首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A large number of Variscan mesothermal gold deposits are located in the central part of the Bohemian Massif, close to the Central Bohemian Plutonic Complex. The Petrá)kova hora deposit has many features that distinguish it from other deposits in the region and suggest its mineralization is closely related to the late magmatic processes associated with the Petrá)kova hora granodiorite. The gold ores occur as sheeted arrays of quartz veins and veinlets hosted by the small Petrá)kova hora granodiorite stock. Gold is found mainly as free grains of >900 fineness, and is accompanied by abundant pyrrhotite and chalcopyrite, and accessory pyrite, arsenopyrite, loellingite, and molybdenite. Molybdenite from the Petrá)kova hora deposit has been dated by the Re-Os method at 344.4DŽ.8 Ma. Hydrothermal alteration in the Petrá)kova hora deposit exhibits a distinct temporal paragenesis. Selectively pervasive, early K-alteration and silicification are the oldest hydrothermal phases. These were followed by early quartz veins (Q1 to Q4) that contain most of the gold mineralization. Late quartz veins (Q5) and fracture-controlled silicification are gold-poor or barren. Barren calcite veins are the youngest hydrothermal product. Extensive low-temperature, meteoric-water dominated alteration, as is typical of classic porphyry deposits, is absent. However, the lower '18O whole rock values for Petrá)kova hora granodiorite and aplite (+2.4 to +5.1‰ SMOW) compared to other intrusions in the region reflect either interaction with isotopically light external fluids or magma assimilation of small volumes of hydrothermally altered country rock. The '18O isotopic compositions for quartz, scheelite and hornblende (7.7 to 13.4‰ SMOW) and the '34S compositions for sulfide minerals (-1 to +3.5‰ CDT) from early, gold-rich quartz veins indicate formation at high temperatures (590 to 400 °C) from fluids with a magmatic isotopic signature ('18OFLUID of 5.7 to 7.2‰). Fluids related to late quartz veins (Q5) suggest the presence of a significant component of non-magmatic water ('18OFLUID: +2.5 to +4.0‰). The '34S values of post-Q5 sulfide minerals (-4.5 to -3.5‰) reflect at least partial derivation of late-stage sulfur from a source external to the intrusions. Aqueous, aqueous-carbonic and nitrogen-bearing fluid inclusions were identified in hydrothermal and igneous quartz, with the aqueous inclusions being the most common. In hydrothermal vein quartz, the salinity of primary aqueous inclusions falls into ranges 6 to 23 and 33 to 41 equiv. wt% NaCl; in igneous quartz, populations in salinity were observed between 5 to 16, 35 to 40 and 62 to 70 equiv. wt% NaCl. The salt component of these fluids is best, and minimally, approximated by the NaCl-KCl-CaCl2 system. Low- and high-salinity aqueous-carbonic inclusions are accessory in many of the analyzed samples. Three large successive pulses of fluids are recognized. Each pulse begins with a high-salinity (>30 equiv. wt% NaCl) magmatic fluid and evolves toward a lower salinity (~5 equiv. wt% NaCl) fluid. Data suggest that external (meteoric?) water(s) were significant for only the third fluid pulse, which formed the late Q5 quartz veins and the calcite veins. Polyphase fluid inclusions hosted by igneous quartz of the Petrá)kova hora granodiorite indicate minimum trapping conditions of about 3 kbar and 550 °C. The gold-rich Q1 to Q4 veins may have formed along a quasi-isobaric cooling path at 2.5 to 1.5 kbar and 590 to 400 °C. This was followed by uplift, and formation of late Q5 quartz veins (0.5 to 1.5 kbar; ~300 °C) and post-ore calcite veins (<0.5 kbar; 100 to 140 °C). The characteristics of the Petrá)kova hora deposit suggest that it may represent a position intermediate between intrusion-related gold systems (e.g., Fort Knox deposit, Alaska) and gold-rich, copper-poor porphyry deposits (e.g., Maricunga Belt in Chile). As such, the Petrá)kova hora deposit might be an example of the reduced gold sub-type of porphyry deposit.  相似文献   

2.
Porphyry Cu-Mo-Au mineralisation with associated potassic and phyllic alteration, an advanced argillic alteration cap and epithermal quartz-sulphide-gold-anhydrite veins, are telescoped within a vertical interval of 400-800 m on the northeastern margin of the Thames district, New Zealand. The geological setting is Jurassic greywacke basement overlain by Late Miocene andesitic-dacitic rocks that are extensively altered to propylitic and argillic assemblages. The porphyry Cu-Mo-Au mineralisation is hosted in a dacite porphyry stock and surrounding intrusion breccia. Relicts of a core zone of potassic K-feldspar-magnetite-biotite alteration are overprinted by phyllic quartz-sericite-pyrite or intermediate argillic chlorite-sericite alteration assemblages. Some copper occurs in quartz-magnetite-chlorite-pyrite-chalcopyrite veinlets in the core zone, but the bulk of the copper and the molybdenum are associated with the phyllic alteration as disseminated chalcopyrite and as molybdenite-sericite-carbonate veinlets. The advanced argillic cap has a quartz-alunite-dickite core, which is enveloped by an extensive pyrophyllite-diaspore-dickite-kaolinite assemblage that overlaps with the upper part of the phyllic alteration zone. Later quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins occur within and around the margins of the porphyry intrusion, and are associated with widespread illite-carbonate (argillic) alteration. Multiphase fluid inclusions in quartz stockwork veins associated with the potassic alteration trapped a highly saline (50-84 wt% NaCl equiv.) magmatic fluid at high temperatures (450 to >600 °C). These hypersaline brines were probably trapped at a pressure of about 300 bar, corresponding to a depth of 1.2 km under lithostatic conditions. This shallow depth is consistent with textures of the host dacite porphyry and reconstruction of the volcanic stratigraphy. Liquid-rich fluid inclusions in the quartz stockwork veins and quartz phenocrysts trapped a lower salinity (3-20 wt% NaCl equiv.), moderate temperature (300-400 °C) fluid that may have caused the phyllic alteration. Fluid inclusions in the quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins trapped dilute (1-3 wt% NaCl equiv.) fluids at 250 to 320 °C, at a minimum depth of 1.0 km under hydrostatic conditions. Oxygen isotopic compositions of the fluids that deposited the quartz stockwork veins fall within the 6 to 10‰ range of magmatic waters, whereas the quartz-sulphide-gold-anhydrite veins have lower '18Owater values (-0.6 to 0.5‰), reflecting a local meteoric water (-6‰) influence. A '18O versus 'D plot shows a trend from magmatic water in the quartz stockwork veins to a near meteoric water composition in kaolinite from the advanced argillic alteration. Data points for pyrophyllite and the quartz-sulphide-gold-anhydrite veins lie about midway between the magmatic and meteoric water end-member compositions. The spatial association between porphyry Cu-Mo-Au mineralisation, advanced argillic alteration and quartz-sulphide-gold-anhydrite veins suggests that they are all genetically part of the same hydrothermal system. This is consistent with K-Ar dates of 11.6-10.7 Ma for the intrusive porphyry, for alunite in the advanced argillic alteration, and for sericite selvages from quartz-gold veins in the Thames district.  相似文献   

3.
The Dublin Gulch intrusion is a member of the Tombstone plutonic suite, a linear belt of middle Cretaceous intrusions that extend across the Yukon Territory. Like many of the intrusions in this suite, the Dublin Gulch intrusion is associated with several different zones of gold and tungsten mineralization, within and immediately adjacent to the intrusion. The Eagle zone (50.3 Mt @ 0.93 g/t gold), located in the southwestern part of the Dublin Gulch intrusion, hosts the most significant concentration of gold in the area. The gold occurs in a broadly east-west-striking, steeply south-dipping series of sheeted veins. The veins consist of early quartz-scheelite-pyrrhotite-pyrite-arsenopyrite, and are associated with K-feldspar-albite alteration envelopes. These grade out to and are overprinted by sericite-carbonate-chlorite alteration. The same assemblage also occurs in veinlets that refracture sheeted quartz veins and contain the majority of the gold. The gold occurs with molybdenite, lead-bismuth-antimony sulfosalts, galena, and bismuthinite. Gold correlates strongly with bismuth (r2=0.9), a relationship common to several intrusion-related gold deposits, but has a poor correlation with all other elements. Tungsten and molybdenum have a weak inter-element correlation (r2=0.55) and paragenetically pre-date the majority of gold precipitation. Lead, zinc, copper, silver, antimony, and arsenic have moderate to strong inter-element correlations (0.58 to 0.93). The change from tungsten-bearing mineralization through to gold-bismuth-rich ores with elevated syn- to post-ore lead, zinc, copper, silver, antimony, and arsenic can be grossly correlated with a change in hydrothermal fluid composition. Early scheelite-bearing quartz contains primary CO2-rich fluid inclusions, which are post-dated by secondary inclusions with higher salinities (up to 15 wt% NaCl equiv.) and less CO2. These latter inclusions are interpreted to coincide with the later gold-bismuth and base metal mineralization. The favored genetic model is one in which early CO2-rich fluids exsolved from a magma with an initially high CO2 content, but progressively became more saline and H2O-rich as the system evolved.  相似文献   

4.
The Dafulou and Huile vein and stratabound cassiterite-sulfide deposits and sheeted ore veins at the Kangma cassiterite-sulfide deposit are located in the eastern part of the Dachang tin field. These deposits are hosted in a sedimentary sequence containing significant concentrations of organic matter in the form of Lower Devonian calcareous black shales and hornfels. These rocks together with the younger intrusion of Longxianggai granite (91DŽ Ma) actively participated in the formation of Sn-polymetallic deposits. The following three major stages have been distinguished in stratiform and vein-type orebodies at Dafulou, Huile and Kangma: stage I (cassiterite, pyrrhotite, arsenopyrite, tourmaline, carbonate), stage II - main sulfide stage (quartz, cassiterite, arsenopyrite, pyrrhotite, sphalerite, stannite, pyrite, carbonates) and stage III (native Bi, galena, electrum, sulfosalts). Stage IV (post-ore), recognized at Huile is represented by barren carbonates and zeolites. Whole rock geochemistry has revealed that at Dafulou, Bi and Cu correlate strongly with S, whereas V and Pb correlate well with Corg (organic carbon). The similar distribution patterns of selected elements in average slightly mineralized low-Ca black shales indicate a fluid composition similar for all deposits studied. Studies of graphitization of the organic matter in black shales adjacent to orebodies indicate that d(002) and FWHM (full width in half maximum)/peak height values gradually decrease in the following sequence: Dafulou deposit M Kangma deposit M Huile deposit. The pyrolysate of wall rocks at the Dafulou deposit is relatively enriched in asphaltenes and maltenes (55.6-72.0% of the pyrolysate) comparable with pyrolysate obtained from more distal black shales (19.2-28.5%). Typical GC-MS spectra of pyrolysate from distal black shales are dominated by alkanes in the n-C15 to n-C25 range, aromatic molecules being represented mostly by alkyl-naphthalenes. In contrast, only traces of aliphatic hydrocarbons in the n-C14 to n-C18 range and elemental sulfur were identified in pyrolysates from pyrrhotitized wall rocks. The earliest fluid inclusions of the studied system occur in the quartz-tourmaline-cassiterite assemblage of stage I at Dafulou. These inclusions are H2O-CO2-CH4-rich, with 10 to 20 vol% of aqueous phase. P-T conditions of the trapping of inclusions are estimated to be up to 400 °C and 1.3 to 2.0 kbar (between 5.0 and 7.5 km under lithostatic pressure). In contrast, the presence of a low density gaseous CO2-CH4 phase indicates relatively low pressures during the formation of the breccia-type quartz-calcite-cassiterite-sulfide mineralization (stage II), when P-T conditions probably reached approx. 380 to 400 °C and 0.6 kbar (up to 6 km under hydrostatic pressure). Fluid inclusion data and oxygen isotope thermometry indicate that cassiterite-sulfide ores of the main sulfide stage (stage II) formed from aqueous-carbonic fluid (CO2/CH4 =ᄺ) at temperatures of up to 390 °C at Dafulou and in a temperature range of 250 to 360 °C at Huile and 260 to 370 °C at Kangma. The '34S values of sulfides from Dafulou range mostly between -1 and -6‰, whereas sulfides from the Kangma and Huile deposits are characterized by more negative '34S values (between -8 and -11‰, and between -9 and -12‰, respectively). These data suggest that bacteriogenic sulfides of black shales were a dominant source of reduced sulfur for epigenetic (vein and replacement) mineralization. Oxygen isotopic compositions of five quartz-cassiterite pairs from Dafulou and Huile show a relatively narrow range of calculated oxygen isotope temperatures (250-320 °C, using the equation of Alderton 1989) and high '18Ofluid values between +8 and +10‰ (SMOW), which are in agreement with fluid derivation from and/or high temperature equilibration with the Longxianggai granite. The carbon and oxygen isotope composition of carbonates reflects variable carbon sources. Stage I calcite is characterized by narrow ranges of '13C (-7.0 to -9.5‰ PDB) and '18O (+15.0 to +17.5‰ SMOW). This calcite shows ubiquitous deformation, evidenced by intense development of twins. Fluid compositions calculated at 330 °C for the Dafulou and Huile deposits and at 270-300 °C for the Kangma deposit ('18Ofluid between +10.0 and +11.5‰ SMOW, '13Cfluid between -5.5 and -7.5‰ PDB), agree with fluid derivation from and/or equilibration with the peraluminous, high-'18O Longxianggai granite and suggest a significant influence of contact metasedimentary sequences (carbon derived from decomposition and/or alteration of organic matter of calcareous black shales). The '13 C values of organic matter from the Lower to Upper Devonian host rocks at the Dafulou deposit (-24.0 and -28.0‰) fit with a marine origin from algae. However, organic matter adjacent to the host rock-ore contact displays a slight enrichment in 13C. The organic carbon from the Huile and Kangma deposits is even more 13C enriched (-24.6 to -23.5‰). The most heavy '13 C values (-16.5‰) were detected in hornfels sampled at the contact of the Upper Devonian sediments with the Longxianggai granite. The '13C data broadly correlate with the degree of structural ordering (degree of graphitization) of organic matter, which indicates that both variables are related to thermal overprint.  相似文献   

5.
The Southern Marginal Zone of the Limpopo Belt in South Africa is characterised by a granulite and retrograde hydrated granulite terrane. The Southern Marginal Zone is, therefore, perfectly suitable to study fluids during and after granulite facies metamorphism by means of fluid inclusions and equilibrium calculations. Isolated and clustered high-salinity aqueous and CO2(-CH4) fluid inclusions within quartz inclusions in garnet in metapelites demonstrate that these immiscible low H2O activity fluids were present under peak metamorphic conditions (800-850 °C, 7.5-8.5 kbar). The absence of widespread high-temperature metasomatic alteration indicates that the brine fluid was probably only locally present in small quantities. Thermocalc calculations demonstrate that the peak metamorphic mineral assemblage in mafic granulites was in equilibrium with a fluid with a low H2O activity (0.2-0.3). The absence of water in CO2-rich fluid inclusions is due to either observation difficulties or selective water leakage. The density of CO2 inclusions in trails suggests a retrograde P-T path dominated by decompression at T<600 °C. Re-evaluation of previously published data demonstrates that retrograde hydration of the granulites at 600 °C occurred in the presence of H2O and CO2-rich fluids under P-T conditions of 5-6 kbar and ~600 °C. The different compositions of the hydrating fluid suggest more than one fluid source.  相似文献   

6.
The early Tertiary Sanerlin uranium deposit is located near the southwestern margin of the Chaling-Yongxing pull-apart basin defined by the Chaling-Yongxing and Chenxian-Linwu sinistral strike-slip faults in southern China. The uranium ores are hosted in 15 breccia-vein bodies, which are separately located in the cores of three secondary anticlines of the Upper Permian Dangchong Formation. Individual breccia-vein bodies are composed of fragments of silicified shale and sandstone from the Dangchong Formation, and quartz veinlets as cements. These fragments, together with quartz veins, form a mosaic texture. Hydrothermal pitchblende is the only commercial uranium mineral, mainly occurring as disseminated grains within quartz veins or coating fragments. Other metallic minerals include molybdenite, pyrite, chalcopyrite, galena, sphalerite, and red microcrystalline hematite. Fluid inclusions in quartz veins have homogenization temperatures ranging from 150 to 280 °C, and calculated salinity values between 5.6 and 13.4 wt% NaCl equivalent. Stable isotope analyses show that the mineralizing fluid was characterized by '18O values of -2.2 to +2.6‰ and 'DH2O values of -134 to -110‰. These analytical data demonstrate that hydrothermal fluids were mainly derived from formation waters (brines) of the Chaling-Yongxing basin. Fluid overpressuring was caused by an abnormal geothermal gradient and impermeable shales in the deposit area. The geometry, texture, and structure of the breccia-vein system, along with the fluid pressure estimates, suggest that hydraulic fracturing generated the mineralized breccia-vein system. Pitchblende and associated minerals were deposited when gaseous phases were released abruptly from the ore fluids due to the hydraulic fracturing.  相似文献   

7.
Sparry and microcrystalline magnesite are minor constituents of the Upper Triassic Burano Evaporite Formation of the northern Apennines in Italy. Petrography and geochemistry of magnesite suggest three modes of formation. (1) Evaporitic precipitation of stratified microcrystalline magnesite layers associated with sulfate and carbonate rocks. Most REE are below ICP-MS detection limits. '18O is +20.2‰ (SMOW) and '13C is -2.6‰ (PDB). (2) Hydrothermal infill of Fe-rich (9.78 wt% FeO) lenticular sparry magnesite. This type of magnesite is characterized by very low LREE concentrations, whereas HREEs are relatively high. The fluid inclusion composition is NaCl-MgCl2-H2O, salinity is ~30 wt% NaCl equiv., and total homogenization temperatures range from 204-309 °C; '18O is +17.5‰ and '13C is +1‰. (3) The partial or total replacement of dolostones by lenticular sparry magnesite. LREEs are lower in magnesite compared with the partly replaced dolostones. Magnesite yields '18O and '13C compositions of +17.3 to +23.6‰ and +0.5 to +1.4‰, respectively, whereas the partly replaced dolostones yield '18O and '13C values of +25.0 to +26.2 and +1.3 to +1.9, respectively. Complete replacement of dolostones produced massive lenticular sparry magnesite rock containing ooids and axe-head anhydrite relicts; LREEs are depleted compared to unaffected dolostones; '18O and '13C compositions range from +16.4 to +18.4‰ and +0.4 to +0.9‰, respectively. These data and the association between fracture-filling and replacive magnesite suggests a metasomatic system induced by hydrothermal circulation of hot and saline Mg-rich fluids. These processes probably occurred in the Oligocene-Miocene, when the Burano Formation acted as main detachment horizon for the Tuscan Nappe during the greenschist facies metamorphism of the Apuane complex. Thrusting over the Apuane zone produced large scale fluid flow focused at the Tuscan Nappe front. Sources of Mg-rich fluids were metamorphic reactions in the Apuane complex and dissolution of Mg-salts at the thrust front. Considering a maximum tectonic burial depth of 10 km, as inferred from the geometry of the chain, the pressure-corrected temperature of magnesite precipitation (380 to 400 °C) and the calculated fluid composition ('18O=+13.3ǃ.2‰) are in the range of the published Apuane metamorphic temperatures (300-450 °C) and fluid compositions ('18O=7-16‰). The results of this study support the hydrothermal-metasomatic model for the formation of sparry magnesite deposits at the expense of dolostone units involved in thrusting and low-grade metamorphism, as proposed for the Northern Graywacke Zone (Alps) and the Eugui deposit (western Pyrenees).  相似文献   

8.
Tourmaline has been synthesized hydrothermally at 200 MPa between 300 and 700 °C from oxide mixtures with Mg-Al ratios for the end members dravite NaMg3Al6(Si6O18)(BO3)3(OH)3(OH) and Mg-foitite &ding6F;(Mg2Al)Al6 (Si6O18)(BO3)3(OH)3(OH). Six different Na concentrations were investigated to determine the distribution of Na between tourmaline and fluid in the SiO2-saturated system Na2O-MgO-Al2O3-SiO2-B2O3-H2O-HCl. Synthetic tourmaline ranges from X-site vacant (&ding6F;) tourmaline (Mg-foitite) to nearly ideal dravite with Na=0.95 apfu. There are small, but significant, amounts of proton deficiency and negligible tetrahedral Al. Chemical variation is primarily caused by the substitutions Al&ding6F;Mg-1Na-1 and minor AlMg-1H-1. Varying amounts of Na and &ding6F; determine the Mg/Al ratios. Besides tourmaline and quartz, additional Mg-Al phases are chlorite and, at 700 °C, cordierite. Albite is also present at high Na concentrations in the bulk composition. The c dimension of the tourmaline crystals increases with Na in tourmaline. The amount of Na in the X-site depends strongly on the bulk concentration of Na in the system as well as on the temperature. These factors in turn control the phase assemblage and the composition of the fluid phase. For the assemblage tourmaline + quartz + chlorite/cordierite + fluid, a linear relationship exists between Na concentration in the fluid (quenched after the run) and tourmaline with temperature: T °C [ᆭ °C]=(Nafluid/Natur)앾.878-14.692 (r2=0.96). For the assemblage tourmaline + albite + quartz + fluid, it is: T °C [ᆣ °C]=(Nafluid/Natur)욝.813-6.231 (r2=0.95), where Nafluid is the concentration of Na+ in the final fluid (mol/l) and Natur is the number of Na cations in the X-site of tourmaline. The equations are valid in the temperature range of 500-715 °C. Our experiments demonstrate that the occupancy of the X-site in combination with the changing concentrations of Al and Mg can be used to monitor changes in the fluid composition in equilibrium with a growing tourmaline crystal. Currently, this relation can be applied qualitatively to natural tourmaline to explain zoning in Na- and Al/(Al+Mg).  相似文献   

9.
Diffusion-controlled growth rates of polycrystalline enstatite reaction rims between forsterite and quartz were determined at 1,000 °C and 1 GPa in presence of traces of water. Iron-free, pure synthetic forsterite with normal oxygen and silicon isotopic compositions and quartz extremely enriched in 18O and 29Si were used as reactants. The relative mobility of 18O and 29Si in reactants and rims were determined by SIMS step scanning. The morphology of the rim shows that enstatite grows by a direct replacement of forsterite. Rim growth is modelled within a mass-conserving reference frame that implies advancement of reaction fronts from the initial forsterite-quartz interface in both directions. The isotopic compositions at the two reaction interfaces are controlled by the partial reactions Mg2SiO4=0.5 Mg2Si2O6+MgO at the forsterite-enstatite, and MgO+SiO2=0.5 Mg2Si2O6 at the enstatite-quartz interface, implying that grain boundary diffusion of MgO is rate-controlling. Isotopic profiles show no silicon exchange across the propagating reaction interfaces. This propagation, controlled by MgO diffusion, is faster than the homogenisation of Si by self-diffusion behind the advancing fronts. From this, and using % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaDa % aaleaacaWGtbGaamyAaiaacYcacaWGfbGaamOBaaqaaiaadAfacaWG % VbGaamiBaaaaaaa!3DD2! DSi,EnVolD_{Si,En}^{Vol} at dry conditions from the literature, results a % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmirayaafa % Waa0baaSqaaiaadofacaWGPbGaaiilaiaadweacaWGUbaabaaaaOGa % eqiTdqgaaa!3CCD! DSi,En dD'_{Si,En}^{} \delta value of 3᎒-24 m3 s-1 at 1,000 °C. The isotopic profiles for oxygen are more complex. They are interpreted as an interplay between the propagation of the interfaces, the homogenisation of the isotope concentrations by grain boundary self-diffusion of O within the rim, and the isotope exchange across the enstatite-quartz interface, which was open to 18O influx from quartz. Because of overlapping diffusion processes, boundary conditions are unstable and D´Ox,En' cannot be quantified. Using measured rim growth rates, the grain boundary diffusivity D´MgO' of MgO in iron-free enstatite is 8᎒-22 m3 s-1 at 1,000 °C and 1 GPa. Experiments with San Carlos olivine (fo92) as reactant reveal lower rates by a factor of about 4. Our results show that isotope tracers in rim growth experiments allow identification of the actual interface reactions, recognition of the rate-controlling component and further calculation of D´' values for specific components.  相似文献   

10.
Organic matter origins are inferred from carbon isotope ratios ('13C) in recent continental shelf sediments and major rivers from 465 locations from the north Bering-Chukchi-East Siberian-Beaufort Sea, Arctic Amerasia. Generally, there is a cross-shelf increase in '13C, which is due to progressive increased contribution seaward of marine-derived organic carbon to surface sediments. This conclusion is supported by the correlations between sediment '13C, OC/N, and '15N. The sources of total organic carbon (TOC) to the Amerasian margin sediments are primarily from marine water-column phytoplankton and terrigenous C3 plants constituted of tundra taiga and angiosperms. In contrast to more temperate regions, the source of TOC from terrigenous C4 and CAM plants to the study area is probably insignificant because these plants do not exist in the northern high latitudes. The input of carbon to the northern Alaskan shelf sediments from nearshore kelp community (Laminaria solidungula) is generally insignificant as indicated by the absence of high sediment '13C values (-16.5 to -13.6‰) which are typical of the macrophytes. Our study suggests that the isotopic composition of sediment TOC has potential application in reconstructing temporal changes in delivery and accumulation of organic matter resulting from glacial-interglacial changes in sea level and environments. Furthermore, recycling and advection of the extensive deposits of terrestrially derived organic matter from land, or the wide Amerasian margin, could be a mechanism for elevating total CO2 and pCO2 in the Arctic Basin halocline.  相似文献   

11.
The late Archaean (ca. 2.7 Ga) Ilomantsi greenstone belt hosts a large number of small mesozonal gold occurrences. The Rämepuro deposit is spatially related to a feldspar porphyry dyke which has intruded the contact between metagreywackes and intermediate metavolcanic rocks. It consists of gold-bearing quartz-tourmaline-sulphide veins located mainly within an intensively altered and sheared zone about 20-30 m in width. Two types of fluid inclusions were distinguished in the quartz veins: (1) H2O-CH4 (Й equiv. wt% NaCl), and (2) H2O-CO2 (⢬ equiv. wt% NaCl). The two compositionally different fluid-inclusion types occur in separate veins. The compositions of decrepitate residues indicate that the type 1 fluid inclusions consist predominantly of Na, S, Ca, Cl, and in lesser proportions of K and Fe. The residues of the type 2 fluid inclusions are dominated by Na, Ca, Cl and minor K. For the type 1 and type 2 fluid inclusions, microthermometric experiments indicate average homogenisation temperatures of 310-350 and 220-250 °C respectively. Both types of fluid inclusions contain 1-3 anisotropic solids (Ca/Mg carbonate?, nahcolite?, tourmaline?). Sulphide daughter minerals occur only in the type 1 fluid inclusions. This fluid type is also often associated with short trails of sulphide inclusions which suggest mobilisation and redistribution of ore constituents. Some type 1 fluid inclusions display distinct morphological features ("implosion textures") related to post-trapping re-equilibration. The presence of the fluid-inclusion re-equilibration textures in some auriferous quartz veins and their absence in other gold-bearing quartz veins suggest an age difference between them. This conclusion is also supported by the compositionally different fluid regimes associated with the different quartz veins, indicating a change from reducing (CH4) to a more oxidising (CO2) fluid environment. The fluid-inclusion evidence suggests two separate gold mineralisation events, one related to late Archaean regional metamorphism, the other to Palaeoproterozoic thrusting and metamorphism.  相似文献   

12.
The Degdekan and Gol’tsovsky gold-quartz deposits are located in the southeastern Yana-Kolyma gold belt. The orebodies occur as quartz veins hosted in metaterrigenous rocks and cut by postmineral basic-intermediate dikes. It was established that metamorphism of sulfides and gangue quartz was restricted to a few centimeters off the dike contact. According to sulfide geothermometers, the metamorphic temperatures close to the contact of dikes attained 700°C at the Degdekan deposit and were no higher than 491°C at the Gol’tsovsky deposit. The formation of the forbidden assemblage of quartz and loellingite and its fine-grained texture indicate that the thermal effect on the Degdekan ore was short-term. The prolonged heating of the ore at the Gol’tsovsky deposit gave rise to the aggradation recrystallization of quartz and the formation of equilibrium sulfide aggregates that show only insignificant differences in composition from the primary phases. The average homogenization temperature of primary and pseudosecondary fluid inclusions is 206 ± 40°C in the unmetamorphosed veins and 257 ± 33°C in the metamorphosed veins. The salinity of fluids in the primary and pseudosecondary inclusions in quartz veins of both types varies from 0.5 to 14.0 wt % NaCl equiv. The melting temperature of liquid CO2 in the carbon dioxide inclusions, ranging from ?57.0 to ?60.8°C, suggests an admixture of CH4 and/or N2. The unmetamorphosed quartz veins were formed at a fluid pressure varying from 0.7 to 1.3 kbar, while quartz veins at the contact with dikes crystallized at a pressure of 0.8–1.5 kbar. The results of gas chromatography showed the presence of CO2 and H2O, as well as N2 and CH4. The average bulk of volatiles contained in the fluid inclusions in quartz from the metamorphosed veins is 1.5–2 times lower than in the unmetamorphosed veins; this proportion is consistent with the occurrence of decrepitated gas inclusions in the heated quartz.  相似文献   

13.
Several types of anhydrite-bearing rocks have been found in the amphibolite-facies metamorphosed rocks at the north-eastern margin of the Moldanubian Zone. Anhydrite either forms monomineralic bands up to 40 cm thick, or occurs in the form of disseminated grains in surrounding calc-silicate gneiss together with feldspar, scapolite, amphibole, pyroxene, epidote and pyrite. The isotopic composition of sulphur ('34S=30.6 to 32.3‰) and strontium (87Sr/86Sr=0.70797 to 0.70781) in anhydrite may indicate a marine source of sulphate. The isotopic ratio of strontium is in the same range as that of metamorphosed strata-bound barite-sulphide ores, which have been previously described in the same area. The '34S values of coexisting pyrite range from 21.4 to 22.5‰, the (34Sanhydrite-pyrite corresponding to the metamorphic temperature of 600 to 660 °C. In contrast to many submarine-exhalative deposits, the oxygen isotopic compositions of anhydrite ('18O=9.3 to 10.2‰) are lighter than that of barite ('18O=10.4 to 13.8‰). This indicates that the both minerals are not in isotopic equilibrium. Therefore, it is probable that anhydrite and barite from the Ro—ná district were deposited from fluids that contained different proportions of seawater and hydrothermal fluids or from hydrothermal fluids that underwent variable extent of oxygen isotope exchange with seafloor rocks. The '13C values in calcite ('13C=-17.2 to -18.7‰) from anhydrite-bearing rock are lower than those in distant marbles. As graphite is absent in anhydrite- and calcite-bearing rocks, impoverishment in the 13C isotope cannot be attributed to the graphite-carbonate isotopic exchange during metamorphism. It is proposed that low '13C values in carbonates are caused by pre-metamorphic oxidation of organic matter in course of hydrothermal processes. Anhydrite and anhydrite-bearing calc-silicate gneiss from the north-eastern part of the Moldanubian Zone are interpreted to be the high-grade metamorphosed analogue of anhydrite-rich exhalites commonly found in submarine-exhalative hydrothermal deposits.  相似文献   

14.
The copper-rich, tourmaline-bearing Donoso breccia pipe is one among more than 15 different mineralized breccias in the giant (>50 million metric tonnes of copper) Miocene and Pliocene Río Blanco-Los Bronces copper deposit in the high Andes of central Chile. This breccia pipe, bracketed in age between 5.2 and 4.9 Ma, has dimensions of 500 by 700 m at the current surface 3,670 m above sea level. Its roots have yet to be encountered, and it is >300 m in diameter at the depth of the deepest drill holes. The Donoso breccia is, for the most part, monolithic, containing clasts of the equigranular quartz monzonite pluton which hosts the pipe. It is matrix supported, with between 5 and 25% of the total rock volume consisting of breccia-matrix minerals, which include tourmaline, quartz, chalcopyrite, pyrite, specularite, and lesser amounts of bornite and anhydrite. An open pit mine, centered on this breccia pipe, has a current production of 50,000 tonnes of ore per day at an average grade of 1.2% copper, and copper grade in the breccia matrix is significantly higher. Measured '18O for tourmaline and quartz from the matrix of the Donoso breccia at different levels of the pipe range from +6.9 to +12.0‰, and measured 'D in tourmaline ranges from -73 to -95‰. Temperatures of crystallization of these minerals, as determined by the highest homogenization temperatures of highly saline fluid inclusions, range from 400 to >690°C. When corrected for these temperatures, the stable isotope data indicate that fluids from which these breccia-matrix minerals precipitated were magmatic, with '18O between +5.6 to +9.1‰ and 'D between -51 to -80‰. These isotopic data preclude participation of a significant amount of meteoric water in the formation of the Donoso breccia. They support a model in which brecciation is caused by expansion of magmatic fluids exsolved from a cooling pluton, and breccia-matrix minerals, including copper sulfides, precipitated from the same magmatic fluids responsible for brecciation. Sericitic alteration of clasts in the breccia was also caused by these magmatic fluids. Different types of fluid inclusions imply that several different magmatic fluids were involved in formation of the Donoso breccia. These include high-temperature, highly saline, non-boiling fluids, trapped in inclusions that homogenize by halite dissolution, which probably exsolved from a magma cooling under relatively high (>1 kbar) lithostatic pressure conditions, consistent with geologic constraints. Other high-temperature, highly saline fluids are trapped in inclusions that homogenize by vapor-bubble disappearance and are spatially associated with vapor-rich inclusions, suggesting either phase separation (boiling) or simultaneous separation of immiscible brine and vapor from a magma cooling at lower hydrostatic pressure conditions. Both types of high-temperature, highly saline fluids circulated intermittently, as pressure fluctuated between lithostatic and hydrostatic conditions because of episodes of sealing and rebrecciation.  相似文献   

15.
The enthalpy of drop-solution in molten 2PbO·B2O3 of synthetic and natural lawsonite, CaAl2(Si2O7)(OH)2·H2O, was measured by high-temperature oxide melt calorimetry. The enthalpy of formation determined for the synthetic material is (fHOxides=-168.7Dž.4 kJ mol-1, or (fH0298=-4,872.5dž.0 kJ mol-1. These values are in reasonable agreement with previously published data, although previous calorimetric work yielded slightly more exothermic data and optimisation methods resulted in slightly less exothermic values. The equilibrium conditions for the dehydration of lawsonite to zoisite, kyanite and quartz/coesite at pressures and temperatures up to 5 GPa and 850 °C were determined by piston cylinder experiments. These results, other recent phase equilibrium data, and new calorimetric and thermophysical data for lawsonite and zoisite, Ca2Al3(SiO4)(Si2O7)O(OH), were used to constrain a mathematical programming analysis of the thermodynamic data for these two minerals in the chemical system CaO-Al2O3-SiO2-H2O (CASH). The following data for lawsonite and zoisite were obtained: (fH0298 (lawsonite)=-4,865.68 kJ mol-1 , S0298 (lawsonite)=229.27 J K-1 mol-1 , (fH0298 (zoisite)=-6,888.99 kJ mol-1 , S0298 (zoisite)=297.71 J K-1 mol-1 . Additionally, a recalculation of the bulk modulus of lawsonite yielded K=120.7 GPa, which is in good agreement with recent experimental work.  相似文献   

16.
Superdeep diamonds from the Juina area, Mato Grosso State, Brazil   总被引:4,自引:1,他引:3  
Alluvial diamonds from the Juina area in Mato Grosso, Brazil, have been characterized in terms of their morphology, syngenetic mineral inclusions, carbon isotopes and nitrogen contents. Morphologically, they are similar to other Brazilian diamonds, showing a strong predominance of rounded dodecahedral crystals. However, other characteristics of the Juina diamonds make them unique. The inclusion parageneses of Juina diamonds are dominated by ultra-high-pressure ("superdeep") phases that differ both from "traditional" syngenetic minerals associated with diamonds and, in detail, from most other superdeep assemblages. Ferropericlase is the dominant inclusion in the Juina diamonds. It coexists with ilmenite, Cr-Ti spinel, a phase with the major-element composition of olivine, and SiO2. CaSi-perovskite inclusions coexist with titanite (sphene), "olivine" and native Ni. MgSi-perovskite coexists with TAPP (tetragonal almandine-pyrope phase). Majoritic garnet occurs in one diamond, associated with CaTi-perovskite, Mn-ilmenite and an unidentified Si-Mg phase. Neither Cr-pyrope nor Mg-chromite was found as inclusions. The spinel inclusions are low in Cr and Mg, and high in Ti (Cr2O3<36.5 wt%, and TiO2>10 wt%). Most ilmenite inclusions have low MgO contents, and some have very high (up to 11.5 wt%) MnO contents. The rare "olivine" inclusions coexisting with ferropericlase have low Mg# (87-89), and higher Ca, Cr and Zn contents than typical diamond-inclusion olivines. They are interpreted as inverted from spinel-structured (Mg, Fe)2Si2O4. This suite of inclusions is consistent with derivation of most of the diamonds from depths near 670 km, and adds ilmenite and relatively low-Cr, high-Ti spinel to the known phases of the superdeep paragenesis. Diamonds from the Juina area are characterized by a narrow range of carbon isotopic composition ('13C=-7.8 to -2.5‰), except for the one majorite-bearing diamond ('13C=-11.4‰). There are high proportions of nitrogen-free and low-nitrogen diamonds, and the aggregated B center is predominant in nitrogen-containing diamonds. These observations have practical consequences for diamond exploration: Low-Mg olivine, low-Mg and high-Mn ilmenite, and low-Cr spinel should be included in the list of diamond indicator minerals, and the role of high-Cr, low-Ti spinel as the only spinel associated with diamond, and hence as a criterion of diamond grade in kimberlites, should be reconsidered.  相似文献   

17.
广东高凤金矿形成时代的Rb-Sr、40Ar-39Ar年龄测定   总被引:7,自引:0,他引:7  
用含金石英脉流体包裹体Rb-Sr和40Ar-39Ar方法测定了广东高凤金矿的形成时代为印支期(215×106a)。两种方法的结果在误差范围内完全一致,两种测定方法相互验证,结果准确可靠。研究表明含金石英脉流体包裹体Rb-Sr和40Ar-39Ar年代方法对于解决石英脉型金矿的成矿时代具有很好的应用前景。  相似文献   

18.
Mesozoic granitoid plutons in the southern Death Valley region of southeastern California reveal substantial compositional and isotopic diversity for Mesozoic magmatism in the southwestern US Cordillera. Jurassic plutons of the region are mainly calc-alkaline mafic granodiorites with )Ndi of -5 to -16, 87Sr/86Sri of 0.707-0.726, and 206Pb/204Pbi of 17.5-20.0. Cretaceous granitoids of the region are mainly monzogranites with )Ndi of -6 to -19, 87Sr/86Sri of 0.707-0.723, and 206Pb/204Pbi of 17.4-18.6. The granitoids were generated by mixing of mantle-derived mafic melts and pre-existing crust - some of the Cretaceous plutons represent melting of Paleoproterozoic crust that, in the southern Death Valley region, is exceptionally heterogeneous. A Cretaceous gabbro on the southern flank of the region has an unusually juvenile composition ()Ndi -3.2, 87Sr/86Sri 0.7060). Geographic position of the Mesozoic plutons and comparison with Cordilleran plutonism in the Mojave Desert show that the Precambrian lithosphere (craton margin) in the eastern Mojave Desert region may consists of two crustal blocks separated by a more juvenile terrane.  相似文献   

19.
The ultrahigh-temperature (UHT) metamorphism of the Napier Complex is characterized by the presence of dry mineral assemblages, the stability of which requires anhydrous conditions. Typically, the presence of the index mineral orthopyroxene in more than one lithology indicates that H2O activities were substantially low. In this study, we investigate a suite of UHT rocks comprising quartzo-feldspathic garnet gneiss, sapphirine granulite, garnet-orthopyroxene gneiss, and magnetite-quartz gneiss from Tonagh Island. High Al contents in orthopyroxene from sapphirine granulite, the presence of an equilibrium sapphirine-quartz assemblage, mesoperthite in quartzo-feldspathic garnet gneiss, and an inverted pigeonite-augite assemblage in magnetite-quartz gneiss indicate that the peak temperature conditions were higher than 1,000 °C. Petrology, mineral phase equilibria, and pressure-temperature computations presented in this study indicate that the Tonagh Island granulites experienced maximum P-T conditions of up to 9 kbar and 1,100 °C, which are comparable with previous P-T estimates for Tonagh and East Tonagh Islands. The textures and mineral reactions preserved by these UHT rocks are consistent with an isobaric cooling (IBC) history probably following an counterclockwise P-T path. We document the occurrence of very high-density CO2-rich fluid inclusions in the UHT rocks from Tonagh Island and characterize their nature, composition, and density from systematic petrographic and microthermometric studies. Our study shows the common presence of carbonic fluid inclusions entrapped within sapphirine, quartz, garnet and orthopyroxene. Analysed fluid inclusions in sapphirine, and some in garnet and quartz, were trapped during mineral growth at UHT conditions as 'primary' inclusions. The melting temperatures of fluids in most cases lie in the range of -56.3 to -57.2 °C, close to the triple point for pure CO2 (-56.6 °C). The only exceptions are fluid inclusions in magnetite-quartz gneiss, which show slight depression in their melting temperatures (-56.7 to -57.8 °C) suggesting traces of additional fluid species such as N2 in the dominantly CO2-rich fluid. Homogenization of pure CO2 inclusions in the quartzo-feldspathic garnet gneiss, sapphirine granulite, and garnet-orthopyroxene gneiss occurs into the liquid phase at temperatures in the range of -34.9 to +4.2 °C. This translates into very high CO2 densities in the range of 0.95-1.07 g/cm3. In the garnet-orthopyroxene gneiss, the composition and density of inclusions in the different minerals show systematic variation, with highest homogenization temperatures (lowest density) yielded by inclusions in garnet, as against inclusions with lowest homogenization (high density) in quartz. This could be a reflection of continued recrystallization of quartz with entrapment of late fluids along the IBC path. Very high-density CO2 inclusions in sapphirine associated with quartz in the Tonagh Island rocks provide potential evidence for the involvement of CO2-rich fluids during extreme crustal temperatures associated with UHT metamorphism. The estimated CO2 isochores for sapphirine granulite intersect the counterclockwise P-T trajectory of Tonagh Island rocks at around 6-9 kbar at 1,100 °C, which corresponds to the peak metamorphic conditions of this terrane derived from mineral phase equilibria, and the stability field of sapphirine + quartz. Therefore, we infer that CO2 was the dominant fluid species present during the peak metamorphism in Tonagh Island, and interpret that the fluid inclusions preserve traces of the synmetamorphic fluid from the UHT event. The stability of anhydrous minerals, such as orthopyroxene, in the study area might have been achieved by the lowering of H2O activity through the influx of CO2 at peak metamorphic conditions (>1,100 °C). Our microthermometric data support a counterclockwise P-T path for the Napier Complex.  相似文献   

20.
Intrusion-hosted, low sulfide, sheeted vein systems are common within many plutons and stocks of the middle Cretaceous Tombstone-Tungsten magmatic belt, Yukon Territory, and host significant gold mineralization. Fluid inclusion characteristics of five such systems, namely Emerald Lake, Dublin Gulch, Scheelite Dome, Mike Lake, and MacTung, constrain the vein-forming fluid composition, formation temperatures and pressures, hydrothermal fluid processes, and potential fluid sources. The veins contain a wide range of fluid inclusion types. Ubiquitous type 1A and 1B inclusions are low salinity (1A: XNaCl<0.02; 1B: XNaCl<0.03), CO2-rich (1A: XCO2=0.18-1.00; 1B: XCO2=0.02-0.33). Laser Raman studies indicate that type 1A and 1B inclusions commonly contain minor CH4 (XCH4<0.09) and N2 (XN2<0.12). Type 2 inclusions are H2O-rich (XH2O=0.94-0.99), of low to moderate salinity (XNaCl=0.01-0.06), and were common at Emerald Lake and Dublin Gulch, in addition to localized type 3A halite-bearing inclusions (XNaCl=0.12-0.16). Both inclusion types post-dated the CO2-rich inclusions. Sheeted veins in the Mike Lake pluton contained coexisting type 1A and 3A and 3B (halite + sylvite) inclusions. Type 1A inclusions in all studied systems homogenized between 208 and 362 °C, type 1B ranged between 205 and 329 °C, and type 2 between 154 and 261 °C. Type 3A and 3B inclusions homogenized between 217 and 355 °C. A predominantly magmatic source for both CO2-rich and saline H2O-rich fluids is favored, with variations in trapping pressure (<1 kbar at Mike Lake, >1 kbar at Emerald Lake and Dublin Gulch, and >2 kbar at MacTung and Scheelite Dome) that potentially control fluid composition and evolution. A variety of fluid processes may have been responsible for gold precipitation including immiscibility and/or release of an evolving magmatic fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号