首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental study has been carried out in the Mainz vertical wind tunnel to determine the rate at which NH3 in the presence of CO2 is absorbed by freely suspended water drops. The experimental uptake rates were found to be in good agreement with the rates predicted by the Kronig-Brink convective diffusion model and, for gas concentrations in the ppbv range also by the model in which it is assumed that the absorbed gas is well mixed inside the drop (henceforth called well mixed model). The same conclusion was shown to apply also to the desorption of NH3 from a drop previously exposed to NH3. The latter result is in contrast to the desorption of SO2 which must be described by a model which accounts for the diffusion of the species inside the drop. Comparison of our experimental results with theory show further that the uptake of NH3 in presence of CO2 is significantly overestimated if the slow reaction CO2(aq)+H2OHCO 3 +H+ is neglected in the theoretical computation.  相似文献   

2.
An extention of our previous theory for trace gas absorption into freely-falling cloud and raindrops is presented. This theory describes the convective diffusion of a trace gas through air and into a water drop with internal circulation, the drop falling at its terminal velocity. Using flow fields for the circulating water inside and for the moving air outside the drop, obtained by numerical solutions to the Navier—Stokes equation of motion, we numerically solved the convective diffusion equation to determine the uptake of SO2 by water drops of various sizes, time exposure to the gas phase, and concentration of SO2 in the gas phase. It was found that for drops of radius larger than 1 mm and relatively low gas concentrations (10 ppb (v)), resistance to gas diffusion lies mainly in the gas phase; while for drops of radius less than 500 m and gas concentrations larger than those found in the atmosphere (1% (v)), the resistance to diffusion lies primarily in the liquid phase. With drop sizes and gas concentrations between these limits, the rate of SO2 uptake is controlled by a coupled resistance to diffusion inside and outside the drop. In addition to our general model, a simplified version was formulated which allows considerable savings in computer time for evaluation and improved ease of handling without significant loss of accuracy. A comparison between our simplified model and that of Barrie (1978) shows that the boundary-layer approach of Barrie may be a useful alternate approach to estimating trace gas absorption by water drops, provided appropriate values are chosen for the thickness of the boundary layers involved.  相似文献   

3.
An experimental study of the scavenging of dichloromethane vapor by water drops falling at terminal velocity, has been carried out in the UCLA precipitation shaft, in order to test the predictions of theoretical washout models. Whereas good agreement between theory and experiment was found for drops of radius 0.332 mm, computed gas uptake rates for 1.253 and 2.21 mm radius drops were much slower than those measured, just as reported previously for the washout of both sulfur dioxide and acetaldehyde. An analysis shows that theory can be reconciled with all of the experimental data by replacing the compound specific aqueous phase Fickian molecular diffusion coefficient used in the theory, by an effective diffusivity, having a constant value, (3×10-4 cm2 s-1), independent of the physical and chemical nature of the absorbed species, for all drops of equivalent radii greater than 0.9 mm.  相似文献   

4.
For the purpose of testing our previously described theory of SO2 scavenging a laboratory investigation was carried out in the UCLA 33 m long rainshaft. Drops with radii between 250 and 2500 m were allowed to come to terminal velocity, after which they passed through a chamber of variable length filled with various SO2 concentrations in air. After falling through a gas separating chamber consisting of a fluorocarbon gas the drops were collected and analyzed for their total S content in order to determine the rate of SO 2 absorption.The SO2 concentration in air studied ranged between 1 and 60% (v). Such relatively large concentrations were necessary due to the short times the drops were exposed to SO2 in the present setup. The present experimental results were therefore not used to simulate atmospheric conditions but rather to test our previously derived theory which is applicable to any laboratory or atmospheric condition. Comparison of our studies with the results from our theory applied to our laboratory conditions led to predicted values for the S concentration in the drops which agreed well with those observed if the drops had radii smaller than 500 m. In order to obtain agreement between predicted and observed S concentrations in larger drops, an empirically derived eddy diffusivity for SO2 in water had to be included in the theory to take into account the effect of turbulent mixing inside such large drops.In a subsequent set of experiments, drops initially saturated with S (IV) were allowed to fall through S-free air to determine the rate of SO 2 desorption. The results of these studies also agreed well with the results of our theoretical model, thus justifying the reversibility assumption made in our theoretical models.In a final set of experiments, the effects of oxidation on SO2 absorption was studied by means of drops containing various amounts of H2O2. For comparable exposure times to SO2, the S concentration in drops with H2O2 was found to be up to 10 times higher than the concentration in drops in which no oxidation occurred.  相似文献   

5.
A model with spectral microphysics was developed to describe the scavenging of nitrate aerosol particles and HNO3 gas. This model was incorporated into the dynamic framework of an entraining air parcel model with which we computed the uptake of nitrate by cloud drops whose size distribution changes with time because of condensation, collision-coalescence and break-up. Significant differences were found between the scavenging behavior of nitrate and our former results on the scavenging behavior of sulfate. These reflect the following chemical and microphysical differences between the two systems:
  1. nitrate particles occur in a larger size range than sulfate particles.
  2. HNO3 has a much greater solubility than SO2 and is taken up irreversibly inside the drops in contrast to SO2.
  3. nitric acid in the cloud water is formed directly on uptake of HNO3 gas whereas on uptake of SO2 sulfuric acid is formed only after the reaction with oxidizing agents such as e.g., H2O2 or O3.
  4. nitrate resulting from uptake of HNO3 is confined mainly to small drops, whereas sulfate resulting from uptake of SO2 is most concentrated in the largest, oldest drops, which have had the greatest time for reaction.
Sensitivity studies showed that the nitrate concentration of small drops is significantly affected by the mass accommodation coefficient.  相似文献   

6.
We present here experimental determinations of mass accommodation coefficients using a low pressure tube reactor in which monodispersed droplets, generated by a vibrating orifice, are brought into contact with known amounts of trace gases. The uptake of the gases and the accommodation coefficient are determined by chemical analysis of the aqueous phase.We report in this article measurements of exp=(6.0±0.8)×10–2 at 298 K and with a total pressure of 38 Torr for SO2, (5.0±1.0)×10–2 at 297 K and total pressure of 52 Torr for HNO3, (1.5±0.6)×10–3 at 298 K and total pressure of 50 Torr for NO2, (2.4±1.0)×10–2 at 290 K and total pressure of 70 Torr for NH3.These values are corrected for mass transport limitations in the gas phase leading to =(1.3±0.1)×10–1 (298 K) for SO2, (1.1±0.1)×10–1 (298 K) for HNO3, (9.7±0.9)×10–2 (290 K) for NH3, (1.5±0.8)×10–3 (298 K) for NO2 but this last value should not be considered as the true value of for NO2 because of possible chemical interferences.Results are discussed in terms of experimental conditions which determine the presence of limitations on the mass transport rates of gaseous species into an aqueous phase, which permits the correction of the experimental values.  相似文献   

7.
Results from numerical investigations regarding the exchange of HNO3, NH3, and NH4NO3 between the atmosphere and the biosphere are presented. The investigations were performed with a modified inferential method which is based on the generally accepted micrometeorological ideas of the transfer of momentum, sensible heat and matter near the Earth's surface and the chemical reactions among these nitrogen compounds. This modified inferential method calculates the micrometeorological quantities (such as the friction velocity and the fluxes of sensible and latent heat), the height-invariant fluxes of the composed chemically conservative trace species with group concentrationsc 1=[HNO3]+[NH4NO3] (total nitrate),c 2=[NH3]+[NH4NO3] (total ammonia), andc 3=[HNO3]-[NH3] as well as the fluxes of the individual nitrogen compounds. The parameterization of the fluxes is based on the flux-gradient relationships in the turbulent region of the atmospheric surface layer. The modified inferential method requires only the data of wind velocity, temperature, humidity and concentrations (HNO3, NH3, and NH4NO3) measured at a reference height by stations of a monitoring network.  相似文献   

8.
An experimental study involving the Mainz vertical wind tunnel is described where the rate of SO2 removed from the air by freely suspended water drops was measured for SO2 concentrations in the gas phase ranging between 50 and 500 ppb, and for various H2O2 concentrations in the liquid phase. In a first set of experiments, the pH inside the SO2 absorbing drops was monitored by means of colour pH indicators added to the drops. In a second set of experiments, the amount of SO2 scavenged by the drops was determined as sulfate by an ionchromatograph after the drops had been removed from the vertical air stream of the wind tunnel after various times of exposure to SO2. The results of our experimental study were compared with the theoretical gas diffusion model of Walcek and Pruppacher which was reformulated for the case of SO2 concentrations in the ppbv(v) range for which the main resistance to diffusion lies in the gas phase surrounding the drop. Excellent agreement between experiment and theory was obtained. Encouraged by this agreement, the theory was used to investigate the rate of sulfate production inside a drop as a function of pH. The sulfate production rate, which includes transport and oxidation, was compared with the production rate based on bulk equilibrium, as cited in the literature.  相似文献   

9.
The growth of monodisperse particles (0.07 to 0.5 µm) exposed to SO2 (0–860 ppb), H2O2 (0–150 ppb) and sometimes NH3 (0–550 ppb) in purified air at 22 °C at relative humidities ranging from 25 to 75% were measured using the Tandem Differential Mobility Analyzer technique. The experiments were performed in a flow reactor with aqueous (NH4)2SO4 and Na2SO4 droplets. For (NH4)2SO4 droplets the fractional diameter growth was independent of size above 0.3 µm but decreased with decreasing size below that. When NH3 was added the fractional growth increased with decreasing size. Measurements were compared with predictions of a model that accounts for solubility of the reactive gases, the liquid phase oxidation of SO2 by H2O2, and ionic equilibria. Agreement between measured and predicted droplet growth is reasonable when the ionic strength effects are included. Theory and experiments suggest that NH3 evaporation is responsible for the decrease in relative growth rates for small aqueous ammonium sulfate particles. The observed droplet growth rates are too slow to explain observed growth rates of secondary atmospheric sulfate particles.  相似文献   

10.
We suggest a one-dimensional model of precipitation scavenging of soluble gaseous pollutants by non-evaporating and evaporating droplets that is valid for arbitrary initial vertical distribution of soluble trace gases in the atmosphere. It is shown that for low gradients of soluble trace gases in the atmosphere, scavenging of gaseous pollutants is governed by a linear wave equation that describes propagation of a wave in one direction. The derived equation is solved by the method of characteristics. Scavenging coefficient and the rates of precipitation scavenging are calculated for wet removal of sulfur dioxide (SO2) and ammonia (NH3) using measured initial distributions of trace gases. It is shown that scavenging coefficient for arbitrary initial vertical distribution of soluble trace gases in the atmosphere is non-stationary and height-dependent. In case of exponential initial distribution of soluble trace gases in the atmosphere, scavenging coefficient for non-evaporating droplets in the region between the ground and the position of a scavenging front is a product of rainfall rate, solubility parameter, and the growth constant in the formula for the initial profile of a soluble trace gas in the atmosphere. This expression yields the same estimate of scavenging coefficient for sulfur dioxide scavenging by rain as field estimates presented in McMahon and Denison (1979). It is demonstrated that the smaller the slope of the concentration profile the higher the value of a scavenging coefficient.  相似文献   

11.
Our previously described absorption model for the scavenging of trace gases by individual cloud and rain drops was applied to an ensemble of drops of given size distribution as found in typical atmospheric rainfalls. This study allowed: (1) determination of the redistribution which a pollution plume suffers as rain falls through it, and (2) determination of the amount of pollutant contained in. the fallen rain. For the present application it was assumed that the pollution plume consisted of SO2, only, and that its concentration varied vertically as a Gaussian distribution centered 200 m above the ground. Rain of various intensities and corresponding drop size distributions was allowed to pass through this pollution layer. The results of our study show that the average height and concentration of the plume decrease in proportion to the total amount of rain which had passed through the pollution layer. The fractional plume washout rate (in % per mm of rain) was found to be inversely proportional to the SO2 gas concentration, the plume height, and the plume thickness. By including the effects of oxidation inside the falling raindrops, it was noted that the removal of SO2 became enhanced by a factor of up to 10 times. For significant oxidation the rate with which SO2 was washed out was found to be inversely proportional to the rainfall rate. For the case of light drizzle (2 mm h-1) and large oxidation rate constants (100 s-1), as much as 40% of the sulfur load could be removed by 1 mm of rain. For the case of a heavier rainfall (25 mm h-1) composed of correspondingly larger drops, the washout rate varied between 2 and 10$ mm-1 over a wide range of oxidation rates.  相似文献   

12.
An in-cloud scavenging case study of the major ions (NH4 +, SO4 2- and NO3 -) determining the cloudwater composition at a mountain site (1620 m.a.s.l.) is presented. A comparison between in-cloud measurements of the cloudwater composition, liquid water content, gas concentrations and aerosol concentrations and pre-cloud gas and aerosol concentrations yields the following results. Cloudwater concentrations resulted from scavenging of about half of the available NH3, aerosol NH4 +, aerosol NO3 -, and aerosol SO4 2-. Approximately a third of the SO2 was scavenged by the cloudwater and oxidized to SO4 2-. Cloud acidity during the first two hours of cloud interception (pH 3.24) was determined mostly by the scavenged gases (NH3, SO2, and HNO3); aerosol contributions to the acidity were found to be small. Observations of gas and aerosol concentrations at three elevations prior to several winter precipitation events indicated that NH3 concentrations are typically half (12–80 %) of the total (gas and aerosol) N (-III) concentrations. HNO3 typically is present at much lower concentrations (1–55 %) than aerosol NO3 -. Concentrations of SO2 are a substantial component of total sulfur, with concentrations averaging 60 % (14–76 %) of the total S (IV and VI).  相似文献   

13.
Daily measurements of atmospheric sulfur dioxide (SO2) concentrations were performed from March 1989 to January 1991 at Amsterdam Island (37°50 S–77°30 E), a remote site located in the southern Indian Ocean. Long-range transport of continental air masses was studied using Radon (222Rn) as continental tracer. Average monthly SO2 concentrations range from less than 0.2 to 3.9 nmol m-3 (annual average = 0.7 nmol m-3) and present a seasonal cycle with a minimum in winter and a maximum in summer, similar to that described for atmospheric DMS concentrations measured during the same period. Clear diel correlation between atmospheric DMS and SO2 concentrations is also observed during summer. A photochemical box model using measured atmospheric DMS concentrations as input data reproduces the seasonal variations in the measured atmospheric SO2 concentrations within ±30%. Comparing between computed and measured SO2 concentrations allowed us to estimate a yield of SO2 from DMS oxidation of about 70%.  相似文献   

14.
A modified profile method for determining the vertical deposition (or/and exhalation) fluxes of NO, NO2, ozone, and HNO3 in the atmospheric surface layer is presented. This method is based on the generally accepted micrometeorological ideas of the transfer of momentum, sensible heat and matter near the Earth's surface and the chemical reactions among these trace gases. The analysis (aerodynamic profile method) includes a detailed determination of the micrometeorological quantities (such as the friction velocity, the fluxes of sensible and latent heat, the roughness length and the zero plane displacement), and of the height-invariant fluxes of the composed chemically conservative trace gases with group concentrations c 1=[NO]+[NO2]+[HNO3], c 2=[NO2]+[O3]+3/2·[HNO3], and c 3=[NO]–[O3]–1/2·[HNO3]. The fluxes of the individual species are finally determined by the numerical solution of a system of coupled nonlinear ordinary differential equations for the concentrations of ozone and HNO3 (decoding method). The parameterization of the fluxes is based on the flux-gradient relationships in the turbulent region of the atmospheric surface layer. The model requires only the vertical profile data of wind velocity, temperature and humidity and concentrations of NO, NO2, ozone, and HNO3.The method has been applied to vertical profile data obtained at Jülich (September 1984) and collected in the BIATEX joint field experiment LOVENOX (Halvergate, U.K., September 1989).  相似文献   

15.
In view of the uncertainty of the origin of the secular increase of N2O, we studied heterogeneous processes that contribute to formation of N2O in an environment that comes as close as possible to exhaust conditions containing NO and SO2, among other constituents. The N2O formation was followed using electron capture gas chromatography (ECD-GC). The other reactants and intermediates (SO2, NO, NO2 and HONO) were monitored using gas phase UV-VIS absorption spectroscopy. Experiments were conducted at 298 and 368 K as well as at dry and high humidity (approaching 100% rh) conditions. There is a significant heterogeneous rate of N 2 O formation at conditions that mimic an exhaust plume from combustion processes.The simultaneous presence of NO, SO2, O2 in the gas phase and condensed phase water, either in the bulk liquid or adsorbed state has been confirmed to be necessary for the production of significant levels of N2O. The stoichiometry of the overall reaction is: 2 NO+SO2+H2O N2O+H2SO4. The maximum rate of N2O formation occurred at the beginning of the reaction and scales with the surface area of the condensed phase and is independent of its volume. A significant rate of N2O formation at 368 K at 100% rh was also observed in the absence of a bulk substrate. The diffusion of both gas and liquid phase reactants is not rate limiting as the reaction kenetics is dominated by the rate ofN2O formation under the experimental conditions used in this work. The simultaneous presence of high humidity (90–100% rh at 368 K) and bulk condensed phase results in the maximum rate and final yield of N2O approaching 60% and 100% conversion after one hour in the presence of amorphous carbon and fly-ash, respectively.Work performed in partial fulfillment of the requirements of Dr ès Sciences at EPFL.  相似文献   

16.
A method for the estimation of the reaction probability of the heterogeneous N2O5+H2O 2HNO3 reaction using the deposition profile in a laminar flow tube, in which the walls are coated with the condensed aqueous phase of interest, is presented. The production of gas phase nitric acid on the surface followed by its absorption complicates the deposition profiles and hence the calculation of the reaction probability. An estimation of the branching ratio for this process enables a more appropriate calculation to be carried out. Reaction probabilities of N2O5 on substances including some normally constituting atmospheric aerosols, NaCl, NH4HSO4, as well as Na2CO3 are estimated and found to depend on relative humidity and characteristics of the coating used. These fell within the range (0.04–2.0)×10–2.  相似文献   

17.
An experimental and theoretical study has been carried out to investigate the rate of desorption of SO2 from water drops falling at terminal velocity in air. The experiments were carried out in the Mainz vertical wind tunnel in which water drops of various sizes containing S(IV) in various concentrations were freely suspended in the vertical airstream of the tunnel. The results of these experiments were compared with the predictions of three theoretical models, and with the experiments of Walceket al. This comparison shows that the predictions of the diffusion model of Kronig and Brink in the formulation given by Walcek and Pruppacher agree well with the experimental results for all relevant large and small rain-drop sizes, and for all considered concentrations of S(IV) inside the drops. In contrast, the predictions of the diffusion model which assumes complete internal mixing inside a drop agrees with the experimental results only if the concentration of S(IV) inside the drop is less than that equivalent of an equilibrium SO2 concentration of 15 ppbv. At larger concentrations, the theoretical predictions of the model for complete internal mixing progressively deviate from the experimental results. It is further shown that Barrie's double film model can be used to interpret the resistance to diffusion inside a drop in terms of a diffusion boundary layer inside the drop which increases in thickness with decreasing concentration of S(IV). Applying our results to the desorption of SO2 from small and large rain drops falling below an assumed cloud base, shows that for typical contents of S(IV) inside the drops substantial amounts of SO2 will desorb from these drops unless H2O2 is present in the surrounding air.  相似文献   

18.
A three-dimensional model of the global ammonia cycle   总被引:16,自引:0,他引:16  
Using a three-dimensional (3-D) transport model of the troposphere, we calculated the global distributions of ammonia (NH3) and ammonium (NH 4 + ), taking into account removal of NH3 on acidic aerosols, in liquid water clouds and by reaction with OH. Our estimated global 10°×10° NH3 emission inventory of 45 Tg N-NH3 yr provides a reasonable agreement between calculated wet NH 4 + deposition and measurements and of measured and modeled NH 4 + in aerosols, although in Africa and Asia especially discrepancies exist.NH3 emissions from natural continental ecosystems were calculated applying a canopy compensation point and oceanic NH3 emissions were related to those of DMS (dimethylsulfide). In many regions of the earth, the pH found in rain and cloud water can be attributed to acidity derived from NO, SO2 and DMS emissions and alkalinity from NH3. In the remote lower troposphere, sulfate aerosols are calculated to be almost neutralized to ammonium sulfate (NH4)2SO4, whereas in the middle and upper troposphere, according to our calculations, the aerosol should be more acidic, as a result of the oxidation of DMS and SO2 throughout the troposphere and removal of NH3 on acidic aerosols at lower heights. Although the removal of NH3 by reaction with the OH radical is relatively slow, the intermediate NH2 radical can provide a substantial annual N2O source of 0.9 –0.4 +0.9 Tg, thus contributing byca. 5% to estimated global N2O production. The oxidation by OH of NH3 from anthropogenic sources accounts for 10% of the estimated total anthropogenic sources of N2O. This source was not accounted for in previous studies, and is mainly located in the tropics, which have high NH3 and OH concentrations. Biomass burning plumes, containing high NO x and NH3 concentrations provide favourable conditions for gas phase N2O production. This source is probably underestimated in this model study, due to the coarse resolution of the 3-D model, and the rather low biomass burning NH3 and NO x emissions adopted. The estimate depends heavily on poorly known concentrations of NH3 (and NO x ) in the tropics, and uncertainties in the rate constants of the reactions NH2 + NO2 N2O + H2O (R4), and NH2 + O3 NH2O + O2 (R7).  相似文献   

19.
With the global Chemistry-Transport model MATCHsensitivity simulations were performed to determinethe degree to which especially upward transport ofgases from the earth's surface is limited byconvective and large-scale precipitation scavenging.When only dissolution of species in the liquid phaseis taken into account, mixing ratio reductions in themiddle and upper troposphere by 10% arecalculated for gases with a Henry's Law constant H of103 mol/l/atm. The removal increases to 50% forH = 104 mol/l/atm, and to 90% for H =105 mol/l/atm. We also consider scavenging by theice phase, which is generally much less efficient thanby the aqueous phase. In fact, rejection of gases fromfreezing water droplets may be a source of trace gasat higher altitudes.H2O2 and the strong acids (H2SO4,HNO3, HCl, HBr, HI) have such large solubilitiesthat they become largely removed by precipitation.When significant concentrations of these gases andsulfate aerosol exist above the liquid water domain ofthe atmosphere, they have likely been produced thereor at higher altitudes, although some could have comefrom trace gas rejection from ice particles or fromevaporating hydrometeors. Several other gases areaffected by precipitation, but not strongly enough toprevent fractional transfer to the middle and uppertroposphere: e.g., HNO4, HNO2 at pH 5,CH2O, the organic acids at pH 6,CH3SOCH3, HOCl, HOBr, and HOI. NH3 islargely removed by liquid phase scavenging at pH 7 and SO2 atpH 7. At pH less thanabout 6, upward transport of SO2 should largelydepend on the efficiency of oxidation processes in thewater droplets by O3 and H2O2.Most gases have solubilities which are too low forsignificant precipitation scavenging and aqueous phaseoxidation to occur. This holds, e.g., for O3, CO,the hydrocarbons, NO, NO2, HCN, CH3CN,CH3SCH3, CH3O2H, CH3CHOandhigher aldehydes, CH3OH and higher alcohols,peroxyacetylnitrate (PAN), CH3COCH3 andother ketones (note that some of these are not listedin Table I because their solubilities are below 10mol/l/atm). Especially for the short-lived gases,transfer from the boundary layer to the middle andupper troposphere is actually promoted by the enhancedupward transport that occurs in clouds.  相似文献   

20.
FOS/DECAFE 91 (Fire of Savannas/Dynamique et Chimie Atmosphérique en Forêt Equatoriale) was the first multidisciplinary experiment organized in Africa to determine gas and aerosol emissions by prescribed savanna fires. The humid savanna of Lamto in Ivory Coast was chosen for its ecological characteristics representative of savannas with a high biomass density (900 g m–2 dry matter). Moreover the vegetation and the climate of Lamto have been studied for more than twenty years. The emission ratios (X/CO2) of the carbon compounds (CO2, CO, NMHC, CH4, PAH, organic acids and aerosols), nitrogen compounds (NOx, N2O, NH3 and soluble aerosols) and sulfur compounds (SO2, COS and aerosols) were experimentally determined by ground and aircraft measurements. To perform this experiment, 4 small plots (100×100 m) and 2 large areas (10×10 km) were prepared and burnt in January 1991 during the period of maximum occurrence of fires in this type of savanna. The detailed ecological study shows that the carbon content of the vegetation is constant within 1% (42 g C for 100 g of vegetal dry matter), the nitrogen content (0.29 g N for 100 g of dry matter) may vary by 10% and the sulfur content (0.05 g S/100 d.m.) by 20%. These variations of the biomass chemical content do not constitute an important factor in the variation of the gas and particle emission levels. With the emission ratios characteristic of humid savanna and flaming conditions (CO/CO2 of 6.1% at the ground and 8% for airborne measurements), we propose a set of new emission factors, taking into account the burning efficiency which is about 80%: 74.4% of the carbon content of the savanna biomass is released to the atmosphere in the form of CO2, 4.6% as CO, 0.2% as CH4, 0.5% as NMHC and 0.7% as aerosols. 17.2% of the nitrogen content of the biomass is released as NOx, 3.5% as N2O, 0.6% as NH3 and 0.5% as soluble aerosols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号