首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
改进的有自由面渗流问题的Bathe算法   总被引:5,自引:2,他引:5  
郑宏  戴会超  刘德富 《岩土力学》2005,26(4):505-512
建议了一个新的有自由面渗流问题的变分不等式提法,该提法通过将潜在出渗面上的边界条件提为Signorini型条件,从而从理论上消除了出渗点的奇性,解决了出渗点的定位问题。同时在离散求解时,通过引进依赖于网格参数的连续型Heaviside函数,克服了Bathe算法中所固有的网格依赖性,提高了这类方法的数值稳定性。  相似文献   

2.
对Signorini型变分不等式方法定义的罚Heaviside函数进行了改进,建立了自适应罚Heaviside函数,从而使Signorini型变分不等式方法的数值稳定性进一步得到改善,网格依赖性进一步得到克服。通过将Signorini型变分不等式方法应用于深圳市公明水库坝区渗流分析,论证了Signorini型变分不等式方法在复杂强非线性三维渗流问题中的适用性。  相似文献   

3.
This paper proposed a numerical formulation for unsaturated flow problems with nonlinear boundaries of seepage face and soil–atmosphere interface via the concept of parabolic variational inequality (PVI) method. A unified unilateral boundary condition was first proposed to represent the conditions on the seepage face and soil–atmosphere interface boundaries within the partial differential equation (PDE) formulation. A PVI formulation mathematically equivalent to the PDE formulation was then proposed, which automatically transforms the flux part of the unified unilateral boundary condition into the natural boundary condition and eliminates the singularity at seepage points. By discretizing the PVI formulation, a finite element procedure together with an iterative algorithm was suggested. An existing experiment of unsaturated flow in a layered hillside and a laboratory test of unsaturated flow through sand flume performed in this study were used to validate the proposed method, with a good agreement between the measured and computed results and a satisfactory balance of mass being maintained during the simulations. The numerical results also indicated that the problem of mesh dependence associated with unsaturated flow simulations is well addressed with the proposed numerical method. Finally, the process of unsaturated flow in a soil slope with layers of horizontal drains subjected to rainfall/evaporation was further examined. The numerical results reveal that the deployment of drains in a soil slope can significantly lower the pore water pressure around the drains, with the bottom layer drains being most effective in controlling the seepage flow.  相似文献   

4.
白正雄  陈益峰  胡冉  张勤  周创兵 《岩土力学》2012,33(9):2829-2836
排水是岩土体及工程构筑物渗流控制的主要措施之一,其实质是通过在渗流域内形成潜在溢出边界或低水位边界而实现渗流控制的。在排水渗控条件下,渗流场往往具有强烈的边界非线性特征,Signorini型变分不等式方法从理论上为稳定和非稳定排水渗流问题提供了有效的分析方法,但其实际效果还需要得到试验的验证。通过开展含5个排水廊道的排水砂槽模型试验,研究了复杂排水条件下砂土渗流的基本规律,并通过试验数据与数值计算成果的对比分析,论证了Signorini型变分不等式方法的有效性和正确性。试验结果表明,在稳定渗流条件下,排水砂槽上游侧3个排水廊道对渗流控制起主导作用,而下游侧2个廊道则失去排水功能,数值计算与试验成果吻合较好;在非稳定渗流条件下,受测压管精度、砂样均匀性和毛细效应的影响,数值计算与试验成果存在一定偏差,但也较好地揭示了复杂排水条件下砂槽中的非稳定渗流特征。排水砂槽试验结果验证了Signorini型变分不等式方法的有效性和正确性,为复杂排水条件下岩土体及工程构筑物的渗控结构优化设计提供了有效的分析手段。  相似文献   

5.
By extending Darcy's law to the dry domain above the free surface and specifying the boundary condition on the potential seepage surfaces as Signorini's type, a partial differential equation (PDE) defined in the entire domain of interest is formulated for non‐steady seepage flow problems with free surfaces. A new parabolic variational inequality (PVI) formulation equivalent to the PDE formulation is then proposed, in which the flux part of the complementary condition of Signorini's type in the PDE formulation is transformed into natural boundary condition. Consequently, the singularity at the seepage points is eliminated and the difficulty in selecting the trial functions is significantly reduced. By introducing an adaptive penalized Heaviside function in the finite element analysis, the numerical stability of the discrete PVI formulation is well guaranteed. The proposed approach is validated by the existing laboratory tests with sudden rise and dropdown of water heads, and then applied to capture the non‐steady seepage flow behaviors in a homogeneous rectangular dam with five drainage tunnels during a linear dropdown of upstream water head. The non‐steady seepage flow in the surrounding rocks of the underground powerhouse in the Shuibuya Hydropower Project is further modeled, in which a complex seepage control system is involved. Comparisons with the in situ monitoring data show that the calculation results well illustrate the non‐steady seepage flow process during impounding and the operation of the reservoir as well as the seepage control effects of the drainage hole arrays and drainage tunnels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
渗流分析中排水孔模拟的叠单元法   总被引:2,自引:0,他引:2  
排水孔是重要的渗控措施,如何准确模拟排水孔的作用是渗流分析中的关键问题之一。目前普遍采用排水子结构法,但由于子结构网格依存于整体网格,在解决复杂工程问题时网格划分难度很大。文中提出一种新的排水孔模拟方法--叠单元法。对于含排水孔的结构,将其划分为不包含排水孔的整体网格以及各排水孔附近区域的局部网格,网格之间相互独立。然后,通过排水孔局部网格的外边界面的虚拟渗流,实现整体网格与排水孔局部网格的耦合。算例分析的结果表明,当排水孔局部网格范围大小取为整体网格单元尺寸的1~3倍,外边界面渗透系数取为材料渗透系数的102~103倍时,所提方法能够准确模拟排水孔的作用。由于叠单元法的网格划分简便易行,有望广泛应用于复杂工程问题的渗流分析  相似文献   

7.
卡拉水电站坝区渗流控制效应精细模拟与评价   总被引:1,自引:0,他引:1  
郑华康  张枫  李毅  陈益峰  周创兵 《岩土力学》2012,33(9):2743-2748
卡拉水电站坝址区河谷狭窄,岸坡陡峻,地质条件复杂,渗漏问题突出。为减小卡拉坝区渗漏并改善大坝的渗透稳定性,工程设计采取防渗帷幕、排水孔幕和排水洞等防渗排水措施。采用子结构、变分不等式和自适应罚函数相结合的方法(简称SVA方法),结合典型溢流坝段与坝区整体渗流场分析成果,评价卡拉大坝及坝基渗流控制方案的合理性,并论证其优化的可能性。研究表明:①防渗帷幕有效雍高了帷幕上游侧岩体内的地下水位、增加了绕坝渗流的渗径长度并降低了坝基的扬压力,排水系统则显著降低了坝体内的孔隙水压力以及坝基扬压力;②排水孔幕间距对坝体内的自由面分布有着显著影响,排水孔幕间距取3.0~4.5 m是合适的。  相似文献   

8.
岩体裂隙网络非稳定渗流分析与数值模拟   总被引:1,自引:0,他引:1  
叶祖洋  姜清辉  姚池  周创兵 《岩土力学》2013,34(4):1171-1178
针对裂隙岩体的非稳定渗流问题,通过将Darcy定理扩展到包含干区的整个裂隙网络区域,并令潜在溢出边界条件为Signorini型互补边界条件,将湿区上的非稳定渗流问题转化为全域上的一个新的初边值问题。为降低试探函数选取的难度,建立与定义在整个裂隙网络区域上的偏微分方程(PDE)提法等价的抛物型变分不等式(PVI)提法,并给出裂隙网络非稳定渗流分析的有限元数值分析格式和迭代算法,与砂槽模型试验数据的对比分析,验证其有效性。最后,将文中发展的计算方法应用到含复杂裂隙网络的边坡非稳定渗流分析,计算结果很好地反映出边坡内部自由面随库水降落的变化规律,并能准确地描述裂隙网络内部渗流运动特征及流量分布的不均匀性。  相似文献   

9.
裂隙网络无压渗流分析的初流量法   总被引:1,自引:0,他引:1  
姚池  姜清辉  叶祖洋  周创兵 《岩土力学》2012,33(6):1896-1903
借鉴初流量法的思想,引入初流速来抵消在裂隙网络干区实际不存在的流速,将Darcy定理扩展到整个区域,定义了在整个区域上的非线性边值问题,并将潜在溢出面边界条件归纳为Signorini型边界条件,建律了等价的变分不等式提法。通过结合连续型的Heaviside函数,给出了基于变分不等式的初流量有限元迭代算法,研制开发了相应的计算程序,通过两个典型算例验证了本文算法在求解复杂裂隙网络渗流自由面的有效性和鲁棒性。  相似文献   

10.
The current work uses Baiocchi's transformation to obtain heuristically a formulation of the inhomogeneous dam problem. When finite element methods are applied the finite dimensional problem is a variational inequality which may be solved to obtain approximate solutions. The main advantage of the method is that it uses a fixed mesh. The finite dimensional problem is solved by means of succesive overrelaxation with projection. Although the standard convergence theory1 for this method does not apply in this case, because the stiffness matrix is not symmetric, satisfactory and rapid convergence was obtained in all of our examples. Numerical results are given for some examples.  相似文献   

11.
周斌  严俊  刘斯宏  杨茂盛 《岩土力学》2018,39(1):349-355
含自由面的无压渗流问题本质上是一类非线性自由边值问题,固定网格的结点虚流量法在全域范围内不断扣除虚域流量贡献,从而使该问题得到求解。它具有网格依赖性小、出逸点收敛快等优点,但其内在理论基础尚未被完全揭示。通过引入互补型约束条件建立了结点虚流量法和Signorini型变分不等式提法的等价性桥梁,在此基础上引入过渡区放大系数 对自由面判别准则进行优化,并以砂槽模型试验为例进行验证。对比结果表明,优化后算法数值稳定性更好,计算结果与试验数据吻合度更高。研究成果为超大规模网格的渗控结构优化设计提供了有效分析手段。  相似文献   

12.
Finite element procedures for numerical solution of various engineering problems are often based on variational formulations. In this paper, a parametric variational principle applicable to elastic-plastic coupled field problems in consolidation analysis of saturated porous media is presented. This principle can be used to solve problems where materials are inconsistent with Drucker's postulate of stability, such as in non-associated plasticity flow or softening problems. The finite element formulation was given, and it can be solved by either the conventional method or a parametric quadratic programming method.  相似文献   

13.
We review and perform comparison studies for three recent multiscale methods for solving elliptic problems in porous media flow; the multiscale mixed finite-element method, the numerical subgrid upscaling method, and the multiscale finite-volume method. These methods are based on a hierarchical strategy, where the global flow equations are solved on a coarsened mesh only. However, for each method, the discrete formulation of the partial differential equations on the coarse mesh is designed in a particular fashion to account for the impact of heterogeneous subgrid structures of the porous medium. The three multiscale methods produce solutions that are mass conservative on the underlying fine mesh. The methods may therefore be viewed as efficient, approximate fine-scale solvers, i.e., as an inexpensive alternative to solving the elliptic problem on the fine mesh. In addition, the methods may be utilized as an alternative to upscaling, as they generate mass-conservative solutions on the coarse mesh. We therefore choose to also compare the multiscale methods with a state-of-the-art upscaling method – the adaptive local–global upscaling method, which may be viewed as a multiscale method when coupled with a mass-conservative downscaling procedure. We investigate the properties of all four methods through a series of numerical experiments designed to reveal differences with regard to accuracy and robustness. The numerical experiments reveal particular problems with some of the methods, and these will be discussed in detail along with possible solutions. Next, we comment on implementational aspects and perform a simple analysis and comparison of the computational costs associated with each of the methods. Finally, we apply the three multiscale methods to a dynamic two-phase flow case and demonstrate that high efficiency and accurate results can be obtained when the subgrid computations are made part of a preprocessing step and not updated, or updated infrequently, throughout the simulation. The research is funded by the Research Council of Norway under grant nos. 152732 and 158908.  相似文献   

14.
This paper is concerned with the transient vibration analysis of railway-ground system under fast moving loads. A 3D finite element method in a convected coordinate system moving with the load is formulated, together with viscous-elastic transmitting boundary conditions in order to limit the finite element mesh. A method is proposed to introduce Rayleigh type material damping in the finite element formulation in the moving coordinate system, while measures have also been taken to improve the numerical stability of the solution procedure. The performance of the transmitting boundary and the entire solution procedure are assessed via comparison with the ordinary finite element solution of some relatively simple problems and through a comparison with field measurements. The reasonable agreement found from these comparisons demonstrates the validity of the proposed method.  相似文献   

15.
A procedure for solving quasi‐static large‐strain problems by the material point method is presented. Owing to the Lagrangian–Eulerian features of the method, problems associated with excessive mesh distortions that develop in the Lagrangian formulations of the finite element method are avoided. Three‐dimensional problems are solved utilizing 15‐noded prismatic and 10‐noded tetrahedral elements with quadratic interpolation functions as well as an implicit integration scheme. An algorithm for exploiting the numerical integration procedure on the computational mesh is proposed. Several numerical examples are shown. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The displacement formulation of the finite element method is well suited to the analysis of elasto-plasticity problems involving compressible material behaviour, but it is well known that numerical difficulties occur when the material is incompressible or nearly incompressible. The effect of these additional constraints depends on both element formulation and mesh topology. A two-dimensional plane strain finite element formulation suitable for the solution of problems involving large strains and displacements (but small rotations) based on the isoparametric approach is described. The kinematics of deformation are defined in terms of the Eulerian strain rates that are invariably used in small strain analysis; the formulation therefore retains some of the character of small strain theory but includes additional geometrically non-linear terms. The results of a series of plane strain finite element analyses of two cylindrical expansion problems are presented. These results confirm the previously observed trend that as Poisson's ratio approaches 0·5 then the quality of the calculated stress deteriorates. The study also indicates that the solution quality depends increasingly on mesh topology as perfect incompressibility is reached.  相似文献   

17.
This paper presents a computational method able to effectively model both the simultaneous processes typically observed in backward erosion piping, ie, the pipe tip propagation and the conduit cross-section enlargement. The numerical method is based on the novel formulation of a problem of localized erosion along a line propagating in a multidimensional porous medium. In this line, a conduit with evolving transverse size is embedded, which conveys a multiphase flow. The two systems, porous medium and pipe, are bridged by exchange terms of multiphase fluid mass and by a shared fluid pressure field. On the contrary, different fields are considered to describe flows, which are assumed as Darcian in the porous medium and turbulent in the conduit. These two flows drive pipe propagation and enlargement, respectively, as modeled by means of proper erosion kinetic laws. The corresponding numerical formulation is based on the combination between one- and multidimensional finite elements, to model the erosion conduit and the porous medium, respectively. Several simulations are proposed to demonstrate the ability of the proposed approach in reproducing available experimental data of real-scale tests on levees. Our results point out the crucial role played by the combined influence of pipe propagation and enlargement, as well as of three-dimensional (3D) effects. We also assess the mesh independence of the proposed numerical solution, particularly as concerns the calculated pipe propagation history.  相似文献   

18.
This paper presents an algorithm and a fully coupled hydromechanical‐fracture formulation for the simulation of three‐dimensional nonplanar hydraulic fracture propagation. The propagation algorithm automatically estimates the magnitude of time steps such that a regularized form of Irwin's criterion is satisfied along the predicted 3‐D fracture front at every fracture propagation step. A generalized finite element method is used for the discretization of elasticity equations governing the deformation of the rock, and a finite element method is adopted for the solution of the fluid flow equation on the basis of Poiseuille's cubic law. Adaptive mesh refinement is used for discretization error control, leading to significantly fewer degrees of freedom than available nonadaptive methods. An efficient computational scheme to handle nonlinear time‐dependent problems with adaptive mesh refinement is presented. Explicit fracture surface representations are used to avoid mapping of 3‐D solutions between generalized finite element method meshes. Examples demonstrating the accuracy, robustness, and computational efficiency of the proposed formulation, regularized Irwin's criterion, and propagation algorithm are presented.  相似文献   

19.
The numerical simulation of soil-pile interaction problems, by means of full 3D finite element models, involves a large number of degrees of freedom (DOF) and difficulties during the mesh generation process. In order to reduce the unknowns and simplify and properly analyze such class of geotechnical problems, the so-called embedded beam elements (EBE) have recently been developed. In a preceding contribution of the authors, an improved EBE formulation, which brings into play the soil-pile interaction surface, was proposed with the aim to localize material plasticity in the soil surrounding the pile. This embedded beam model couples two different finite elements, each described by distinct kinematics (ie, solid and beam). The coupling is incorporated in the formulation by means of kinematical constrains established over the solid and beam displacement fields on the interaction surface. One of the main advantages of the embedded elements is that the addition of beams structural members immersed within the 3D soil model does not represent a constraint for the solid mesh, which can be adopted independently from the beam mesh. In this paper, the lateral loading of pile groups is studied by means of the proposed EBE approach with elasto-plastic interfaces. In order to represent a rigid cap, a master node and a special set of kinematical restrictions are incorporated into the formulation. The paper presents results obtained by means of the present formulation compared against other well-established analysis methods and test results published in the literature, for both elastic and elasto-plastic cases.  相似文献   

20.
薛娈鸾 《岩土力学》2015,36(7):2088-2094
基于复合单元法,结合三维热传导-对流方程和“充填模型”,提出了裂隙岩体不稳定温度场的复合单元模型。该模型前处理简便快捷,计算网格生成时无需考虑裂隙的存在,网格剖分不受限制,随后利用复合单元前处理程序,依据裂隙的位置和方位将其自动离散在单元内。对常规热传导-对流方程进行自伴随性调整,应用变分原理,推导出裂隙岩体不稳定温度场的复合单元算法,该算法可分别计算出岩块子单元和裂隙的温度值,且可真实反映裂隙中水流与相邻岩块间的热能量交换规律。将复合单元数值模型计算的不稳定温度场结果与相应的实测数据进行对比分析可知,数值计算结果与实测数据基本一致,验证了裂隙岩体不稳定温度场复合单元算法的可靠性与有效性。算例分析表明,裂隙中水流与相邻岩块间有明显的热传导和热对流作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号