首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Variscan metamorphism in the Pyrenees is dominantly of the low‐pressure–high‐temperature (LP‐HT) type. The relics of an earlier, Barrovian‐type metamorphism that could be related to orogenic crustal thickening are unclear and insufficiently constrained. A microstructural and petrological study of micaschists underlying an Ordovician augen orthogneiss in the core of the Canigou massif (Eastern Pyrenees, France) reveals the presence of two syntectonic metamorphic stages characterized by the crystallization of staurolite (M1) and andalusite (M2), respectively. Garnet is stable during the two metamorphic stages with a period of resorption between M1 and M2. The metamorphic assemblages M1 and M2 record similar peak temperatures of 580°C at different pressure conditions of 5.5 and 3 kbar, respectively. Using chemical zoning of garnet and calculated P–T pseudosections, a prograde P–T path is constrained with a peak pressure at ~6.5 kbar and 550°C. This P–T path, syntectonic with respect to the first foliation S1, corresponds to a cold gradient (of ~9°C/km), suggestive of crustal thickening. Resorption of garnet between M1 and M2 can be interpreted either in terms of a simple clockwise P–T path or a polymetamorphic two‐stage evolution. We argue in favour of the latter, where the medium‐pressure (Barrovian) metamorphism is followed by a period of significant erosion and crustal thinning leading to decompression and cooling. Subsequent advection of heat, probably from the mantle, leads to a new increase in temperature, coeval with the development of the main regional fabric S2. LA‐ICP‐MS U–Th–Pb dating of monazite yields a well‐defined date at c. 300 Ma. Petrological evidence indicates that monazite crystallization took place close to the M1 peak pressure conditions. However, the similarity between this age and that of the extensive magmatic event well documented in the eastern Pyrenees suggests that it probably corresponds to the age of monazite recrystallization during the M2 LP‐HT event.  相似文献   

2.
The distribution and textural features of staurolite–Al2SiO5 mineral assemblages do not agree with predictions of current equilibrium phase diagrams. In contrast to abundant examples of Barrovian staurolite–kyanite–sillimanite sequences and Buchan‐type staurolite–andalusite–sillimanite sequences, there are few examples of staurolite–sillimanite sequences with neither kyanite nor andalusite anywhere in the sequence, despite the wide (~2.5 kbar) pressure interval in which they are predicted. Textural features of staurolite–kyanite or staurolite–andalusite mineral assemblages commonly imply no reaction relationship between the two minerals, at odds with the predicted first development (in a prograde sense) of kyanite or andalusite at the expense of staurolite in current phase diagrams. In a number of prograde sequences, the incoming of staurolite and either kyanite, in Barrovian sequences, or andalusite, in Buchan‐type sequences, is coincident or nearly so, rather than kyanite or andalusite developing upgrade of a significant staurolite zone as predicted. The width of zones of coexisting staurolite and either kyanite, in Barrovian sequences, or andalusite, in Buchan‐type sequences, is much wider than predicted in equilibrium phase diagrams, and staurolite commonly persists upgrade until its demise in the sillimanite zone. We argue that disequilibrium processes provide the best explanation for these mismatches. We suggest that kyanite (or andalusite) may develop independently and approximately contemporaneously with staurolite by metastable chlorite‐consuming reactions that occur at lower P–T conditions than the thermodynamically predicted staurolite‐to‐kyanite/andalusite reaction, a process that involves only modest overstepping (<15°C) of the stable chlorite‐to‐staurolite reaction and which is favoured, in the case of kyanite, by advantageous nucleation kinetics. If so, the pressure difference between Barrovian kyanite‐bearing sequences and Buchan andalusite‐bearing sequences could be ~1 kbar or less, in better agreement with the natural record. The unusual width of coexistence of staurolite and Al2SiO5 minerals, in particular kyanite and andalusite, can be accounted for by a combination of lack of thermodynamic driving force for conversion of staurolite to kyanite or andalusite, sluggish dissolution of staurolite, and possibly the absence of a fluid phase to catalyse reaction. This study represents an example of how kinetic controls on metamorphic mineral assemblage development have to be considered in regional as well as contact metamorphism.  相似文献   

3.
The Leo Pargil dome, northwest India, is a 30 km‐wide, northeast‐trending structure that is cored by gneiss and mantled by amphibolite facies metamorphic rocks that are intruded by a leucogranite injection complex. Oppositely dipping, normal‐sense shear zones that accommodated orogen‐parallel extension within a convergent orogen bound the dome. The broadly distributed Leo Pargil shear zone defines the southwest flank of the dome and separates the dome from the metasedimentary and sedimentary rocks in the hanging wall to the west and south. Thermobarometry and in‐situ U–Th–Pb monazite geochronology were conducted on metamorphic rocks from within the dome and in the hanging wall. These data were combined with U–Th–Pb monazite geochronology of leucogranites from the injection complex to evaluate the relationship between metamorphism, crustal melting, and the onset of exhumation. Rocks within the dome and in the hanging wall contain garnet, kyanite, and staurolite porphyroblasts that record prograde Barrovian metamorphism during crustal thickening that reached ~530–630 °C and ~7–8 kbar, ending by c. 30 Ma. Cordierite and sillimanite overgrowths on Barrovian assemblages within the dome record dominantly top‐down‐to‐the‐west shearing during near‐isothermal decompression of the footwall rocks to ~4 kbar by 23 Ma during an exhumation rate of 1.3 mm year?1. Monazite growth accompanied Barrovian metamorphism and decompression. The leucogranite injection complex within the dome initiated at 23 Ma and continued to 18 Ma. These data show that orogen‐parallel extension in this part of the Himalaya occurred earlier than previously documented (>16 Ma). Contemporaneous onset of near‐isothermal decompression, top‐down‐to‐the‐west shearing, and injection of the decompression‐driven leucogranite complex suggests that early crustal melting may have created a weakened crust that was proceeded by localization of strain and shear zone development. Exhumation along the shear zone accommodated decompression by 23 Ma in a kinematic setting that favoured orogen‐parallel extension.  相似文献   

4.
Phase equilibrium modelling and monazite microprobe dating were used to characterize the polymetamorphic evolution of metapelites from the northern part of the Vepor Unit, West Carpathians. Three generations of garnet and associated metamorphic assemblages found in these rocks correspond to three distinct metamorphic events related to the Variscan orogeny, a Permian phase of crustal extension and the Alpine orogeny. Variscan staurolite‐bearing and Alpine chloritoid‐bearing assemblages record medium‐temperature and medium‐pressure regional metamorphisms reaching 540–570 °C/5–7.5 kbar and 530–550 °C/5–6.5 kbar respectively. The Permian metamorphic assemblage involves garnet, andalusite, sillimanite, biotite, muscovite, plagioclase and corundum and locally forms silica‐undersaturated andalusite‐biotite‐spinel coronas around older staurolite. The transition from andalusite to sillimanite indicates a prograde low‐pressure and medium‐temperature metamorphism characterized by temperature increase from 500 to 650 °C at ~3 kbar. As accessory monazite is abundant in the rocks, an attempt was made to derive its age of formation by means of electron microprobe‐based Th‐U‐Pb chemical dating. Despite the polymetamorphic nature of the metapelites, the monazite yielded uniform Permian ages. Microstructures confirm that monazite was formed in relation to the low‐pressure and medium‐temperature paragenesis, and the weighted average ages obtained for two different samples are 278 ± 5 and 275 ± 12 Ma respectively. The virtual lack of Variscan and Alpine monazite populations points to interesting aspects concerning the growth systematics of monazite in metamorphic rocks.  相似文献   

5.
The Palaeo‐Mesoproterozoic metapelite granulites from northern Garo Hills, western Shillong‐Meghalaya Gneissic Complex (SMGC), northeast India, consist of resorbed garnet, cordierite and K‐feldspar porphyroblasts in a matrix comprising shape‐preferred aggregates of biotite±sillimanite+quartz that define the penetrative gneissic fabric. An earlier assemblage including biotite and sillimanite occurs as inclusions within the garnet and cordierite porphyroblasts. Staurolite within cordierite in samples without matrix sillimanite is interpreted to have formed by a reaction between the sillimanite inclusion and the host cordierite during retrogression. Accessory monazite occurs as inclusions within garnet as well as in the matrix, whereas accessory xenotime occurs only in the matrix. The monazite inclusions in garnet contain higher Ca, and lower Y and Th/U than the matrix monazite outside resorbed garnet rims. On the other hand, matrix monazite away from garnet contains low Ca and Y, and shows very high Th/U ratios. The low Th/U ratios (<10) of the Y‐poor garnet‐hosted monazite indicate subsolidus formation during an early stage of prograde metamorphism. A calculated P–T pseudosection in the MnCKFMASH‐PYCe system indicates that the garnet‐hosted monazite formed at <3 kbar/600 °C (Stage A). These P–T estimates extend backward the previously inferred prograde P–T path from peak anatectic conditions of 7–8 kbar/850 °C based on major mineral equilibria. Furthermore, the calculated P–T pseudosections indicate that cordierite–staurolite equilibrated at ~5.5 kbar/630 °C during retrograde metamorphism. Thus, the P–T path was counterclockwise. The Y‐rich matrix monazite outside garnet rims formed between ~3.2 kbar/650 °C and ~5 kbar/775 °C (Stage B) during prograde metamorphism. If the effect of bulk composition change due to open system behaviour during anatexis is considered, the P–T conditions may be lower for Stage A (<2 kbar/525 °C) and Stage B (~3 kbar/600 °C to ~3.5 kbar/660 °C). Prograde garnet growth occurred over the entire temperature range (550–850 °C), and Stage‐B monazite was perhaps initially entrapped in garnet. During post‐peak cooling, the Stage‐B monazite grains were released in the matrix by garnet dissolution. Furthermore, new matrix monazite (low Y and very high Th/U ≤80, ~8 kbar/850–800 °C, Stage C), some monazite outside garnet rims (high Y and intermediate Th/U ≤30, ~8 kbar/800–785 °C, Stage D), and matrix xenotime (<785 °C) formed through post‐peak crystallization of melt. Regardless of textural setting, all monazite populations show identical chemical ages (1630–1578 Ma, ±43 Ma). The lithological association (metapelite and mafic granulites), and metamorphic age and P–T path of the northern Garo Hills metapelites and those from the southern domain of the Central Indian Tectonic Zone (CITZ) are similar. The SMGC was initially aligned with the southern parts of CITZ and Chotanagpur Gneissic Complex of central/eastern India in an ENE direction, but was displaced ~350 km northward by sinistral movement along the north‐trending Eastern Indian Tectonic Zone in Neoproterozoic. The southern CITZ metapelites supposedly originated in a back‐arc associated with subducting oceanic lithosphere below the Southern Indian Block at c. 1.6 Ga during the initial stage of Indian shield assembly. It is inferred that the SMGC metapelites may also have originated contemporaneously with the southern CITZ metapelites in a similar back‐arc setting.  相似文献   

6.
To better understand the evolution of deep‐seated crust of the Variscan orogen in the Sardinia‐Corsica region, we studied garnet‐bearing micaschists which were sampled 3 km east and 15 km northeast of Porto Vecchio, south‐eastern Corsica. After a careful investigation of the textural relations and compositions of minerals, especially of zoned garnet, a P–T path was reconstructed using contoured P–T pseudosections. U–Th–Pb dating of monazite in the micaschists was undertaken with the electron microprobe. The micaschists from both localities were formed along similar anticlockwise P–T paths. The prograde branch of these paths starts at 3 kbar close to 600°C in the P–T field of sillimanite and reaches peak conditions at 7 kbar and 600 (15 km NE of Porto Vecchio) to 630°C (3 km E of Porto Vecchio). The metamorphism at peak P–T conditions happened c. 340 Ma based on low‐Y (<0.65 wt% Y2O3) monazite. Ages of monazite with high‐Y contents (>2 wt% Y2O3), which probably have formed before garnet, scatter around 362 Ma. The retrograde branch of the P–T paths passes through 4 kbar at ~550°C. We conclude that the micaschists belong to a common metasedimentary sequence, which extends over the Porto Vecchio region and is separated from other metamorphic rock sequences in the north and the south by major tectonic boundaries. This sequence had experienced peak pressures which are lower than those determined for metamorphic rocks, such as micaschist and gneiss, from north‐eastern Sardinia. At present, we favour a continent–continent collisional scenario with the studied metasedimentary sequence buried during the collisional event as part of the upper plate. The contemporaneous high‐P metamorphic rocks from NE Sardinia were part of the upper portion of the lower plate. The addressed rocks from both plates were exhumed in an exhumation channel.  相似文献   

7.
In Rogaland, South Norway, a polycyclic granulite facies metamorphic domain surrounds the late‐Sveconorwegian anorthosite–mangerite–charnockite (AMC) plutonic complex. Integrated petrology, phase equilibria modelling, monazite microchemistry, Y‐in‐monazite thermometry, and monazite U–Th–Pb geochronology in eight samples, distributed across the apparent metamorphic field gradient, imply a sequence of two successive phases of ultrahigh temperature (UHT) metamorphism in the time window between 1,050 and 910 Ma. A first long‐lived metamorphic cycle (M1) between 1,045 ± 8 and 992 ± 11 Ma is recorded by monazite in all samples. This cycle is interpreted to represent prograde clockwise P–T path involving melt production in fertile protoliths and culminating in UHT conditions of ~6 kbar and 920°C. Y‐in‐monazite thermometry, in a residual garnet‐absent sapphirine–orthopyroxene granulite, provides critical evidence for average temperature of 931 and 917°C between 1,029 ± 9 and 1,006 ± 8 Ma. Metamorphism peaked after c. 20 Ma of crustal melting and melt extraction, probably supported by a protracted asthenospheric heat source following lithospheric mantle delamination. Between 990 and 940 Ma, slow conductive cooling to 750–800°C is characterized by monazite reactivity as opposed to silicate metastability. A second incursion (M2) to UHT conditions of ~3.5–5 kbar and 900–950°C, is recorded by Y‐rich monazite at 930 ± 6 Ma in an orthopyroxene–cordierite–hercynite gneiss and by an osumilite gneiss. This M2 metamorphism, typified by osumilite paragenesis, is related to the intrusion of the AMC plutonic complex at 931 ± 2 Ma. Thermal preconditioning of the crust during the first UHT metamorphism may explain the width of the aureole of contact metamorphism c. 75 Ma later, and also the rarity of osumilite‐bearing assemblages in general.  相似文献   

8.
The Ross orogen of Antarctica is an extensive (>3000 km‐long) belt of deformed and metamorphosed sedimentary rocks and granitoid batholiths, which formed during convergence and subduction of palaeo‐Pacific lithosphere beneath East Gondwana in the Neoproterozoic–early Palaeozoic. Despite its prominent role in Gondwanan convergent tectonics, and a well‐established magmatic record, relatively little is known about the metamorphic rocks in the Ross orogen. A combination of garnet Lu–Hf and monazite U–Pb (measured by laser‐ablation split‐stream ICP‐MS) geochronology reveals a protracted metamorphic history of metapelites and garnet amphibolites from a major segment of the orogen. Additionally, direct dating of a common rock‐forming mineral (garnet) and accessory mineral (monazite) allows us to test assumptions that are commonly used when linking accessory mineral geochronology to rock‐forming mineral reactions. Petrography, mineral zoning, thermobarometry and pseudosection modelling reveal a Barrovian‐style prograde path, reaching temperatures of ~610–680 °C. Despite near‐complete diffusional resetting of garnet major element zoning, the garnet retains strong rare earth element zoning and preserves Lu–Hf dates that range from c. 616–572 Ma. Conversely, monazite in the rocks was extensively recrystallized, with concordant dates that span from c. 610–500 Ma, and retain only vestigial cores. Monazite cores yield dates that overlap with the garnet Lu–Hf dates and typically have low‐Y and heavy rare earth element (HREE) concentrations, corroborating interpretations of low‐Y and low‐HREE monazite domains as records of synchronous garnet growth. However, ratios of REE concentrations in garnet and monazite do not consistently match previously reported partition coefficients for the REE between these two minerals. High‐Y monazite inclusions within pristine, crack‐free garnet yield U–Pb dates significantly younger than the Lu–Hf dates for the same samples, indicating recrystallization of monazite within garnet. The recrystallization of high‐Y and high‐HREE monazite domains over >50 Ma likely records either punctuated thermal pulses or prolonged residence at relatively high temperatures (up to ~610–680 °C) driving monazite recrystallization. One c. 616 Ma garnet Lu–Hf date and several c. 610–600 Ma monazite U–Pb dates are tentatively interpreted as records of the onset of tectonism metamorphism in the Ross orogeny, with a more robust constraint from the other Lu–Hf dates (c. 588–572 Ma) and numerous c. 590–570 Ma monazite U–Pb dates. The data are consistent with a tectonic model that involves shortening and thickening prior to widespread magmatism in the vicinity of the study area. The early tectonic history of the Ross orogen, recorded in metamorphic rocks, was broadly synchronous with Gondwana‐wide collisional Pan‐African orogenies.  相似文献   

9.
In France, the Devonian–Carboniferous Variscan orogeny developed at the expense of continental crust belonging to the northern margin of Gondwana. A Visean–Serpukhovian crustal melting has been recently documented in several massifs. However, in the Montagne Noire of the Variscan French Massif Central, which is the largest area involved in this partial melting episode, the age of migmatization was not clearly settled. Eleven U–Th–Pbtot. ages on monazite and three U–Pb ages on associated zircon are reported from migmatites (La Salvetat, Ourtigas), anatectic granitoids (Laouzas, Montalet) and post-migmatitic granites (Anglès, Vialais, Soulié) from the Montagne Noire Axial Zone are presented here for the first time. Migmatization and emplacement of anatectic granitoids took place around 333–326 Ma (Visean) and late granitoids emplaced around 325–318 Ma (Serpukhovian). Inherited zircons and monazite date the orthogneiss source rock of the Late Visean melts between 560 Ma and 480 Ma. In migmatites and anatectic granites, inherited crystals dominate the zircon populations. The migmatitization is the middle crust expression of a pervasive Visean crustal melting event also represented by the “Tufs anthracifères” volcanism in the northern Massif Central. This crustal melting is widespread in the French Variscan belt, though it is restricted to the upper plate of the collision belt. A mantle input appears as a likely mechanism to release the heat necessary to trigger the melting of the Variscan middle crust at a continental scale.  相似文献   

10.
Small oval‐shaped, unshielded monazite grains found in a Variscan garnet–muscovite‐bearing mylonitic paragneiss from the Liegendserie unit of the Münchberg Metamorphic Complex in the northwestern Bohemian Massif, central Europe, yield only pre‐Variscan ages. These ages, determined with the electron microprobe, have maxima at c. 545, 520 and 495 Ma and two side‐maxima at 455 and 575 Ma, and are comparable with previously determined ages of detrital zircon reported from paragneisses elsewhere in the NW Bohemian Massif. The pressure (P)–temperature (T) history of this mylonitic paragneiss, determined from contoured P–T pseudosections, involved an initial stage at 6 kbar/600 °C, reaching peak P–T conditions of 12.5 kbar/670 °C with partial melting, followed by mylonitization and retrogression to 9 kbar/610 °C. The monazite, representing detrital grains derived from igneous rocks of a Cadomian provenance between 575 and 455 Ma, has survived these Variscan metamorphic/deformational events unchanged because this mineral has probably never been outside its P–T stability field during metamorphism.  相似文献   

11.
The conditions at which monazite and allanite were produced and destroyed during prograde metamorphism of pelitic rocks were determined in a Buchan and a Barrovian regional terrain and in a contact aureole, all from northern New England, USA. Pelites from the chlorite zone of each area contain monazite that has an inclusion-free core surrounded by a highly irregular, inclusion-rich rim. Textures and 208Pb/232Th dates of these monazites in the Buchan terrain, obtained by ion microprobe, suggest that they are composite grains with detrital cores and very low-grade metamorphic overgrowths. At exactly the biotite isograd in the regional terrains, composite monazite disappears from most rocks and is replaced by euhedral metamorphic allanite. At precisely the andalusite or kyanite isograd in all three areas, allanite, in turn, disappears from most rocks and is replaced by subhedral, chemically unzoned monazite neoblasts. Allanite failed to develop at the biotite isograd in pelites with lower than normal Ca and/or Al contents, and composite monazite survived at higher grades in these rocks with modified texture, chemical composition, and Th-Pb age. Pelites with elevated Ca and/or Al contents retained allanite in the andalusite or kyanite zone. The best estimate of the time of peak metamorphism at the andalusite or kyanite isograd is the mean Th-Pb age of metamorphic monazite neoblasts that have not been affected by retrograde metamorphism: 364.3Dž.5 Ma in the Buchan terrain, 352.9NJ.9 Ma in the Barrovian terrain, and 403.4LJ.9 Ma in the contact aureole. Some metamorphic monazites from the Buchan terrain have ages partially to completely reset during an episode of retrograde metamorphism at 343.1Nj.1 Ma. Interpretation of Th-Pb ages of individual composite monazite grains is complicated by the occurrence of subgrain domains of detrital material intergrown with domains of material formed or recrystallized during prograde and retrograde metamorphism.  相似文献   

12.
The Danba Structural Culmination is a tectonic window into the late Triassic to early Jurassic Songpan‐Garzê Fold Belt of eastern Tibet, which exposes an oblique section through a complete Barrovian‐type metamorphic sequence. Systematic analysis of a suite of metapelites from this locality has enabled a general study of Barrovian metamorphism, and provided new insights into the early thermotectonic history of the Tibetan plateau. The suite was used to create a detailed petrographic framework, from which four samples ranging from staurolite to sillimanite grade were selected for thermobarometry and geochronology. Pseudosection analysis was applied to calculate PT path segments and determine peak conditions between staurolite grade at ~5.2 kbar and 580 °C and sillimanite grade at ~6.0 kbar and 670 °C. In situ U–Pb monazite geochronology reveals that staurolite‐grade conditions were reached at 191.5 ± 2.4 Ma, kyanite‐grade conditions were attained at 184.2 ± 1.5 Ma, and sillimanite‐grade conditions continued until 179.4 ± 1.6 Ma. Integration of the results has provided constraints on the evolution of metamorphism in the region, including a partial reconstruction of the regional metamorphic field gradient. Several key features of Barrovian metamorphism are documented, including nested PT paths and a polychronic field gradient. In addition, several atypical features are noted, such as PT path segments having similar slopes to the metamorphic field gradient, and Tmax and Pmax being reached simultaneously in some samples. These features are attributed to the effects of slow tectonic burial, which allows for thermal relaxation during compression. While nested, clockwise PTt loops provide a useful framework for Barrovian metamorphism, this study shows that the effects of slow burial can telescope this model in PT space. Finally, the study demonstrates that eastern Tibet experienced a significant phase of crustal thickening during the Mesozoic, reinforcing the notion that the plateau may have a long history of uplift and growth.  相似文献   

13.
In the Ligurian Alps, the Barbassiria massif (a Variscan basement unit of the Briançonnais domain) is made up of orthogneisses derived from K‐rich rhyolite protoliths and minor rhyolite dykes. However, on account of subsequent Alpine deformation and a related blueschist facies metamorphic overprint that are pervasive within the Barbassiria Orthogneisses, little evidence of the earlier Variscan metamorphism is preserved. In this study, new U–Pb laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) dating of zircon from the Barbassiria Orthogneisses and dykes was undertaken to unravel the relationships between protolith magmatism and the Variscan metamorphic overprint. The results suggest a protolith age for the Barbassiria Orthogneisses of ~315–320 Ma (i.e., Early/Late Carboniferous), and constrain the age of a subsequent rhyolite dyke emplacement event to 260.2 ± 3.1 Ma (i.e., Late Permian). The Variscan high‐temperature (greenschist–amphibolite facies) metamorphic event that affected the Barbassiria Orthogneisses was likely associated with both tectonic burial and compression during the final stages of the Variscan collision during the Late Carboniferous period. Emplacement of late‐stage rhyolite dykes that cut the Barbassiria Orthogneisses is linked to a diffuse episode of Late Permian rhyolite volcanism that is commonly observed in the Ligurian Alps. The age of this dyke emplacement event followed a ~10–15 Ma Mid‐Permian gap in the volcano‐sedimentary cover sequence of the Ligurian Alps, and represents the post‐orogenic stage in this segment of the Variscides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Recent work in Barrovian metamorphic terranes has found that rocks experience peak metamorphic temperatures across several grades at similar times. This result is inconsistent with most geodynamic models of crustal over‐thickening and conductive heating, wherein rocks which reach different metamorphic grades generally reach peak temperatures at different times. Instead, the presence of additional sources of heat and/or focusing mechanisms for heat transport, such as magmatic intrusions and/or advection by metamorphic fluids, may have contributed to the contemporaneous development of several different metamorphic zones. Here, we test the hypothesis of temporally focussed heating for the Wepawaug Schist, a Barrovian terrane in Connecticut, USA, using Sm–Nd ages of prograde garnet growth and U–Pb zircon crystallization ages of associated igneous rocks. Peak temperature in the biotite–garnet zone was dated (via Sm–Nd on garnet) at 378.9 ± 1.6 Ma (2σ), whereas peak temperature in the highest grade staurolite–kyanite zone was dated (via Sm–Nd on garnet rims) at 379.9 ± 6.8 Ma (2σ). These garnet ages suggest that peak metamorphism was pene‐contemporaneous (within error) across these metamorphic grades. Ion microprobe U–Pb ages for zircon from igneous rocks hosted by the metapelites also indicate a period of syn‐metamorphic peak igneous activity at 380.6 ± 4.7 Ma (2σ), indistinguishable from the peak ages recorded by garnet. A 388.6 ± 2.1 Ma (2σ) garnet core age from the staurolite–kyanite zone indicates an earlier episode of growth (coincident with ages from texturally early zircon and a previously published monazite age) along the prograde regional metamorphic Tt path. The timing of peak metamorphism and igneous activity, as well as the occurrence of extensive syn‐metamorphic quartz vein systems and pegmatites, best supports the hypothesis that advective heating driven by magmas and fluids focussed major mineral growth into two distinct episodes: the first at c. 389 Ma, and the second, corresponding to the regionally synchronous peak metamorphism, at c. 380 Ma.  相似文献   

15.
High‐P (HP) eclogite and associated garnet–omphacite granulite have recently been discovered in the Mulantou area, northeastern Hainan Island, South China. These rocks consist mainly of garnet, omphacite, hornblende, quartz and rutile/ilmenite, with or without zoisite and plagioclase. Textural relationships, mineral compositions and thermobarometric calculations demonstrate that the eclogite and garnet–omphacite granulite share the same three‐stage metamorphic evolution, with prograde, peak and retrograde P?T conditions of 620–680°C and 8.7–11.1 kbar, 820–860°C and 17.0–18.2 kbar, and 700–730°C and 7.1–8.5 kbar respectively. Sensitive high‐resolution ion microprobe U–Pb zircon dating, coupled with the identification of mineral inclusions in zircon, reveals the formation of mafic protoliths before 355 Ma, prograde metamorphism at c. 340–330 Ma, peak to retrograde metamorphism at c. 310–300 Ma, and subsequent pegmatite intrusion at 295 Ma. Trace element geochemistry shows that most of the rocks have a MORB affinity, with initial εNd values of +2.4 to +6.7. As with similar transitional eclogite–HP granulite facies rocks in the thickened root in the European Variscan orogen, the occurrence of relatively high P?T metamorphic rocks of oceanic origin in northeastern Hainan Island suggests Carboniferous oceanic subduction leading to collision of the Hainan continental block, or at least part of it, with the South China Block in the eastern Palaeo‐Tethyan tectonic domain.  相似文献   

16.
Garnet crystallization in metapelites from the Barrovian garnet and staurolite zones of the Lesser Himalayan Belt in Sikkim is modelled utilizing Gibbs free energy minimization, multi‐component diffusion theory and a simple nucleation and growth algorithm. The predicted mineral assemblages and garnet‐growth zoning match observations remarkably well for relatively tight, clockwise metamorphic PT paths that are characterized by prograde gradients of ~30 °C kbar?1 for garnet‐zone rocks and ~20 °C kbar?1 for rocks from the staurolite zone. Estimates for peak metamorphic temperature increase up‐structure toward the Main Central Thrust. According to our calculations, garnet stopped growing at peak pressures, and protracted heating after peak pressure was absent or insignificant. Almost identical PT paths for the samples studied and the metamorphic continuity of the Lesser Himalayan Belt support thermo‐mechanical models that favour tectonic inversion of a coherent package of Barrovian metamorphic rocks. Time‐scales associated with the metamorphism were too short for chemical diffusion to substantially modify garnet‐growth zoning in rocks from the garnet and staurolite zones. In general, the pressure of initial garnet growth decreases, and the temperature required for initial garnet growth was reached earlier, for rocks buried closer toward the MCT. Deviations from this overall trend can be explained by variations in bulk‐rock chemistry.  相似文献   

17.
Collision‐related granitoid batholiths, like those of the Hercynian and Himalayan orogens, are mostly fed by magma derived from metasedimentary sources. However, in the late Neoproterozoic calcalkaline (CA) batholiths of the Arabian–Nubian Shield (ANS), which constitutes the northern half of the East African orogen, any sedimentary contribution is obscured by the juvenile character of the crust and the scarcity of migmatites. Here, we use paired in situ LASS‐ICP‐MS measurements of U–Th–Pb isotope ratios and REE contents of monazite and xenotime and SHRIMP‐RG analyses of separated zircon to demonstrate direct linkage between migmatites and granites in the northernmost ANS. Our results indicate a single prolonged period of monazite growth at 640–600 Ma, in metapelites, migmatites and peraluminous granites of three metamorphic suites: Abu‐Barqa (SW Jordan), Roded (S Israel) and Taba–Nuweiba (Sinai, Egypt). The distribution of monazite dates and age zoning in single monazite grains in migmatites suggest that peak thermal conditions, involving partial melting, prevailed for c. 10 Ma, from 620 to 610 Ma. REE abundances in monazite are well correlated with age, recording garnet growth and garnet breakdown in association with the prograde and retrograde stages of the melting reactions, respectively. Xenotime dates cluster at 600–580 Ma, recording retrogression to greenschist facies conditions as garnet continued to destabilize. Phase equilibrium modelling and mineral thermobarometry yield P–T conditions of ~650–680°C and 5–7 kbar, consistent with either water‐fluxed or muscovite‐breakdown melting. The expected melt production is 8–10 vol.%, allowing a melt connectivity network to form leading to melt segregation and extraction. U–Pb ages of zircon rims from leucosomes indicate crystallization of melt at 610 ± 10 Ma, coinciding with the emplacement of a vast volume of CA granites throughout the northern ANS, which were previously considered post‐collisional. Similar monazite ages (c. 620 Ma) retrieved from the amphibolite facies Elat schist indicate that migmatites are the result of widespread regional rather than local contact metamorphism, representing the climax of the East African orogenesis.  相似文献   

18.
Amphibolite facies metasedimentary schists within the Yukon‐Tanana terrane in the northern Canadian Cordillera reveal a two‐stage, polymetamorphic garnet growth history. In situ U‐Th‐Pb Sensitive High Resolution Ion Microprobe dating of monazite provide timing constraints for the late stages of garnet growth, deformation and subsequent decompression. Distinct textural and chemical growth zoning domains, separated by a large chemical discontinuity, reveal two stages of garnet growth characterized in part by: (i) a syn‐kinematic, inclusion‐rich stage‐1 garnet core; and (ii) an inclusion‐poor, stage‐2 garnet rim that crystallized with syn‐ to post‐kinematic staurolite and kyanite. Phase equilibria modelling of garnet molar and compositional isopleths suggest stage‐1 garnet growth initiated at ~600 °C, 8 kbar along a clockwise P–T path. Growth of the compositionally distinct, grossular‐rich, pyrope‐poor inner portion of the stage‐2 overgrowth is interpreted to have initiated at higher pressure and/or lower temperature than the stage‐1 core along a separate P–T loop, culminating at peak P–T conditions of ~650–680 °C and 9 kbar. Stage‐2 metamorphism and the waning development of a composite transposition foliation (ST) are dated at c. 118 Ma from monazite aligned parallel to ST, and inclusions in syn‐ to post‐ST staurolite and kyanite. Slightly younger ages (c. 112 Ma) are obtained from Y‐rich monazite that occurs within resorbed areas of both stage‐1 and stage‐2 garnet, together with retrograde staurolite and plagioclase. The younger ages obtained from these texturally and chemically distinct grains are interpreted, with the aid of phase equilibria calculations, to date the growth of monazite from the breakdown of garnet during decompression at c. 112 Ma. Evidence for continued near‐isothermal decompression is provided by the presence of retrograde sillimanite, and cordierite after staurolite, which indicates decompression below ~4–5 kbar prior to cooling below ~550 °C. As most other parts of the Yukon‐Tanana terrane were exhumed to upper crustal levels in the Early Jurassic, these data suggest this domain represents a tectonic window revealing a much younger, high‐grade tectono‐metamorphic core (infrastructure) within the northern Cordilleran orogen. This window may be akin to extensional core complexes identified in east‐central Alaska and in the southeastern Canadian Cordillera.  相似文献   

19.
The Karakoram–Hindu Kush–Pamir and adjacent Tibetan plateau belt comprise a series of Gondwana‐derived crustal fragments that successively accreted to the Eurasian margin in the Mesozoic as the result of the progressive Tethys ocean closure. These domains provide unique insights into the thermal and structural history of the Mesozoic to Cenozoic Eurasian plate margin, which are critical to inform the initial boundary conditions (e.g. crustal thickness, structure and thermo‐mechanical properties) for the subsequent development of the large and hot Tibetan–Himalaya orogen, and the associated crustal deformation processes. Using a combination of microstructural analyses, thermobarometry modelling and U–Th–Pb monazite and Lu–Hf garnet geochronology, the study reappraises the metamorphic history of exposed mid‐crustal metapelites in the Chitral region of the South Pamir–Hindu Kush (NW Pakistan). This study also demonstrates that trace elements in monazite (especially Y and Dy), combined with thermodynamical modelling and Lu–Hf garnet dating, provides a powerful integrated toolbox for constraining long‐lived and polyphased tectono‐metamorphic histories in all their spatial and temporal complexity. Rocks from the Chitral region were progressively deformed and metamorphosed at sub‐ and supra‐solidus conditions through at least four distinct episodes from the Mesozoic to the Cenozoic. Rocks were first metamorphosed at ~400–500°C and ~0.3 GPa in the Late Triassic–Early Jurassic (210–185 Ma), likely in response to the accretion of the Karakoram during the Cimmerian orogeny. Pressure and temperature subsequently increased by ~0.3 GPa and 100°C in the Early‐ to Mid Cretaceous (140–80 Ma), coinciding with the intrusion of calcalkaline granitic plutons across the Karakoram and Pamir regions. This event is interpreted as the record of crustal thickening and the development of a proto‐plateau within the Eurasian margin due to a long‐lived episode of slab flattening in an Andean‐type margin. Peak metamorphism was reached in the Late Eocene–Early Oligocene (40–30 Ma) at conditions of 580–600°C and ~0.6 GPa and 700–750°C and 0.7–0.8 GPa for the investigated staurolite schists and sillimanite migmatites respectively. This crustal heating up to moderate anatexis likely resulted in the underthrusting of the Indian plate after a NeoTethyan slab‐break off or to the Tethyan Himalaya–Lhasa microcontinent collision and subsequent oceanic slab flattening. Near‐isothermal decompression/exhumation followed in the Late Oligocene (28–23 Ma) as marked by a pressure decrease in excess of ~0.1 GPa. This event was coeval with the intrusion of the 24 Ma Garam Chasma leucogranite. This rapid exhumation is interpreted to be related to the reactivation of the South Pamir–Karakoram suture zone during the ongoing collision with India. The findings of this study confirm that significant crustal shortening and thickening of the south Eurasian margin occurred during the Mesozoic in an accretionary‐type tectonic setting through successive episodes of terrane accretions and probably slab flattening, transiently increasing the coupling at the plate interface. Moreover, they indicate that the south Eurasian margin was already hot and thickened prior to Cenozoic collision with India, which has important implications for orogen‐scale strain‐accommodation mechanisms.  相似文献   

20.
A section of the orogenic middle crust (Orlica‐?nie?nik Dome, Polish/Czech Central Sudetes) was examined to constrain the duration and significance of deformation (D) and intertectonic (I) phases. In the studied metasedimentary synform, three deformation events produced an initial subhorizontal foliation S1 (D1), a subsequent subvertical foliation S2 (D2) and a late subhorizontal axial planar cleavage S3 (D3). The synform was intruded by pre‐, syn‐ and post‐D2 granitoid sheets. Crystallization–deformation relationships in mica schist samples document I1–2 garnet–staurolite growth, syn‐D2 staurolite breakdown to garnet–biotite–sillimanite/andalusite, I2–3 cordierite blastesis and late‐D3 chlorite growth. Garnet porphyroblasts show a linear Mn–Ca decrease from the core to the inner rim, a zone of alternating Ca–Y‐ and P‐rich annuli in the inner rim, and a Ca‐poor outer rim. The Ca–Y‐rich annuli probably reflect the occurrence of the allanite‐to‐monazite transition at conditions of the staurolite isograd, whereas the Ca‐poor outer rim is ascribed to staurolite demise. The reconstructed PT path, obtained by modelling the stability of parageneses and garnet zoning, documents near‐isobaric heating from ~4 kbar/485 °C to ~4.75 kbar/575 °C during I1–2. This was followed by a progression to 4–5 kbar/580–625 °C and a subsequent pressure decrease to 3–4 kbar during D2. Pressure decrease below 3 kbar is ascribed to I2–3, whereas cooling below ~500 °C occurred during D3. In the dated mica schist sample, garnet rims show strong Lu enrichment, oscillatory Lu zoning and a slight Ca increase. These features are also related to allanite breakdown coeval with staurolite appearance. As Lu‐rich garnet rims dominate the Lu–Hf budget, the 344 ± 3 Ma isochron age is ascribed to garnet crystallization at staurolite grade, near the end of I1–2. For the dated sample of amphibole–biotite granitoid sheet, a Pb–Pb single zircon evaporation age of 353 ± 1 Ma is related to the onset of plutonic activity. The results suggest a possible Devonian age for D1, and a Carboniferous burial‐exhumation cycle in mid‐crustal rocks that is broadly coeval with the exhumation of neighbouring HP rocks during D2. In the light of published ages, a succession of telescoping stages with time spans decreasing from c. 10 to 2–3 Ma is proposed. The initially long period of tectonic quiescence (I1–2 phase, c. 10 Ma) inferred in the middle crust contrasts with contemporaneous deformation at deeper levels and points to decoupled PTD histories within the orogenic wedge. An elevated gradient of ~30 °C km?1 and assumed high heating rates of c. 20 °C Ma?1 are explained by the protracted intrusion of granitoid sheets, with or without deformation, whereas fast vertical movements (2–3 Ma, D2 phase) in the crust require the activity of deformation phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号