首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. L. PORTER 《Sedimentology》1987,34(4):661-680
The Lower Jurassic Aztec Sandstone is an aeolian-deposited quartzose sandstone that represents the western margin of the southerly-migrating Navajo-Nugget sand sea (or erg). Vertical and lateral facies relations suggest that the erg margin encroached upon volcanic highlands, alluvial fan, wadi and sabkha environments. In southern Nevada, 700 m thick facies successions record the arrival of the Aztec sand sea. Initial erg sedimentation in the Valley of Fire consists of lenticular or tongue-shaped aeolian sand bodies interstratified with fluvially-deposited coarse sandstone and mudstone. Above, evaporite-rich fine sandstone and mudstone are overlain by thick, cross-stratified aeolian sandstone that shows an upsection increase in set thickness. The lithofacies succession represents aeolian sand sheets and small dunes that migrated over a siliciclastic sabkha traversed by ephemeral wadis. These deposits were ultimately buried by large dunes and draas of the erg. In the Spring Mountains, a similar facies succession also contains thin, lenticular volcaniclastic conglomerate and sandstone. These sediments represent the distal margin of an alluvial fan complex sourced from the west. Thin aeolian sequences are interbedded with volcanic flow rocks, ash-flow tuffs, debris flows, and fluvial deposits in the Mojave Desert of southern California. These aeolian strata represent erg migration up the eastern flanks of a magmatic arc. The westward diminution of aeolian-deposited units may reflect incomplete erg migration, thin accumulation of aeolian sediment succeptible to erosion, and stratigraphic dilution by arc-derived sediment. A two-part division of the Aztec erg is suggested by lithofacies associations, the size and geometry of aeolian cross-strata, and sediment dispersal data. The leading or downwind margin of the erg, here termed the fore-erg, is represented by a 10–100 m thick succession of isolated pods, lenses, and tongues of aeolian-deposited sediment encased in fluvial and sabkha deposits. Continued sand-sea migration brought large dunes and draas of the erg interior into the study area; these 150–500 m thick central-erg sediments buried the fore-erg deposits. The trailing, upwind margin of the erg is represented by back-erg deposits in northern Utah and Wyoming.  相似文献   

2.
The late Permian to Triassic sediments of the Solway Basin consist of a layer-cake succession of mature, predominantly fine-grained red clastics laid down in semi-arid alluvial plain to arid sabkha and saline marginal marine or lacustrine environments. The Cumbrian Coastal Group consists of Basal Clastics and Eden Shales. The Basal Clastics are thin regolith deposits resting unconformably on all-underlying units and are composed of mixtures of angular local gravel and far-transported fine to very fine-grained sands deposited as basal lag. The Eden Shales are predominantly gypsiferous red silty mudstones, with thin very fine-grained sandstone beds, and with thick marine gypsum beds at the base, deposited at a saline lake margin. The overlying Triassic Sherwood Sandstone Group consists of the Annan and Kirklinton Sandstones. The Annan Sandstones are predominantly thick-bedded, multi-storied, fine-grained mature red quartz sandstones in which coarse sand is practically absent despite channels with clay pebbles up to 30 cm in diameter. The overlying, predominantly aeolian, Kirklinton Sandstones consist of festoon cross-bedded and parallel-laminated fine-grained sandstones, almost identical to the Annan Sandstones except that mica and clay are absent. The Stanwix Shales, located above, consist of interbedded red, blue and green mudstones, siltstones, and thin very fine-grained sandstones, with gypsum layers. Although the entire succession can plausibly be interpreted as deposited in a large desert basin opening into a hypersaline marine or lacustrine embayment to the southwest, the uniformly fine-grained nature of the succession is unusual, as is the absence of paleosols, and body and trace fossils. There is almost no coarse sand even in the river channel units, and it seems likely that the basin was not only extremely arid but supplied predominantly by wind rather than water.  相似文献   

3.
全新世长江三角洲地区的海进海退层序   总被引:11,自引:0,他引:11       下载免费PDF全文
现代三角洲地区海进海退是经常发生的,引起的原因是多方面的。本文根据500多个钻孔资料的分析对比,着重讨论全新世长江三角洲海进海退层序的特点,发育过程和控制因素。  相似文献   

4.
The Lower Cretaceous geological record of the intracratonic Paraná Basin in southern Brazil comprises a thick succession of aeolian sandstones and volcanic rocks. The intercalation between aeolian sandstone and volcanic floods allowed the preservation of distinct aeolian genetic units. Each genetic unit represents an accumulation episode, bounded by supersurfaces, that coincides with the base of lava flood events. The entire package can be subdivided into a Lower Genetic Unit, which corresponds to aeolian sandstones preserved below the initial lava flows (Botucatu Formation), and an upper set of genetic units, which comprises interlayered aeolian deposits and lava floods (Serra Geral Formation). The Lower Genetic Unit is up to 100 m thick. Its base is composed of ephemeral stream and aeolian sand sheet deposits that are overlain by cross‐bedded sandstones whose origin is ascribed to simple, locally composite, crescentic and complex linear aeolian dunes. Aeolian accumulation of the lower unit was possible as a result of the existence of a wide topographic basin, which caused wind deceleration, and a large sand availability that promoted a positive net sediment flux. The Upper Genetic Units comprise isolated sand bodies that occur in two different styles: (1) thin lenses (<3 m thick) formed by aeolian sand sheets; and (2) thick sand lenses (3–15 m) comprising cross‐bedded cosets generated by migration and climbing of simple to locally composite crescentic aeolian dunes. Accumulation of the aeolian strata was associated with wind deceleration within depressions on the irregular upper surface of the lava floods. The interruption of sedimentation in the Lower and Upper Genetic Units, and related development of supersurfaces, occurred as a result of widespread effusions of basaltic lava. Preservation of both wind‐rippled topset deposits of the aeolian dunes and pahoehoe lava imprints indicates that lava floods covered active aeolian dunes and, hence, protected the aeolian deposits from erosion, thus preserving the genetic units.  相似文献   

5.
Aeolian processes and ephemeral water influx from the Variscan Iberian Massif to the mid‐Cretaceous outer back‐erg margin system in eastern Iberia led to deposition and erosion of aeolian dunes and the formation of desert pavements. Remains of aeolian dunes encased in ephemeral fluvial deposits (aeolian pods) demonstrate intense erosion of windblown deposits by sudden water fluxes. The alternating activity of wind and water led to a variety of facies associations such as deflation lags, desert pavements, aeolian dunes, pebbles scattered throughout dune strata, aeolian sandsheets, aeolian deposits with bimodal grain‐size distributions, mud playa, ephemeral floodplain, pebble‐sand and cobble‐sand bedload stream, pebble–cobble‐sand sheet flood, sand bedload stream, debris flow and hyperconcentrated flow deposits. Sediment in this desert system underwent transport by wind and water and reworking in a variety of sub‐environments. The nearby Variscan Iberian Massif supplied quartzite pebbles as part of mass flows. Pebbles and cobbles were concentrated in deflation lags, eroded and polished by wind‐driven sands (facets and ventifacts) and incorporated by rolling into the toesets of aeolian dunes. The back‐erg depositional system comprises an outer back‐erg close to the Variscan highlands, and an inner back‐erg close to the central‐erg area. The inner back‐erg developed on a structural high and is characterized by mud playa deposits interbedded with aeolian and ephemeral channel deposits. In the inner back‐erg area ephemeral wadis, desiccated after occasional floods, were mud cracked and overrun episodically by aeolian dunes. Subsequent floods eroded the aeolian dunes and mud‐cracked surfaces, resulting in largely structureless sandstones with boulder‐size mudstone intraclasts. Floods spread over the margins of ephemeral channels and eroded surrounding aeolian dunes. The remaining dunes were colonized occasionally by plants and their roots penetrated into the flooded aeolian sands. Upon desiccation, deflation resulted in lags of coarser‐grained sediments. A renewed windblown supply led to aeolian sandsheet accumulation in topographic wadi depressions. Synsedimentary tectonics caused the outer back‐erg system to experience enhanced generation of accommodation space allowing the accumulation of aeolian dune sands. Ephemeral water flow to the outer back‐erg area supplied pebbles, eroded aeolian dunes, and produced hyperconcentrated flow deposits. Fluidization and liquefaction generated gravel pockets and recumbent folds. Dune damming after sporadic rains (the case of the Namib Desert), monsoonal water discharge (Thar Desert) and meltwater fluxes from glaciated mountains (Taklamakan Desert) are three potential, non‐exclusive analogues for the ephemeral water influx and the generation of hyperconcentrated flows in the Cretaceous desert margin system. An increase in relief driven by the Aptian anti‐clockwise rotation of Iberia, led to an altitude sufficient for the development of orographic rains and snowfall which fed (melt)water fluxes to the desert margin system. Quartzite conglomerates and sands, dominantly consisting of quartz and well‐preserved feldspar grains which are also observed in older Cretaceous strata, indicate an arid climate and the mechanical weathering of Precambrian and Palaeozoic metamorphic sediments and felsic igneous rocks. Unroofing of much of the cover of sedimentary rocks in the Variscan Iberian Massif must therefore have taken place in pre‐Cretaceous times.  相似文献   

6.
ANNA BREDA  NEREO PRETO 《Sedimentology》2011,58(6):1613-1647
The Travenanzes Formation is a terrestrial to shallow‐marine, siliciclastic–carbonate succession (200 m thick) that was deposited in the eastern Southern Alps during the Late Triassic. Sedimentary environments and depositional architecture have been reconstructed in the Dolomites, along a 60 km south–north transect. Facies alternations in the field suggest interfingering between alluvial‐plain, flood‐basin and shallow‐lagoon deposits, with a transition from terrestrial to marine facies belts from south to north. The terrestrial portion of the Travenanzes Formation consists of a dryland river system, characterized by multicoloured floodplain mudstones with scattered conglomeratic fluvial channels, merging downslope into small ephemeral streams and sheet‐flood sandstones, and losing their entire discharge subaerially before the shoreline. Calcic and vertic palaeosols indicate an arid/semi‐arid climate with strong seasonality and intermittent discharge. The terrestrial/marine transition shows a coastal mudflat, the flood basin, which is usually exposed, but at times is inundated by both major river floods and sea‐water storm surges. Locally coastal sabkha deposits occur. The marine portion of the Travenanzes Formation comprises carbonate tidal‐flat and shallow‐lagoon deposits, characterized by metre‐scale shallowing‐upward peritidal cycles and subordinate intercalations of dark clays from the continent. The depositional architecture of the Travenanzes Formation suggests an overall transgressive pattern organized in three carbonate–siliciclastic cycles, corresponding to transgressive–regressive sequences with internal higher‐frequency sedimentary cycles. The metre‐scale sedimentary cyclicity of the Travenanzes Formation continues without a break in sedimentation into the overlying Dolomia Principale. The onset of the Dolomia Principale epicontinental platform is marked by the exhaustion of continental sediment supply.  相似文献   

7.
Due to difficulties in correlating aeolian deposits with coeval marine facies, sequence stratigraphic interpretations for arid coastal successions are debated and lack a unifying model. The Pennsylvanian record of northern Wyoming, USA, consisting of mixed siliciclastic–carbonate sequences deposited in arid, subtropical conditions, provides an ideal opportunity to study linkages between such environments. Detailed facies models and sequence stratigraphic frameworks were developed for the Ranchester Limestone Member (Amsden Formation) and Tensleep Formation by integrating data from 16 measured sections across the eastern side of the Bighorn Basin with new conodont biostratigraphic data. The basal Ranchester Limestone Member consists of dolomite interbedded with thin shale layers, interpreted to represent alternating deposition in shallow marine (fossiliferous dolomite) and supratidal (cherty dolomite) settings, interspersed with periods of exposure (pedogenically modified dolomites and shales). The upper Ranchester Limestone Member consists of purple shales, siltstones, dolomicrites and bimodally cross‐bedded sandstones in the northern part of the basin, interpreted as deposits of mixed siliciclastic–carbonate tidal flats. The Tensleep Formation is characterized by thick (3 to 15 m) aeolian sandstones interbedded with peritidal heteroliths and marine dolomites, indicating cycles of erg accumulation, preservation and flooding. Marine carbonates are unconformably overlain by peritidal deposits and/or aeolian sandstones interpreted as lowstand systems tract deposits. Marine transgression was often accompanied by the generation of sharp supersurfaces. Lags and peritidal heteroliths were deposited during early stages of transgression. Late transgressive systems tract fossiliferous carbonates overlie supersurfaces. Highstand systems tract deposits are lacking, either due to non‐deposition or post‐depositional erosion. The magnitude of inferred relative sea‐level fluctuations (>19 m), estimated by comparison with analogous modern settings, is similar to estimates from coeval palaeotropical records. This study demonstrates that sequence stratigraphic terminology can be extended to coastal ergs interacting with marine environments, and offers insights into the dynamics of subtropical environments.  相似文献   

8.
A siliciclastic-dominated succession (~11 m thick) underlying Harrat Rahat, belonging to the Miocene–Pliocene Bathan Formation is recently exposed at Al-Rehaili area, North Jeddah, Saudi Arabia. It covers a wide spectrum of grain sizes varying from clay-rich mudstones to cobble grade conglomerate and consists of a variety of facies vary from fluvial to marginal and open lacustrine deposited in a half-graben basin formed along the eastern margin of the extensional Red Sea Basin. Field-based sedimentologic investigation enables to identify ten facies grouped into three facies associations (A–C). The depositional history is subdivided into two stages. The first stage represents deposition in gravel to sand-dominated fluvial system sourced from a southern source and grade northward into lacustrine delta and open lacustrine setting. The second stage on the other hand includes deposition of fluvial channels running in E–W direction with attached bank sand bar. Sequence stratigraphic interpretations of the lacustrine deposits enable to identify three unconformity-bounded sequences (SQ1–3). The basal sequence is incomplete, consisting of three aggradationally to progradationally stacked delta plain and delta front parasequences. The second sequence is sharply and erosively overlying a red paleosol bed that defines the upper boundary of the first sequence. It includes two system tracts; upward-fining and deepening lacustrine offshore mudstones of the transgressive system tracts unconformably overlain by red paleosol of the regressive systems tracts. The top of this sequence is delineated at the sharp transgressive surface of erosion at the base of delta mouth bar deposits of sequence 3. Changes in the accommodation and sedimentation rates by basin subsidence under the influence of tectonics and sediment compaction and loading as well as climatic oscillation between semi-arid to arid conditions were the major controls on the fluvio-lacustrine sedimentation and their facies distribution. Tectonic reorganization of the drainage system resulted in the formation of E–W flowing fluvial streams in the second stage.  相似文献   

9.
The Lower Triassic succession of Barles, Alpes de Haute Provence, France, comprises an unconformable quartz arenite sand body of 90m thickness. The succession may be informally divided into (i) lower channellized cross-bedded member overlain by (ii) an upper fining upward member. The lower member comprises vertically stacked, subtidal channel units separated into five major sand bodies by thin developments of fine grained channel margin and shoal deposits. Subtidal channel fill deposits are dominated by varying scales of cross bedding. These scales vary systematically from the base to the top of the member, with large scale planar sets dominating the lowest channel sand body (sand body 1), medium scale planar and trough cross bedding characterizing sand bodies 2-4, the largest scale planar sets in the highest sand body (sand body 5). This upward change in cross bedding scale is concomitant with a decrease in both the relief of major channel sand body erosion surfaces, and the proportion of preserved interchannel shoal deposits. The succeeding fining upward member comprises small scale tidal channel units overlain by channel shoal and tidal flat deposits. Tidal flat sequences are characterized by parallel laminated, wave and current rippled sandstones separated by bioturbated, fine grained siltstones and mudstones. The vertical variation in facies of the Lower Triassic succession suggests two main periods of deposition. The lower member is considered to preserve successively more seaward components of a transgressive estuarine complex. The overlying upper member records the seaward progradation of tidal channel, shoal and tidal flat environments. The unconformity bounded nature of the lower member, combined with its systematic variation in facies, suggests it may represent an incised valley-estuarine fill developed in response to an early Triassic relative sea level fall and subsequent rise. Succeeding tidal channel and tidal flat deposits forming the upper fining upward member reflect a change in sediment supply and/or rate of relative sea level rise comparable with a progradational shoreline. It is unclear whether this final depositional episode represents a period of highstand progradation or a later lowstand shoreline system developed following a further period of relative sea level fall and rise.  相似文献   

10.
The Haymana basin in central Anatolia (Turkey) formed on a Late Cretaceous to Middle Eocene fore-arc accretionary wedge. A sequential model is proposed for the 1-km-thick Lutetian Yamak turbidite complex (YTC) which is the youngest paleotectonic unit of the basin. The YTC represents a prograding submarine fan subdivided into three depositional sequences (DS), each several hundred meters thick. Each depositional sequence consists of a turbidite system (TS), with sandstone and conglomeratic sandstone beds alternating with mudstones, overlain by basin plain mudstones. In each turbidite system, the sandstone and mudstone sequential organization allows the distinction of smaller subdivisions, namely, basic sequences (BS) and basic units (BU), with each basic sequence being composed of several basic units. This subdivision, associated with a two-dimensional geometric reconstruction of the YTC, leads to a better understanding of the evolution in time and space of the submarine fan system. Lower to middle fan depositional lobes, and upper fan and slope channels, are represented. As a whole, the YTC progressed from a sand-poor to a sand-rich system. Depositional sequences (DS) of the YTC may correspond to third-order sea-level cycles of tectonic origin. Accordingly, fourth- and fifth-order cycles might be proposed for the BS and BU, respectively. However, partly because of the limited extent of exposures, the allocyclic origin of these finer subdivisions remains problematic.  相似文献   

11.
通过露头沉积学与岩石学分析,在湘西北龙山、永顺地区下志留统龙马溪组中首次发现完整的潮控型三角洲沉积,也是华南地区龙马溪组中存在三角洲相的首次报道。识别出前三角洲、三角洲前缘和三角洲平原3个亚相及10个微相。前三角洲亚相以滨外泥页岩为主,并发育低密度浊积岩,主要见于龙马溪组底部和下部;三角洲前缘亚相包括席状砂、分流间湾、河口砂坝和远砂坝等;三角洲平原亚相包括分流河道、分流间湾、天然堤和决口扇等,主要见于龙马溪组中部、上部。通过分析剖面垂向序列及其指示的沉积环境变化,提出本区龙马溪组三角洲相碎屑岩是构造挤压背景下“雪峰隆起”开始形成的重要沉积响应。该三角洲沉积的发现,对于理解扬子东南缘早志留世构造-古地理转型的时限与过程具有特殊意义。  相似文献   

12.
Sedimentological studies of a 30 m thick coastal cliff section within the Middle Proterozoic Eriksfjord Formation in western South Greenland reveals three distinct types of fluvial sand sheet deposits that reflect perennial streams (Type I), semi-perennial streams (Type II), and ephemeral flash floods (Type III). Perennial river sand sheets are characterised by co-sets of medium-scale trough cross-beds, interbedded with isolated medium- and large-scale, high-angle, tabular cross-beds. Indications of desiccation or subaerial exposure are absent. Semi-perennial fluvial sand sheets consist predominantly of low-angle cross-beds, interbedded with isolated sets of high-angle tabular cross-beds with common reactivation surfaces. Horizontal lamination and climbing ripple lamination form subordinate structures. Associated with the sand sheets are adhesion structures and 0.05–0.4 m thick sets of wind ripple-lamination indicating periods of subaerial exposure and aeolian reworking. High-energy ephemeral flash flood sand sheets consist almost exclusively of planar-parallel lamination and climbing ripple lamination with some isolated sets of low-angle cross-bedding. Scouring and internal truncation surfaces are common. The three types of sand sheets are considered to reflect deposition under changing climatic conditions, varying from humid to arid or semi-arid. Aeolian deposits are preserved within the sand sheets showing characteristics of dominantly perennial flow punctuated by shorter periods of desiccation (Type II), while sand sheets showing features typical of arid and or semi-arid flow conditions (Type III) contain no preserved aeolian deposits. This selective preservation is interpreted to be a result of the combined effect of groundwater table level and fluvial style which in turn are inferred to have been controlled by the climatic regime. The deposits show that during pre-vegetational times the preservation of aeolian deposits, under certain conditions, may be more optimal in fluvial systems formed in a humid climate than in fluvial systems formed under semi-arid or arid circumstances. The occurrence of aeolian deposits within a Precambrian succession of fluvial deposits therefore, need not be an indication of the most arid environmental conditions.  相似文献   

13.
The Bauru Basin was one of the great Cretaceous desert basins of the world, evolved in arid zone called Southern Hot Arid Belt. Its paleobiological record consists mainly of dinosaurs, crocodiles and turtles. The Bauru Basin is an extensive region of the South American continent that includes parts of the southeast and south of Brazil, covering an area of 370,000 km2. It is an interior continental basin that developed as a result of subsidence of the central-southern part of the South-American Platform during the Late Cretaceous (Coniacian–Maastrichtian). This sag basin is filled by a sandy siliciclastic sequence with a preserved maximum thickness of 480 m, deposited in semiarid to desert conditions. Its basement consists of volcanic rocks (mainly basalts) of the Lower Cretaceous (Hauterivian) Serra Geral basalt flows, of the Paraná-Etendeka Continental Flood Basalt Province. The sag basin was filled by an essentially siliciclastic psammitic sequence. In lithostratigraphic terms the sequence consists of the Caiuá and Bauru groups. The northern and northeastern edges of the basin provide a record of more proximal original deposits, such as associations of conglomeratic sand facies from alluvial fans, lakes, and intertwined distributary river systems. The progressive basin filling led to the burial of the basaltic substrate by extensive blanket sand sheets, associated with deposits of small dunes and small shallow lakes that retained mud (such as loess). Also in this intermediate context between the edges (more humid) and the interior (dry), wide sand sheet areas crossed by unconfined desert rivers (wadis) occurred. In the central axis of the elliptical basin a regional drainage system formed, flowing from northeast to southwest between the edges of the basin and the hot and dry inner periphery of the Caiuá desert (southwest). Life in the Bauru Basin flourished most in the areas with the greatest water availability, in which dinosaurs, crocodiles, turtles, fish, amphibians, molluscs, crustaceans, and charophyte algae lived. The fossil record mainly consists of transported bones and other skeletal fragments. In the northeastern and eastern marginal regions fossils are found in marginal alluvial fan deposits, broad plains of braided streams and ephemeral alkaline water lakes. In the basin interior the fossil record is related to deposits in sand sheets with braided streams, small dunes, and shallow lakes. In the great Caiuá inner desert a few smaller animals could survive (small reptiles and early mammals), sometimes leaving their footprints in dune foreset deposits. The aim of this article is to present and link the basin sedimentary evolution, palaeoecological features and palaeontological record.  相似文献   

14.
J. R. INESON 《Sedimentology》1989,36(5):793-819
The Cretaceous of west James Ross Island, Antarctica represents the proximal fill of a late Mesozoic back-arc basin that was probably initiated by oblique extension during the early development of the Weddell Sea. The succession records sedimentation in two contrasting depositional systems: a laterally persistent slope apron flanking the faulted basin margin interrupted both spatially and temporally by coarse-grained submarine fans. Slope apron deposits are dominated by thinly interbedded turbiditic sandstones and mudstones (mudstone association), interspersed with non-channelized chaotic boulder beds, intraformational slump sheets and isolated exotic blocks representing a spectrum of mass-flow processes from debris flow to submarine gliding. Localized sand-rich sequences (sandstone-breccia association) represent sandy debris lobes at the mouths of active slope chutes. The submarine fan sediments (conglomerate association) are typified by coarse conglomerates and pebbly sandstones, interpreted as the deposits of high-density turbidity currents and non-cohesive debris flows. Three assemblages are recognized and are suggested to represent components of the inner channelled zone of coarse-grained submarine fans, from major fan channels through ephemeral, marginal channels or terraces to levee or interchannel environments. The occurrence of both slope apron and submarine fan depositional systems during the Early and Mid-Cretaceous is attributed to localized input of coarse arc-derived sediment along a tectonically active basin margin. Periods of extensive fan development were probably linked to regional tectonic uplift and rejuvenation of the arc source region; cyclicity within individual fan sequences is attributed to migration or switching of fan channels or canyons. Slope apron sedimentation was controlled largely by intrabasinal tectonics. Local unconformities and packets of amalgamated slide sheets and debris flow deposits probably reflect episodic movement on basin margin faults. Differential subsidence across the basin margin anchored the basin slope for at least 20 Myr and precluded basinward progradation of shallow marine environments.  相似文献   

15.
ABSTRACT The Cagayan basin of Northern Luzon, an interarc basin 250 km long and 80 km wide, contains a 900 m thick sequence of Plio-Pleistocene fluvial and pyroclastic deposits. These deposits are divided into two formations, the Ilagan and Awidon Mesa, and three lithofacies associations. The facies, which are interpreted as meandering stream, braided stream, lahar, and pyroclastic flow and fall deposits, occur in a coarsening upward sequence. Meandering stream deposits interbedded with tuffs are overlain by braided stream deposits interbedded with coarser pyroclastic deposits; lahars and ignimbrites. The coarsening upward volcaniclastic deposits reflect the tectonic and volcanic evolution of the adjacent Cordillera Central volcanic arc. Uplift of the arc resulted in the progradation of coarser clastics further into the basin, the development of an alluvial fan, and migration of the basin depocentre away from the arc. The coarsening of the pyroclastic deposits reflects the development of a more proximal calc-alkaline volcanic belt in the maturing volcanic arc. The Cagayan basin sediments serve as an example of the type and sequence of non marine volcaniclastic sediments that may form in other interarc basins. This is because the tectonic and volcanic processes which controlled sedimentation in the Cagayan basin also affect other arc systems and will therefore control or significantly influence volcaniclastic sedimentation in other interarc basins.  相似文献   

16.
Marginal aeolian successions contain different lithological units with variable geometries, dimensions and spatial distributions. Such variations may result in considerable heterogeneity within hydrocarbon reservoirs developed in successions of this type, which poses a high risk to their efficient development. Here, such heterogeneity is described and characterized at inter‐well (<1 km) scales using two well‐exposed outcrop analogues of ‘end member’ marginal aeolian deposits from the Permian Cedar Mesa Sandstone and Jurassic Page Sandstone of south‐central Utah, USA. The sedimentology and stratigraphic architecture of the Cedar Mesa Sandstone was studied in a 1·2 km2 area in the Indian Creek region of southern Utah, where the interval consists of interbedded fluvial and aeolian deposits representative of a fluvial‐dominated erg margin. The Page Sandstone was studied in a 4·3 km2 area near Escalante, close to the Utah‐Arizona border, where it consists of interbedded sabkha and aeolian deposits representative of a transitional‐marine erg margin. The three‐dimensional stratigraphic architectures of both reservoir analogues have been characterized, in order to establish the dimensions, geometries and connectivity of high‐permeability aeolian sandstones. Facies architecture of the aeolian‐sabkha deposits is characterized by laterally continuous aeolian sandstone layers of relatively uniform thickness that alternate with layers of heterolithic sabkha deposits. Aeolian sandstones are thus likely to form vertically unconnected but laterally widespread flow units in analogous reservoirs. Facies architecture in the aeolian‐fluvial deposits is more complex, because it contains alternating intervals of aeolian sandstone and fluvial heterolithic strata, both of which may be laterally discontinuous at the studied length‐scales. Aeolian sandstones encased by fluvial heterolithic strata may form small, isolated flow units in analogous reservoirs, although the limited continuity of fluvial heterolithic strata results in vertical connectivity between successive aeolian sandstones in other locations. These architectural templates may be used to condition zonation schemes in models of marginal aeolian reservoirs.  相似文献   

17.
The Lower Cretaceous strata in the Kuqa Basin in Xinjiang are marked by a set of arid red beds. Several types of sedimentary fades can be identified in this set of arid red beds: mudstones of the plaza and intracontinental sebkha, aeolian sandstones, sandy conglomerates of the intermittent river, conglomerates of the pluvial fan, etc. These types of sedimentary facies constitute a typical desert system. Therefore, the Cretaceous strata in the Kuqa Basin provide a favorable condition for studies of sequence stratigraphic divisions of the desert system. With the rise and fall of the base level of the sedimentary basin, cyclicity is clearly revealed in stratigraphic records, which helps the identification of the third-order sequences. Based on the cyclicity in stratigraphic records, 5 third-order sequences can be found in the strata of the Early Cretaceous in the Kuqa Basin. These sequences comprise a second-order tectonic  相似文献   

18.
一、引言 1987和1988年仲夏,我们中国和联邦德国的地质同行联合对西藏雅鲁藏布江缝合带进行了地质考察,对日喀则地区所出露的第三系磨拉石进行了比较详细的沉积学工作,现将初步研究成果作一个简略介绍。西藏日喀则地区第三系磨拉石主要出露于雅鲁藏布江一带,是一套砾岩、砂岩、泥岩和少量泥灰岩的沉积组合,作为碰撞造山带山前或山间盆地的沉积产物,已被许多学者所认识。本文主要讨论始新—渐新世大竹卡组(钱定宇等,1985)磨拉石沉积,尤其是砾岩的沉积机制,并认为湖相砾质扇三角洲沉积是该磨拉石盆地的最主要沉积类型之一,扇三角洲沉积相带发育齐全,在德日剖面和南卡堆剖面(图1)部有完好的扇三角洲层序,是一种独特的、以突发性片状颗粒流和片状牵引流沉积为代表的扇三角洲类型。在青藏高原羌塘地区(余光明等,1986)和柴达木盆地(邓宏文等,1987)都报道过类似的第三纪沉积。研究此类发育于特定大地构造背景的扇三角洲的沉积特征和形成机制具有重要的理论意义。  相似文献   

19.
The late Barremian succession in the Agadir Basin of the Moroccan Western High Atlas represents wave-dominated deltaic deposits. The succession is represented by stacked thickening and coarsening upwards parasequences 5–15 m thick formed during fifth- or fourth-order regression and building a third-order highstand systems tract. Vertical facies transitions in parasequences reflect flooding followed by shoaling of diverse shelf environments ranging from offshore transition interbedded mudstones, siltstones and thin sandstones, lower shoreface/lower delta front hummocky bedforms to upper shoreface/upper delta front cross-bedded sandstones. The regional configuration reflects the progradation of wave-dominated deltas over an offshore setting. The maximum sea-level fall led to the development of a sequence boundary that is an unconformity. The subsequent early Aptian relative sea-level rise contributes to the development of an extensive conglomerate lagged transgressive surface of erosion. The latter and the sequence boundary are amalgamated forming a composite surface.  相似文献   

20.
The existence of a mid‐Cretaceous erg system along the western Tethyan margin (Iberian Basin, Spain) was recently demonstrated based on the occurrence of wind‐blown desert sands in coeval shallow marine deposits. Here, the first direct evidence of this mid‐Cretaceous erg in Europe is presented and the palaeoclimate and palaeoceanographic implications are discussed. The aeolian sand sea extended over an area of 4600 km2. Compound crescentic dunes, linear draa and complex aeolian dunes, sand sheets, wet, dry and evaporitic interdunes, sabkha deposits and coeval extradune lagoonal deposits form the main architectural elements of this desert system that was located in a sub‐tropical arid belt along the western Tethyan margin. Sub‐critically climbing translatent strata, grain flow and grain fall deposits, pin‐stripe lamination, lee side dune wind ripples, soft‐sediment deformations, vertebrate tracks, biogenic traces, tubes and wood fragments are some of the small‐scale structures and components observed in the aeolian dune sandstones. At the boundary between the aeolian sand sea and the marine realm, intertonguing of aeolian deposits and marine facies occurs. Massive sandstone units were laid down by mass flow events that reworked aeolian dune sands during flooding events. The cyclic occurrence of soft sediment deformation is ascribed to intermittent (marine) flooding of aeolian dunes and associated rise in the water table. The aeolian erg system developed in an active extensional tectonic setting that favoured its preservation. Because of the close proximity of the marine realm, the water table was high and contributed to the preservation of the aeolian facies. A sand‐drift surface marks the onset of aeolian dune construction and accumulation, whereby aeolian deposits cover an earlier succession of coastal coal deposits formed in a more humid period. A prominent aeolian super‐surface forms an angular unconformity that divides the aeolian succession into two erg sequences. This super‐surface formed in response to a major tectonic reactivation in the basin, and also marks the change in style of aeolian sedimentation from compound climbing crescentic dunes to aeolian draas. The location of the mid‐Cretaceous palaeoerg fits well to both the global distribution of other known Cretaceous erg systems and with current palaeoclimate data that suggest a global cooling period and a sea‐level lowstand during early mid‐Cretaceous times. The occurrence of a sub‐tropical coastal erg in the mid‐Cretaceous of Spain correlates with the exposure of carbonate platforms on the Arabian platform during much of the Late Aptian to Middle Albian, and is related to this eustatic sea‐level lowstand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号