the Muro Ash-flow Tuff and the Sekibutsu Tuff Member was the Odai Caldera, which is located in the central Kii Peninsula. Our findings show possible correlations among the pyroclastic conduits and ash-flow tuffs of the caldera-fill and/or outflow deposits, even in cases where they have been densely welded and diagenetically altered. This method is useful for the study of deeply eroded ancient calderas.  相似文献   

6.
 Diverse subsidence geometries and collapse processes for ash-flow calderas are inferred to reflect varying sizes, roof geometries, and depths of the source magma chambers, in combination with prior volcanic and regional tectonic influences. Based largely on a review of features at eroded pre-Quaternary calderas, a continuum of geometries and subsidence styles is inferred to exist, in both island-arc and continental settings, between small funnel calderas and larger plate (piston) subsidences bounded by arcuate faults. Within most ring-fault calderas, the subsided block is variably disrupted, due to differential movement during ash-flow eruptions and postcollapse magmatism, but highly chaotic piecemeal subsidence appears to be uncommon for large-diameter calderas. Small-scale downsag structures and accompanying extensional fractures develop along margins of most calderas during early stages of subsidence, but downsag is dominant only at calderas that have not subsided deeply. Calderas that are loci for multicyclic ash-flow eruption and subsidence cycles have the most complex internal structures. Large calderas have flared inner topographic walls due to landsliding of unstable slopes, and the resulting slide debris can constitute large proportions of caldera fill. Because the slide debris is concentrated near caldera walls, models from geophysical data can suggest a funnel geometry, even for large plate-subsidence calderas bounded by ring faults. Simple geometric models indicate that many large calderas have subsided 3–5 km, greater than the depth of most naturally exposed sections of intracaldera deposits. Many ring-fault plate-subsidence calderas and intrusive ring complexes have been recognized in the western U.S., Japan, and elsewhere, but no well-documented examples of exposed eroded calderas have large-scale funnel geometry or chaotically disrupted caldera floors. Reported ignimbrite "shields" in the central Andes, where large-volume ash-flows are inferred to have erupted without caldera collapse, seem alternatively interpretable as more conventional calderas that were filled to overflow by younger lavas and tuffs. Some exposed subcaldera intrusions provide insights concerning subsidence processes, but such intrusions may continue to evolve in volume, roof geometry, depth, and composition after formation of associated calderas. Received: 13 February 1997 / Accepted: 9 August 1997  相似文献   

7.
 The Woods Mountain volcanic center is a well-exposed, mildly alkaline volcanic center that formed during the Miocene in southeastern California. Detailed geologic mapping and geochemical studies have distinguished three major volcanic phases: precaldera, caldera forming, and postcaldera. Geologic mapping indicates that caldera formation occurred incrementally during eruptions of three large ignimbrites and continued into a period of voluminous intracaldera lava-flow eruptions. Rhyolitic ignimbrites and lava flows within the caldera are associated with large amplitude, circular gravity, and magnetic minima that are among the most prominent gravity and magnetic anomalies in southeastern California. Analysis of a Bouguer gravity anomaly map, reduced-to-the-pole magnetic intensity map, and three-dimensional gravity and magnetic models indicates that there is a single, funnel- to bowl-shaped caldera approximately 4 km thick and approximately 10 km wide at the surface. This model is consistent with other siliceous, pyroclastic-filled calderas on continental crust, except that most siliceous volcanic centers associated with more than one eruption are characterized by more than one caldera. Received: 20 December 1997 / Accepted: 15 October 1998  相似文献   

8.
The standard model of caldera formation is related to the emptying of a magma chamber and ensuing roof collapse during large eruptions or subsurface withdrawal. Although this model works well for numerous volcanoes, it is inappropriate for many basaltic volcanoes (with the notable exception of Hawaii), as these have eruptions that involve volumes of magma that are small compared to the collapse. Many arc volcanoes also have similar oversized depressions, such as Poas (Costa Rica) and Aoba (Vanuatu). In this article, we propose an alternative caldera model based on deep hydrothermal alteration of volcanic rocks in the central part of the edifice. Under certain conditions, the clay-rich altered and pressurized core may flow under its own weight, spread laterally, and trigger very large caldera-like collapse. Several specific mechanisms can generate the formation of such hydrothermal calderas. Among them, we identify two principal modes: mode 1: ripening with summit loading and flank spreading and mode II: unbuttressing with flank subsidence and flank sliding. Processes such as summit loading or flank subsidence may act simultaneously in hybrid mechanisms. Natural examples are shown to illustrate the different modes of formation. For ripening, we give Aoba (Vanuatu) as an example of probable summit loading, while Casita (Nicaragua) is the type example of flank spreading. For unbuttressing, Nuku Hiva Island (Marquesas) is our example for flank subsidence and Piton de la Fournaise (La Réunion) is our example of flank sliding. The whole process is slow and probably needs (a) at least a few tens of thousands of years to deeply alter the edifice and reach conditions suitable for ductile flow and (b) a few hundred years to achieve the caldera collapse. The size and the shape of the caldera strictly mimic that of the underlying weak core. Thus, the size of the caldera is not controlled by the dimensions of the underlying magma reservoir. A collapsing hydrothermal caldera could generate significant phreatic activity and trigger major eruptions from a coexisting magmatic complex. As the buildup to collapse is slow, such caldera-forming events could be detected long before their onset.  相似文献   

9.
Sr and Nd isotope and geochemical investigations were performed on a remarkably homogeneous, high-silica rhyolite magma reservoir of the Aira pyroclastic eruption (22,000 years ago), southern Kyushu, Japan. The Aira caldera was formed by this eruption with four flow units (Osumi pumice fall, Tsumaya pryoclastic flow, Kamewarizaka breccia and Ito pyroclastic flow). Quite narrow chemical compositions (e.g., 74.0–76.5 wt% of SiO2) and Sr and Nd isotopic values (87Sr/86Sr=0.70584–0.70599 and Nd=−5.62 to −4.10) were detected for silicic pumices from the four units, with the exception of minor amounts of dark pumices in the units. The high Sr isotope ratios (0.7065–0.7076) for the dark pumices clearly suggest a different origin from the silicic pumices. Andesite to basalt lavas in pre-caldera (0.37–0.93 Ma) and post-caldera (historical) eruptions show lower 87Sr/86Sr (0.70465–0.70540) and higher Nd (−1.03 to +0.96) values than those of the Aira silicic and dark pumices. Both andesites of pre- and post-caldera stages are very similar in major- and trace-element characteristics and isotope ratios, suggesting that the both andesites had a same source and experienced the same process of magma generation (magma mixing between basaltic and dacitic magmas). Elemental and isotopic signatures deny direct genetic relationships between the Aira pumices and pre- and post-caldera lavas. Relatively upper levels of crust (middle–upper crust) are assumed to have been involved for magma generation for the Aira silicic and dark pumices. The Aira silicic magma was derived by partial melting of a separate crust which had homogeneous chemistry and limited isotope compositions, while the magma for the Aira dark pumice was generated by AFC mixing process between the basement sedimentary rocks and basaltic parental magma, or by partial melting of crustal materials which underlay the basement sediments. The silicic magma did not occupy an upper part of a large magma body with strong compositional zonation, but formed an independent magma body within the crust. The input and mixing of the magma for dark pumices to the base of the Aira silicic magma reservoir might trigger the eruptions in the upper part of the magma body and could produce a slight Sr isotope gradient in the reservoir. An extremely high thermal structure within the crust, which was caused by the uprise and accumulation of the basaltic magma, is presumed to have formed the large volume of silicic magma of the Aira stage.  相似文献   

10.
A caldera is a large volcanic depression, more or less circular, the diameter of which is many times greater than those of the included volcanic vents. Calderas must be separated from feetono-volcanic depressions, which have an irregular shape. Volcanic calderas are produced by engulfment. The scars, produced by the impact of meteorites on the earth, are circular or elliptical depressions. Lunar cirques are nearly all circular; some of them have a polygonal, and then sometimes an hexagonal shape. On the surface of the moon elliptical depressions are wholly absent. Moreover, on the moon it is a rigid law that when intersections of ring plains do occur, the smaller cirque is entire, the rim of the middlemost being interrupted by the smallest, whereas the biggest is interrupted by the middle one. This phenomenon would be in accordance with a volcanic origin and a decreasing volcanic activity whereas it is incompatible with an impact of meteorites.  相似文献   

11.
The asymmetrical distribution of the welded Ata large-scale pyroclastic flow deposit in Southern Kyushu, Japan was identified. This distribution pattern was defined as depositional ramps. Depositional ramps can be identified in valleys wider than 1 km and become smaller-scale with increasing distance from the source. Upslope directions of depositional ramps are generally radially away from the source caldera, suggesting that the structure was formed by the flow of pyroclastic material radially away from the source. The original depositional surface was reconstructed based on field mapping and density measurements of the pyroclastic flow deposit. Depositional ramps having a dip angle of more than 9° were reconstructed on the vent-facing slopes of the topography underlying the valley-filling deposits in the area within 10 km of the caldera rim. Such a dip angle is much larger than previously described dip angles. The size and gradient of the depositional ramps decreases with increasing distance from the source. Depositional ramps are recognized commonly in densely welded pyroclastic flow deposits. A high emplacement temperature is required to form the depositional ramps. This suggests that the pyroclastic flow was transported as a dense, fluidized layer to minimize heat loss.  相似文献   

12.
Lithic fragments in the ground layer of the Ata pyroclastic flow deposit, southwestern Japan, were supplied from two different sources. One is the eruptive vent and the other is the basement rock exposed underneath the path of flow. Lithic fragments captured at the eruptive vent gradually decrease in size with distance from the source. Local increases of ML or Md are proportional to increased amounts of captured lithic fragments. The pyroclastic flow eroded basement formations on slopes dipping away from the source, and deposited the lithics within the ground layer on slopes dipping towards the source. The ground layer was found only in the western half of the Ata pyroclastic flow deposit. The absence of the ground layer in the eastern half of the pyroclastic flow deposit is interpreted to result from a selective loss of lithics when the flow traversed a bay or a lake located just east from the vent.  相似文献   

13.
Self-potential (SP) surveys were made on Mount Pelée volcano (Martinique Island, French West Indies) in 1991 and 1992 in order to recognize its hydrothermal system, the associated groundwater channeling and the main superficial structures of the massif. Almost 70 km of profiles were carried out with an average sample spacing of 50 m. Measurements essentially reveal negative SP anomalies, down to −1700 mV, with high gradients (−1.83 mV/m) due to the infiltration of meteoric water into the massif. Rims of summit calderas Morne Macouba and Etang-Sec present sharp negative SP anomalies on the western, northern, and eastern flanks. Negative SP anomalies indicate no upward water flow beneath Mount Pelée summit. On the southwestern volcano flank, a 3.5×6 km horseshoe-shaped structure corresponding to a southwest flank collapse event, older than 25,000 years BP, is clearly identified by the SP mapping. High gradients border the inner southern rim from Morne Calebasse to St Pierre town and the Caribbean Sea. Along the northern rim of the horseshoe-shaped structure the negative SP anomalies give place to a positive SP anomaly, up to 200 mV, of SW–NE trend. This zone covers the area of two active hot springs (Sources Chaudes and Puits Chaud: 40–65°C). Marine magnetic surveys and bathymetry show that the horseshoe-shaped structure spreads into the Caribbean Sea up to about 10 km from the coast. Buried structural discontinuities are evidenced inside the flank collapse structure. The upper one deviates the groundwater flow coming from the summit toward the south flank where the flow finds an indentation to expand again downwards. This discontinuity is either an old hypothetical caldera rim partly destroyed by the collapse of the south–southwestern flank and covered by recent pyroclastic deposits, or more probably the trace of a bulge landslide. A circulation model of the hydrothermal waters is proposed. Rainfall (5–6 m/year) is partly drained inside the summital calderas and the flank collapse zone through pyroclastic flows down to an impermeable basement. There the groundwater constitutes perched aquifers at the contact of the bulge landslide, or of the hypothetical old caldera rim. Along the inner northern border of the flank collapse structure the phreatic water is reheated. Warm groundwater flows along the northern avalanche structure rim and discharges near the coast in ground and marine outcrops, of medium temperature. Finally, the main part of the meteoric water is channeled along the old caldera rim, or along the bulge landslide towards the south flank of Mount Pelée, where some gaps in the rim exist. There the groundwater finds again a subhorizontal gravitational circulation along Mount Pelée slopes into the Caribbean Sea.  相似文献   

14.
New multibeam mapping and whole-rock geochemistry establish the first order definition of the modern submarine Kermadec arc between 30° and 35° S. Twenty-two volcanoes with basal diameters > 5 km are newly discovered or fully-mapped for the first time; Giggenbach, Macauley, Havre, Haungaroa, Kuiwai, Ngatoroirangi, Sonne, Kibblewhite and Yokosuka. For each large volcano, edifice morphology and structure, surficial deposits, lava fields, distribution of sector collapses, and lava compositions are determined. Macauley and Havre are large silicic intra-oceanic caldera complexes. For both, concentric ridges on the outer flanks are interpreted as recording mega-bedforms associated with pyroclastic density flows and edifice foundering. Other stratovolcanoes reveal complex histories, with repeated cycles of tectonically controlled construction and sector collapse, extensive basaltic flow fields, and the development of summit craters and/or small nested calderas.Combined with existing data for the southernmost arc segment, we provide an overview of the spatial distribution and magmatic heterogeneity along ∼780 km of the Kermadec arc at 30°–36°30′ S. Coincident changes in arc elevation and lava composition define three volcano–tectonic segments. A central deeper segment at 32°20′–34°10′ S has basement elevations of > 3200 m water-depth, and relatively simple stratovolcanoes dominated by low-K series, basalt–basaltic andesite. In contrast, the adjoining arc segments have higher basement elevations (typically < 2500 m water-depth), multi-vent volcanic centres including caldera complexes, and erupt sub-equal proportions of dacite and basalt–basaltic andesite. The association of silicic magmas with higher basement elevations (and hence thicker crust), coupled with significant inter- and intra-volcano heterogeneity of the silicic lavas, but not the mafic lavas, is interpreted as evidence for dehydration melting of the sub-arc crust. Conversely, the crust beneath the deeper arc segments is thinner, initially cooler, and has not yet reached the thermal requirements for anatexis. Silicic calderas with diameters > 3 km coincide with the shallower arc segments. The dominant mode of large caldera formation is interpreted as mass-discharge pyroclastic eruption with syn-eruptive collapse. Hence, the shallower arc segments are characterized by both the generation of volatile-enriched magmas from crustal melting and a reduced hydrostatic load, allowing magma vesiculation and fragmentation to initiate and sustain pyroclastic eruptions. Proposed initiation parameters for submarine pyroclastic eruptions are water-depths < 1000 m, magmas with 5–6 wt.% water and > 70 wt.% SiO2, and a high discharge rate.  相似文献   

15.
Edifices of stratocones and domes are often situated eccentrically above shallow silicic magma reservoirs. Evacuation of such reservoirs forms collapse calderas commonly surrounded by remnants of one or several volcanic cones that appear variously affected and destabilized. We studied morphologies of six calderas in Kamchatka, Russia, with diameters of 4 to 12 km. Edifices affected by caldera subsidence have residual heights of 250–800 m, and typical amphitheater-like depressions opening toward the calderas. The amphitheaters closely resemble horseshoe-shaped craters formed by large-scale flank failures of volcanoes with development of debris avalanches. Where caldera boundaries intersect such cones, the caldera margins have notable outward embayments. We therefore hypothesize that in the process of caldera formation, these eccentrically situated edifices were partly displaced and destabilized, causing large-scale landslides. The landslide masses are then transformed into debris avalanches and emplaced inside the developing caldera basins. To test this hypothesis, we carried out sand-box analogue experiments, in which caldera formation (modeled by evacuation of a rubber balloon) was simulated. The deformation of volcanic cones was studied by placing sand-cones in the vicinity of the expected caldera rim. At the initial stage of the modeled subsidence, the propagating ring fault of the caldera bifurcates within the affected cone into two faults, the outermost of which is notably curved outward off the caldera center. The two faults dissect the cone into three parts: (1) a stable outer part, (2) a highly unstable and subsiding intracaldera part, and (3) a subsiding graben structure between parts (1) and (2). Further progression of the caldera subsidence is likely to cause failure of parts (2) and (3) with failed material sliding into the caldera basin and with formation of an amphitheater-like depression oriented toward the developing caldera. The mass of material which is liable to slide into the caldera basin, and the shape of the resulted amphitheater are a function of the relative position of the caldera ring fault and the base of the cone. A cone situated mostly outside the ring fault is affected to a minor degree by caldera subsidence and collapses with formation of a narrow amphitheater deeply incised into the cone, having a small opening angle. Accordingly, the caldera exhibits a prominent outward embayment. By contrast, collapse of a cone initially situated mostly inside the caldera results in a broad amphitheater with a large opening angle, i.e. the embayment of the caldera rim is negligible. The relationships between the relative position of an edifice above the caldera fault and the opening angle of the formed amphitheater are similar for the modeled and the natural cases of caldera/cone interactions. Thus, our experiments support the hypothesis that volcanic edifices affected by caldera subsidence can experience large-scale failures with formation of indicative amphitheaters oriented toward the caldera basins. More generally, the scalloped appearance of boundaries of calderas in contact with pre-caldera topographic highs can be explained by the gravitational influence of topography on the process of caldera formation.Editorial responsibility: J. Stix  相似文献   

16.
The North Anatolian Fault (NAF) is not observed on the surface beyond 40 km southeast of Karliova town toward the western shoreline of Lake Van. Various amplitudes of gravity and aeromagnetic anomalies are observed around the lake and surrounding region. In the gravity anomaly map, contour intensity is observed from the north of Mus city center toward Lake Van. There is a possibility that the NAF extends from here to the lake. Because there is no gravity data within the lake, the extension of the NAF is unknown and uncertain in the lake and to the east. Meanwhile, it is observed from the aeromagnetic anomalies that there are several positive and negative amplitude anomalies aligned around a slightly curved line in the east–west direction. The same curvature becomes much clearer in the analytic signal transformation map. The volcanic mountains of Nemrut and Suphan, and magnetic anomalies to the east of the Lake Van are all lined up and extended with this slightly curved line, provoking thoughts that a fault zone that was not previously mapped may exist. The epicenter of the major earthquake event that occurred on October 23, 2011 is located on this fault zone. The fault plane solution of this earthquake indicates a thrust fault in the east–west direction, consistent with the results of this study. Volcanic mountains in this zone are accepted as still being active because of gas seepages from their calderas, and magnetic anomalies are caused by buried causative bodies, probably magmatic intrusions. Because of its magmatic nature, this zone could be a good prospect for geothermal energy exploration. In this study, the basement of the Van Basin was also modelled three-dimensionally (3D) in order to investigate its hydrocarbon potential, because the first oil production in Anatolia was recorded around the Kurzot village in this basin. According to the 3D modelling results, the basin is composed of three different depressions aligned in the N–S direction and many prospective structures were observed between and around these depressions where the depocenter depths may reach down to 10 km.  相似文献   

17.
In this study, we propose a numerical modeling technique which restores the gravity anomaly of tectonic origin and identifies the gravity low of caldera origin. The identification is performed just by comparing the restored gravity anomalies with the observed gravity anomalies, thus we do not need detailed geophysical and geological information around the buried caldera. The technique has been successfully applied to distinguish the gravity low originated in the buried Shishimuta caldera from other gravity lows in the Hohi volcanic zone, central Kyushu in Japan.  相似文献   

18.
The Donguinyó-Huichapan caldera complex is located 110 km to the NNW of Mexico City, in the central sector of the Mexican Volcanic Belt. It is a 10 km in diameter complex apparently with two overlapping calderas, each one related to an ignimbrite sequence that contrasts in composition, mineralogy, welding, distribution, and physical aspect. The geologic evolution of this complex includes the following phases, 1) A first caldera formed at 5.0 ± 0.3 Ma, with the eruption of several discrete pulses of andesitic to trachydacitic pyroclastic flows that produced a series of densely welded ignimbrites; 2) At 4.6 ± 0.3 Ma, several small shield volcanoes and cinder cones built the rim of this caldera and erupted basaltic-andesite and andesitic lava flows; 3) At 4.2 ± 0.2 Ma, a second caldera was formed associated to the eruption of the Huichapan Tuff, which is a rhyolitic pyroclastic sequence consisting of minor unwelded ignimbrites, pumice fall and surge deposits, and a voluminous welded ignimbrite; 4) Also yielding an age of 4.2 ± 0.2 Ma, several trachydacitic lava domes were extruded along the new ring fracture and formed the rim of the Huichapan caldera, as well as five intra-caldera domes of dacitic and trachydacitic composition. Peripheral volcanism includes a large 2.5 ± 0.1 Ma shield volcano that was emplaced on the Huichapan caldera rim.The two calderas that form the Donguinyó-Huichapan complex have contrasting differences in volcanic styles that were apparently due to their differences in composition. Products erupted by the Donguinyó caldera are basaltic-andesite to trachydacitic in composition, whereas Huichapan caldera products are all high-silica rhyolites.  相似文献   

19.
Erosion calderas: origins, processes, structural and climatic control   总被引:1,自引:0,他引:1  
 The origin and development of erosion-modified, erosion-transformed, and erosion-induced depressions in volcanic terrains are reviewed and systematized. A proposed classification, addressing terminology issues, considers structural, geomorphic, and climatic factors that contribute to the topographic modification of summit or flank depressions on volcanoes. Breaching of a closed crater or caldera generated by volcanic or non-volcanic processes results in an outlet valley. Under climates with up to ∼2000–2500 mm annual rainfall, craters, and calderas are commonly drained by a single outlet. The outlet valley can maintain its dominant downcutting position because it quickly enlarges its drainage basin by capturing the area of the primary depression. Multi-drained volcanic depressions can form if special factors, e.g., high-rate geological processes, such as faulting or glaciation, suppress fluvial erosion. Normal (fluvial) erosion-modified volcanic depressions the circular rim of which is derived from the original rim are termed erosion craters or erosion calderas, depending on the pre-existing depression. The resulting landform should be classed as an erosion-induced volcanic depression if the degradation of a cluster of craters produces a single-drained, irregular-shaped basin, or if flank erosion results in a quasi-closed depression. Under humid climates, craters and calderas degrade at a faster rate. Mostly at subtropical and tropical ocean-island and island-arc volcanoes, their erosion results in so-called amphitheater valleys that develop under heavy rainfall (>∼2500 mm/year), rainstorms, and high-elevation differences. Structural and lithological control, and groundwater in ocean islands, may in turn preform and guide development of high-energy valleys through rockfalls, landsliding, mudflows, and mass wasting. Given the intense erosion, amphitheater valleys are able to breach a primary depression from several directions and degrade the summit region at a high rate. Occasionally, amphitheater valleys may create summit depressions without a pre-existing crater or caldera. The resulting, negative landforms, which may drain in several directions and the primary origin of which is commonly unrecognizable, should be included in erosion-transformed volcanic depressions. Received: 4 January 1998 / Accepted: 18 January 1999  相似文献   

20.
Drill-hole, geochronologic, and gravity data identify the buried Shishimuta caldera beneath post-caldera lava domes and lacustrine deposits in the center of the Hohi volcanic zone. The caldera is the source of the Yabakei pyroclastic flow, which erupted 1.0 Ma ago with a bulk volume of 110 km3. The caldera is a breccia-filled funnel-shaped depression 8 km wide and > 3 km deep with a V-shaped negative Bouguer gravity anomaly up to 36 mgal. Neither ring vents nor resurgence was recognized; instead, post-caldera monogenetic volcanism in an extensional setting dominated the area. The andesitic breccia has a relatively low density and fills the caldera; it possibly formed by fragmentation of disrupted roof rock during the violent Yabakei eruption and related collapse. Fewer normal faults and shallow microearthquakes occur inside the caldera than around it, possibly because rocks beneath the caldera are structurally incoherent. A profile of Shishimuta caldera may be more elongated vertically, and have a more intensely fractured zone, than that of a Valles-type caldera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号