首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Freshwater concentrations confirm the pristine character of the Lena River environment as already pointed-out in a previous study with a limited set of data (Martin et al., 1993). Total dissolved concentrations of the freshwater are 13.8 ± 1.6 nM, Cu, 4.4 ± 0.1 nM, Ni, 0.054 ± 0.047 nM, Cd, 642 ± 208 nM, Fe, 0.2–0.3 nM Pb and 1.2 ± 1.0 nM, Zn. For Zn and Pb, a simple mixing of the Lena River waters with the Arctic waters is observed. Relationships with salinity suggest that for Cu, Ni and Cd, there is a mobilization of the dissolved fraction from the suspended matter, with an increase of the dissolved concentration of 1.5, 3 and 6 times, respectively. For Fe, the total dissolved concentrations follow an exponential decrease in the mixing zone and 80% of the total “dissolved” Fe is removed from the solution. For Cu, Ni, Cd and Fe, the riverine end-members are 20 nM, 12 nM, 0.3 nM and 47 nM, respectively. When considering the input of total dissolved metals to the Arctic Ocean, the fraction attributed to the freshwaters from the Arctic rivers appears to be small (4% of the input of dissolved metal to the Arctic Ocean for Cd, 27% for Cu, 11 % for Ni and 2% for Zn). Metal concentrations in the Laptev Sea and Arctic Ocean are very similar, indicating a generally homogeneous distribution in the areas sampled.  相似文献   

3.
随着全球变暖的加剧,北极陆架边缘海碳的源汇过程对全球碳循环的影响及其气候环境效应日益显著。拉普捷夫海作为北冰洋典型的陆架边缘海,在大河、海冰、海洋初级生产力及海岸侵蚀的影响下,该区沉积有机碳的来源、输运和埋藏等过程独具特色。本文基于2018年中俄第二次北极联合科考获得的悬浮颗粒物样品和水文资料,研究了夏末秋初拉普捷夫海颗粒有机碳的分布特征、来源及其影响因素。结果表明,颗粒有机碳(POC)的浓度位于35.27~1 185.58 μg/L之间,平均为172.65 μg/L。受河流输入、海岸侵蚀和海洋初级生产力的影响,表层POC浓度分布呈现近岸高、远岸低趋势;底层POC浓度分布主要受控于沉积再悬浮作用,高浓度POC出现在勒拿河三角洲的东部区域。总悬浮颗粒物浓度与POC浓度总体呈显著正相关,显示出其对POC空间分布的直接影响,且两者在底层中的相关性要高于表层,表明不同层位的POC可能存在来源差异。研究区POC的δ13C值处于−31.03‰~−25.79‰之间,表层δ13C值较底层明显偏负,且部分站位的δ13C值甚至低于周边陆源有机碳的端元,这反映了可能除陆源输入的贡献外,近海浮游植物直接利用大量陆源有机质降解产生的溶解无机碳的过程也对该区域POC的供应和来源解析具有重要的影响。  相似文献   

4.
Water samples from the Lena River and stratified Laptev Sea (northeastern Siberia) have been analyzed to determine their stable oxygen isotope composition (18O/16O). Measurements at the Lena River reference station give a δ18O value of −18.9‰ in both surface and bottom waters. In the brackish water surface plume, a nearly perfect correlation is found between δ18O and chlorinity
δO=−18.9+0.7C1(n=15; r=0.999)
A few values lie distinctly below this correlation; they all correspond to surface samples collected in the semi-enclosed Buorkhaya Gulf, and they most likely reveal the occurrence of ‘old’ water masses. Some of the δ18O values in the deep waters collected in the same zone also fall below the surface-plume correlation line.Dissolved silicate concentrations exhibit a large variability. However, when they are related to the different water masses identified using oxygen isotope data, a more coherent picture is obtained. Concentrations in the surface plume decrease more or less regularly from 50 to 72 μmol in the Lena River, to 7 μmol at the ‘marine’ end-member (Cl = 14 g l−1). Dissolved silicate results in the Buorkhaya Gulf are quite distinct, with a clear deficiency in the surface waters, and an excess in the deep waters.These δ18O and dissolved silicate variations are discussed in relation to the hydrology and the biological productivity of the investigated area.  相似文献   

5.
Spivak  E. A.  Osadchiev  A. A.  Semiletov  I. P. 《Oceanology》2021,61(6):839-849
Oceanology - This work is focused on structure and seasonal variability of the most freshened part of the Lena plume in the south-eastern part of the Laptev Sea, namely, at sea area adjacent to the...  相似文献   

6.
Sediment cores collected during the SPASIBA expedition in 1991 were analysed for their trace- and major element concentrations. Leachable (0.1 N HCl) as well as residual concentrations were determined. Fe and Mn were measured in the interstitial waters to characterize redox conditions. Lateral distribution patterns of solid phase Cu, Cd, Ni, Pb and Zn show a small increase in concentration from the Lena Delta in seaward direction. In general concentrations of these metals are very low and similar to natural background values. With some exceptions, solid phase profiles with depth of all investigated elements do not show strong variations. No enrichment of Pb and Zn in surface layers was found. Remobilization processes and transport of particles enriched in Mn are responsible for Mn accumulation in a particular area. Pore-water concentrations of dissolved Mn in the latter sediments are very high (> 700 μM) and suggest strong Mn reduction directly below the sediment-water interface. In contrast to Mn, the depth profiles of Cd show a surface layer with lower concentrations and an increase deeper down the sediment. The C/N ratio in the sediment decreases from 13 in the Lena mouth to 9 in the more marine part of the Laptev Sea. Surface sediments in the Laptev Sea are very uniform and homogeneous and show only small concentration gradients.  相似文献   

7.
万泉河口悬浮颗粒态磷和硅的分布特征及收支估算   总被引:3,自引:2,他引:3  
  相似文献   

8.
Composition and accumulation rates of organic carbon in Holocene sediments provided data to calculate an organic carbon budget for the Laptev Sea continental margin. Mean Holocene accumulation rates in the inner Laptev Sea vary between 0.14 and 2.7 g C cm−2 ky−1; maximum values occur close to the Lena River delta. Seawards, the mean accumulation rates decrease from 0.43 to 0.02 g C cm−2 ky−1. The organic matter is predominantly of terrigenous origin. About 0.9 × 106 t year−1 of organic carbon are buried in the Laptev Sea, and 0.25 × 106 t year−1 on the continental slope. Between about 8.5 and 9 ka, major changes in supply of terrigenous and marine organic carbon occur, related to changes in coastal erosion, Siberian river discharge, and/or Atlantic water inflow along the Eurasian continental margin. Received: 26 October 1998 / Revision accepted: 15 June 1999  相似文献   

9.
Sampling was conducted along the quasi meridional transect at 130° E from the Lena River estuary to northern deep-sea regions of the Laptev Sea in September 2015. The latitudinal zonality and the impact of river runoff are manifested in the temperature and salinity distribution, concentration of particulate organic matter, and the structure of plankton communities. The differences in the chl a concentration and primary production along the transect are insignificant. The feeding rate of mesozooplankton herbivores was assessed by a fluorescence technique. The total consumption of phytoplankton biomass and primary production are estimated based on the feeding rate, abundance of zooplankton species, and their diel migrations. The daily grazing impact of zooplankton on phytoplankton biomass increases from 2% on the inner shelf to 3% on the mid-shelf, 5% on the outer shelf, and 10% in the deep-sea part of the basin. The consumption of primary production also increases: 1, 4.5, 5.7, and 13.9%, respectively. In the fall, the consumption of phytoplankton does not compensate the energy demands for respiration. The latitudinal zonality of the Laptev Sea appears not only in the hydrophysical water parameters and the structure of plankton communities, but also in their functional characteristics.  相似文献   

10.
Studies have been performed on a transect along 130°30′ E from the Lena River delta (71°60′ N) to the continental slope and adjacent deepwater area (78°22′ N) of the Laptev Sea in September 2015. The structure of phytoplankton communities has distinct latitudinal zoning. The southern part of the shelf (southward of 73°10′ N), the most desalinated by riverine discharge, houses a phytoplankton community with a biomass of 175–840 mg/m2, domination of freshwater Aulacoseira diatoms, and significant contribution of green algae (both in abundance and biomass). The northern border for the distribution range of the southern complex of phytoplankton species lies between the 8 and 18 psu isohalines (~73°10′ N). The continental slope and deepwater areas of the Laptev Sea (north of 77°30′ N), with a salinity of >27 psu in the upper mixed layer, are populated by the community prevalently composed of Chaetoceros and Rhizosolenia diatoms, very abundant in the Arctic, and dinoflagellates. The phytoplankton number in this area fall in the range of 430–1100 × 106 cell/m2, and the biomass, in the range of 3600 mg/m2. A moderate desalinating impact of the Lena River discharge is observed in the outer shelf area between 73°20′ and 77°30′ N; the salinity in the upper mixed layer is 18–24 psu. The phytocenosis in this area has a mosaic spatial structure with between-station variation in the shares of different alga groups in the community, cell number of 117–1200 × 106 cells/m2, and a biomass of 1600–3600 mg/m2. As is shown, local inflow of “fresh” nutrients to the euphotic layer in the fall season leads to mass growth of diatoms.  相似文献   

11.
The vertical distribution and temporal changes in aggregate abundance and sizes were measured in the Ross Sea, Antarctica, during two field seasons, one in austral spring 1994 and one in early summer, 1995/96. Aggregate abundance, size and potential sinking rates were determined by photographic techniques. Measurements of water column parameters, including particulate organic carbon concentrations, were assessed simultaneously, as was the flux of organic matter with floating sediment traps. The numbers of aggregates (and to a lesser extent their size) increased with time, although there was substantial spatial variability in these variables at any point in time. Some aggregates appeared to sink extremely rapidly, and for these, our photographic measurements were able to estimate only a minimum sinking rate, which equaled 288 m d−1. Estimates of aggregate organic carbon flux were compared to those determined by floating sediment traps. From these results, aggregate fluxes appear to have dominated the vertical export of organic matter from the euphotic zone. The genesis and flux of aggregates in the Ross Sea are the critical processes controlling the export of biogenic material from the surface layer.  相似文献   

12.
Previous studies measuring biogenic silica production in the Sargasso Sea, all conducted when no phytoplankton bloom was in progress, have reported a mean rate of 0.4 mmol Si m?2 d?1 and maximum rate of 0.9 mmol Si m?2 d?1, the lowest rates yet recorded in any ocean habitat. During February/March of 2004 and 2005 we studied the effects of late-winter storms prior to seasonal stratification on the production rate, standing stock and vertical export of biogenic silica in the Sargasso Sea. In 2004, alternating storm and stratification events provided pulsed input of nutrients to the euphotic zone. In contrast, nearly constant storm conditions in 2005 caused the mixed layer to deepen to ~350 m toward the end of the cruise. Biogenic silica production rates in the upper 140 m were statistically indistinguishable between years, averaging ~1.0 mmol Si m?2 d?1. In early March 2004, a storm event entrained nutrients into the euphotic zone and, upon stabilization, vertically integrated biogenic silica in the upper 140 m nearly doubled in 2 days. Within 4 days, 75–100% of the accumulated biogenic silica was exported, sustaining a flux to 200 m of ~0.5 mmol Si m?2 d?1 (4× greater than export measured during February and March in the mid-1990s). In 2005, destabilization without stratification increased biogenic silica flux at 200 m up to two-fold above previously measured export in late winter, with little or no increase in water-column biogenic silica. Despite comprising <5% of total chlorophyll, diatoms accounted for an estimated 25–50% of the nitrate uptake in the upper 140 m and 35–97% of the particulate organic nitrogen export from the upper 200 m during both cruise periods. These previously unobserved brief episodes of diatom production and export in response to late-winter storms increase the estimated production and export of diatom-derived material in the Sargasso Sea in late winter by >150%, and increase estimated annual biogenic silica production in this region by ~8%.  相似文献   

13.
Concentrations of biogenic silica(BSi) in the southern Yellow Sea were determined during four cruises(spring:April–May 2014; autumn: November 2014; summer: August–September 2015; winter: January 2016). Samples of BSi were measured using the double extraction method. Seasonal and spatial variations of BSi and the potential correlation between chlorophyll a(Chl a) content and BSi in four seasons were measured in this study. Significant spatial variability was observed in seawater BSi concentrations. The average concentration of BSi was highest in winter and lowest in spring. Furthermore, the relationships between concentrations of BSi and hydrological parameters were also discussed. There was a significant positive correlation between Chl a and BSi. The concentrations of BSi showed significant relationships with temperature and the concentrations of silicates, total inorganic nitrogen and total inorganic phosphorus, indicating that distribution of BSi was affected by temperature and nutrient level.  相似文献   

14.
透明胞外聚合颗粒物(Transparent exopolymer particles,TEPs)在海洋中分布广泛,其沉降被认为是海洋中生物碳沉降的途径之一。本研究于2011年春季和夏季调查了长江口邻近海域TEPs的浓度和沉降速率,并且估算了其碳沉降通量。研究发现,TEPs浓度春季介于40.00~1040.00 μg Xeq L-1,平均值为209.70±240.93 μg Xeq L-1;夏季介于56.67~1423.33 μg Xeq L-1,平均值为433.33±393.02 μg Xeq L-1。两个季节,TEPs在水华站位的浓度明显高于非水华站位。相关性分析表明,TEPs与水体叶绿素a浓度呈显著正相关性,表明在调查区浮游植物是TEPs的主要生产者。TEPs沉降速率在春季介于0.08~0.57 m d-1,平均值为0.28±0.14 m d-1;夏季介于0.10~1.08 m d-1,平均值为0.34±0.31 m d-1。经估算,TEPs碳沉降通量春季介于4.95~29.40 mg C m-2 d-1,平均值为14.66±8.83 mg C m-2 d-1;夏季介于6.80~30.45 mg C m-2 d-1,平均值为15.71±8.73 mg C m-2 d-1。TEPs的碳沉降通量可以占到浮游植物碳沉降通量的17.81%~138.27%。水华站位TEPs的碳沉降通量明显高于非水华站位,这是由于水华站位较高的TEPs浓度及沉降速率所致。本研究表明,TEPs的沉降在长江口邻近海域是碳沉降的有效途径,在相应的碳沉降相关研究中应该被考虑进来。  相似文献   

15.
南海南部表层沉积物中生物硅的分布及其环境意义   总被引:1,自引:0,他引:1  
对南海南部25个表层沉积样进行了生物硅的测定分析,试图揭示南海南部表层沉积生物硅的分布及其对现代海洋环境的指示意义,以便为古海洋学研究提供进一步的科学依据。研究发现,表层沉积物中生物硅含量与其所处水深呈显著正相关关系,相关系数达到0.782。陆架浅水区表层沉积物中生物硅含量非常低,不能反映表层水体中硅质生物生产力情况,这可能与沉积类型和陆源物质输入影响有关。深水区表层沉积物中生物硅的含量分布表明,其不仅能反映表层水体中硅质生物的古生产力水平,而且还能指示上升流的强弱,从而进一步证实了利用沉积物中生物硅含量来追踪上升流发育和变化的有效性与可信度。研究结果还显示,在研究区域中北部表层沉积生物硅中放射虫和海绵骨针较硅藻占有更大的比重,这可能是由于硅藻易被溶解并易被其他生物体摄食的缘故。在有上升流发育的海域,放射虫、硅藻和海绵骨针基本上表现出较高的丰度,这与高的生物硅含量相一致。  相似文献   

16.
通过楚科奇海北部–加拿大海盆西侧交接地带的生态调查,我们发现0~150 m海域水体中以融冰水(MW,0~20 m)、白令海夏季水(sBSW)和阿拉斯加沿岸流(ACW)等水团为主。水温和营养盐变化与水团息息相关,物理–生化的耦合作用进一步影响了浮游植物分布和群落结构。叶绿素a浓度最大值多位于约50 m深、富含营养盐的sBSW和ACW暖水团中。 sBSW和ACW中分别以小型(占比约74%)和微微型(占比约65%)浮游植物为主。藻华初期,溶解无机氮(DIN)虽呈相对限制状态,但仍高于浮游植物生长所需阈值。双单元混合模型显示:浮游植物对氮去除明显,氮吸收量与叶绿素a浓度呈正比,且在温度略高的ACW水团中氮吸收量高于sBSW水团。在北极变暖、波弗特流涡增强以及ACW和sBSW营养盐补给下,该区域的浮游植物的叶绿素a浓度(均值:(0.327±0.163)mg/m3,范围:0.04~0.69 mg/ m3)与历史数据相比有所提高。这将增加北极海区的碳吸收通量,有利于其作为碳汇区的发展。  相似文献   

17.
渤海颗粒有机碳与生物硅的分布及来源   总被引:1,自引:1,他引:1  
海洋碳、硅循环及其相关联的生物地球化学过程是全球环境变化的热点问题,也是海洋科学关心的重要领域。利用2012年5月和11月份对渤海海域的调查结果,对该海域颗粒有机碳和生物硅的分布特征及来源进行了讨论。主要结论为:渤海有机碳以溶解有机碳为主,具有春季高和秋季低的特征;由陆地来源和海洋自生的有机碳组成,且以海洋来源的有机碳为主。渤海生物硅分布具有明显的梯度特征,河流输入同样对其含量的影响较为突出。渤海沉积物中生物硅含量较高,明显高于中国东部陆架海。渤海表层沉积物中生物硅主要是海源的,依次由浮游藻类、植硅体和海绵骨针所构成,其中浮游藻类占62.9%,陆源植硅体占31.1%。渤海沉积物发现了来自于草本植物的植硅体,这说明了陆地产生的植硅体对海洋生物硅的贡献。  相似文献   

18.
本文首次报道用沉积物捕捉器(ST)研究南沙群岛珊瑚礁湖沉降颗粒物中主要元素垂直通量、垂直转移形态、再循环过程及垂直通量与表层海水温度的关系。结果显示,作为生物化学沉积标志的Ca、Mg具有最高的垂直通量,达1.4和0.1g/(m2·d)以上,作为生物富集标志的Br、Ⅰ也有较高的垂直转移量;垂直转移形态的研究表明Na、K、Ca、Mg、Sr主要以碳酸盐结合态向海底转移,其中Ca、Mg、Sr占99%以上,Fe、I、Ba主要以铁锰氧化物结合态向海底输送,在垂直沉降颗粒物到达海底后,有相当部分的主要元素可再循环进入水体中,Br、I、K、Al的绝大部分进入再循环,Mg、Na、Cl有一半左右进入再循环,Ca、Sr、Ba、Fe大部分被埋葬;Na等9种元素的垂直转移量随SST呈指数降低响应,对SST的敏感性Fe>Br>Sr>Ca>Na>Cl>Mg>I>Al,这再一次验证了CaCO3随温度升高,其溶解度降低、化学沉积量增加这一自然界的普遍规律,表明在珊瑚礁海水的垂直沉降颗粒物中主要元素是作为珊瑚的重要成分与CaCO3一同被沉积下来的,CaCO3起到稀释剂的作用。  相似文献   

19.
Normal and accelerated sinking of phytoplankton in the sea   总被引:1,自引:0,他引:1  
The sinking and deposition of phytoplankton remains lead to sediment varving, the formation of sedimentary oozes, and the transport of partially decomposed and viable, autotrophic cells to great depths. Some specific examples are discussed, and the associated settling rates, depositional characteristics and individual species responses are examined in relationship to experimentally determined sinking rates of both living and dead, intact phytoplankton. The data include field and experimental observations on the sinking behavior for the same species. The in vitro rates are too low, and a mechanism or mechanisms causing accelerated rates of phytoplankton sinking in situ seems necessary to account adequately for some of the observed transport of phytoplankton remains to great depths and to the sea floor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号