首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This study attempts to understand the variations in the radiation and surface energy budget parameters during days of occurrence and non occurrence of convective activity such as thunderstorms at Ranchi (23°25??N, 85°26??E), India using the special experimental data sets obtained during pre-monsoon month of May, 2008. For this purpose five continuous thunderstorm days (TD) of varying intensity, along with three non-thunderstorm days (NTD) preceding the TD are considered. Thunderstorms occurred at site are multi-cellular in nature. Change of wind direction and strong gusty winds are noticed in TD cases. Pre-dominant wind direction is south westerly for the TD; it is northwesterly during NTD. Sudden drop of air temperature and rise of relative humidity and rise/drop in atmospheric pressure is noticed during TD are found to be proportional to the intensity of thunderstorm event. More partitioning of net radiation (QN) is in to latent heat flux (QE) and the contribution of sensible heat flux (QH) and soil heat flux (QG) are same during TD. But in the NTD more partitioning of QN is in to QH followed by QG that of QE. Significant differences in radiation and energy budget components are noticed during TD and NTD events.  相似文献   

2.
Atmospheric measurements from several field experiments have been combined to develop a better understanding of the turbulence structure of the stable atmospheric boundary layer. Fast response wind velocity and temperature data have been recorded using 3-dimensional sonic anemometers, placed at severalheights (1 m to 4.3 m) above the ground. The measurements wereused to calculate the standard deviations of the three components of the windvelocity, temperature, turbulent kinetic energy (TKE) dissipation andtemperature variance dissipation. These data were normalized and plottedaccording to Monin–Obukhov similarity theory. The non-dimensional turbulencestatistics have been computed, in part, to investigate the generalapplicability of the concept of z-less stratification for stable conditions. From the analysis of a data set covering almost five orders ofmagnitude in the stability parameter = z/L (from near-neutral tovery stable atmospheric stability), it was found that this concept does nothold in general. It was only for the non-dimensional standard deviation oftemperature and the average dissipation rate of turbulent kinetic energythat z-less behaviour has been found. The other variables studied here(non-dimensional standard deviations of u, v, and w velocity components and dissipation of temperature variance) did not follow the concept of z-less stratification for the very stable atmospheric boundary layer. An imbalance between production and dissipation of TKE was found for the near-neutral limit approached from the stable regime, which matches with previous results for near-neutral stability approached from the unstable regime.  相似文献   

3.
Local Imbalance of Turbulent Kinetic Energy in the Surface Layer   总被引:1,自引:1,他引:0  
We utilize experimental data collected in 2002 over an open field in Hanford, Washington, USA, to investigate the turbulent kinetic energy (TKE) budget in the atmospheric surface layer. The von Kármán constant was determined from the near-neutral wind profiles to be 0.36 ± 0.02 rather than the classical value of 0.4. The TKE budget was normalized and all terms were parameterized as functions of a stability parameter z/L, where z is the distance from the ground and L is the Obukhov length. The shear production followed the Businger–Dyer relation for −2 < z/L < 1. Contrary to the traditional Monin–Obukhov similarity theory (MOST), the shear, buoyancy and dissipation terms were found to be imbalanced due to a non-zero vertical transport over all stabilities. Motivated by this local imbalance, modified parameterizations of the dissipation and the turbulent transport were attempted and generated good agreement with the experimental data. Assuming stationarity and horizontal homogeneity, the pressure transport was estimated from the residual of the TKE budget.  相似文献   

4.
A deep understanding of turbulence structure is important for investigating the characteristics of the atmospheric boundary layer, especially over heterogeneous terrain. In the present study, turbulence intensity and turbulent kinetic energy (TKE) parameters are analyzed for different conditions with respect to stability, wind direction and wind speed over a valley region of the Loess Plateau of China during December 2003 and January 2004. The purpose of the study is to examine whether the observed turbulence intensity and TKE parameters satisfy Monin-Obukhov similarity theory (MOST), and analyze the wind shear effect on, and thermal buoyancy function of, the TKE, despite the terrain heterogeneity. The results demonstrate that the normalized intensity of turbulence follows MOST for all stability in the horizontal and vertical directions, as well as the normalized TKE in the horizontal direction. The shear effect of the wind speed in the Loess Plateau region is strong in winter and could enhance turbulence for all stability conditions. During daytime, the buoyancy and shear effect together constitute the generation of TKE under unstable conditions. At night, the contribution of buoyancy to TKE is relatively small, and mechanical shearing is the main production form of turbulence.  相似文献   

5.
We analyzed the structure and evolution of turbulent transfer and the wind profile in the atmospheric boundary layer in relation to aerosol concentrations during an episode of heavy haze pollution from 6 December 2016 to 9 January 2017. The turbulence data were recorded at Peking University’s atmospheric science and environment observation station. The results showed a negative correlation between the wind speed and the PM2.5 concentration. The turbulence kinetic energy was large and showed obvious diurnal variations during unpolluted (clean) weather, but was small during episodes of heavy haze pollution. Under both clean and heavy haze conditions, the relation between the non-dimensional wind components and the stability parameter z/L followed a 1/3 power law, but the normalized standard deviations of the wind speed were smaller during heavy pollution events than during clean periods under near-neutral conditions. Under unstable conditions, the normalized standard deviation of the potential temperature σ θ /|θ*| was related to z/L, roughly following a –1/3 power law, and the ratio during pollution days was greater than that during clean days. The three-dimensional turbulence energy spectra satisfied a –2/3 power exponent rate in the high-frequency band. In the low-frequency band, the wind velocity spectrum curve was related to the stability parameters under clear conditions, but was not related to atmospheric stratification under polluted conditions. In the dissipation stage of the heavy pollution episode, the horizontal wind speed first started to increase at high altitudes and then gradually decreased at lower altitudes. The strong upward motion during this stage was an important dynamic factor in the dissipation of the heavy haze.  相似文献   

6.
Thunderstorms are responsible for remarkable devastation when accompanied with lightning flashes, high wind gusts, torrential rain, hail and tornadoes. Weather hazards due to thunderstorms of such severe measure take place every year over Kolkata (22°32′N, 88°20′E), India during the pre-monsoon season (April–May). Prediction of severe thunderstorms is extremely important to cope with the devastations. However, forecasting severe thunderstorms is very difficult because the weather system is confined within a very small spatial-temporal scale. The network of observation systems is not adequate to detect such high frequency small scale weather. The purpose of the present study is to bring in the concept of Intuitionistic fuzzy logic as a decision — making technique to assess the predictability of severe thunderstorms over Kolkata in the premonsoon season. Different measures of entropies are used to extract the route of fuzziness. The intuitionistic fuzzy logic is implemented with ten years (1997–2006) observation of the occurrence/nonoccurrence of severe thunderstorms to assess the predictability. The result reveals that two consecutive severe thunderstorm days are highly probable after two consecutive non-thunderstorm days whereas the probability of severe thunderstorm is very less after three consecutive non-thunderstorm days during the pre-monsoon season over Kolkata. The result is compared with the box-and-whisker plot and validated with four years (2007–2010) observations of India Meteorological Department (IMD).  相似文献   

7.
Turbulence Intensity Parameters over a Very Complex Terrain   总被引:1,自引:1,他引:0  
Detailed knowledge of turbulence structure is important for the understanding of atmospheric phenomena in the boundary layer, especially over complex terrain. In the present study, turbulence intensity parameters are analyzed for different conditions regarding stability, wind speed and wind direction over a mountainous region. The purpose of the analysis is to verify whether the observed parameters follow Monin–Obukhov similarity theory (MOST), despite the terrain heterogeneity. The dataset was collected during an experimental campaign at the Nova Roma do Sul site, in southern Brazil, with a micrometeorological tower located near a sharp slope, approximately 400 m high. The results show that the normalized standard deviations of the vertical velocity component as well as the normalized standard deviation of temperature follow Monin–Obukhov similarity for all stability regimes, regardless of the wind direction. However the normalized standard deviation of the horizontal components of the turbulent velocity obeys the similarity relationship only for a limited range of the stability parameters.  相似文献   

8.
Summary Simulation studies have been carried out for two weather systems namely; a pre-monsoon thunderstorm over east coast of India and a weak cyclonic circulation associated with feeble low pressure area over south peninsular India. Two sets of forecast results are obtained: one using Advanced Regional Prediction System Model and other using Weather Research and Forecasting Model. The model performances are compared by examining the predicted parameters like mean sea level pressure, wind, moisture fields and rainfall. The rainfall prediction is assessed qualitatively by comparing the spatial distribution with satellite cloud images and quantitatively by comparing rainfall rates with Tropical Rainfall Measuring Mission products and/or the observed station values reported in Indian Daily Weather Reports. It is found that in case of idealized simulation of thunderstorm, Advanced Regional Prediction System Model has well predicted the spatial distribution of rainfall which is consistent with the clouding in satellite cloud images. It also has simulated the diverging winds at lower levels associated with downdraft during mature/dissipation stage of thunderstorm. Weather Research and Forecasting Model failed to predict these features. In case of a weak cyclonic circulation simulation experiment, Advanced Regional Prediction System model is able to simulate the rainy area better compared to those produced by Weather Research and Forecasting Model. Both models failed to produce observed heavy precipitation rates.  相似文献   

9.
The annual variation in planetary boundary layer (PBL) height is determined from the profiles of conserved thermodynamic variables, i.e., virtual potential temperature ?? v and equivalent potential temperature ?? e, using radiosonde data at per-humid climate region, Ranchi (23°42??N, 85°33??E, 610?m asl) and semi-arid region, Anand (23°35??N, 72°55??E, 45.1?m asl), India. Of all the variables, the ?? v profile seems to provide the most reasonable estimate of the PBL height. This has been supplemented by T-Phi gram analysis for specific days. It has been found that in winter the height of boundary layer is very low due to subsidence and radiational cooling, while pre-monsoon months exhibit the most variable convection. It may be inferred that synoptic conditions accompanied by a variety of weather phenomena such as thunderstorms, onset and withdrawal of monsoons, etc. control the ABL over Ranchi, while daytime solar insolation and nighttime radiative cooling mainly control the ABL over Anand.  相似文献   

10.
A comprehensive study of the turbulent structure of the atmospheric boundary layer in unstable conditions has been carried out using turbulence data obtained from the Gobi desert, grassland, suburban and urban sites based on the same instrumentation, data acquisition and data processing systems. The normalized standard deviations of u and v over the suburban and urban sites are systematically smaller than those over the Gobi desert and grassland sites. However, the normalized standard deviations of w, temperature and humidity q over the suburban and urban sites are quite close to those over the Gobi desert and grassland sites. The normalized humidity standard deviations are quite similar to those of temperature over the grassland and suburban sites. The temperature and humidity spectra are found to be independentof atmospheric stability in all frequency ranges, but spectra obtained from the Gobi desert and grassland sites reveal flatter peaks than those of the suburban and urban sites in the lower frequency range. The normalized spectral curves of temperature and humidity are independent of atmospheric stability both at high and low frequencies. The spectral characteristics of humidity over the grassland and suburban sites aresimilar to those of temperature, but the humidity spectra over the Gobi desert site are quite different from temperature spectra due to evaporation and/or large eddies in the boundary layer.  相似文献   

11.
We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.  相似文献   

12.
Data collected in the surface layer in a northern suburban area of Nanjing from 15 November to 29 December 2007 were analyzed to examine the Monin-Obukhov similarity for describing the turbulent fluctu- ations of 3D winds under all stability conditions and to obtain the turbulence characteristics under different weather conditions. The results show that the dimensionless standard deviations of turbulent velocity com- ponents (σ u /u* , σ v /u* , σ w /u * ) and dimensionless turbulent kinetic energy (TKE) can be well described by "1/3" power law relationships under stable, neutral, and unstable conditions, with σ u /u * > σ v /u * > σ w /u* . Land use and land cover changes mainly impact dimensionless standard deviations of horizontal component fluctuations, but they have very little on those of the vertical component. The dimensionless standard devi- ations of wind components and dimensionless TKE are remarkably affected by different weather conditions; the deviations of horizontal wind component and dimensionless TKE present fog day > clear sky > overcast > cloudy; the trend of the vertical wind component is the reverse. The surface drag coefficient at a Nan- jing suburban measurement site during the observation period was obviously higher than at other reported plains and plateau areas, and was approximately one order larger in magnitude than the reported plains areas. Dimensionless standard deviation of temperature declined with increasing |z /L| with an approximate "-1/3" slope in unstable stratification and "-2/3" slope in stable stratification.  相似文献   

13.
We simulate the microscale heterogeneities of turbulent variables observed at a complex site for different wind directions. The atmospheric computational fluid dynamics (CFD) results are compared with an ensemble of 36 months of data collected at the experimental site SIRTA “Site Instrumental de Recherche par Télédétection Atmosphérique”, located near Paris (France) in a semi-urban environment. The experimental data show that the normalized turbulent kinetic energy (TKE) k/U 2 (where k is TKE and U is the wind speed) at 10-m height, for two different locations, is highly dependent on wind direction and strongly influenced by trees. These measurements show a strong increase of the normalized TKE downstream of the forest canopies with a large variability within the 36-month period in part due to the variation of the tree foliage. The numerical simulations are carried out using the CFD code Code_Saturne with the standard k?ε closure, in neutral stratification. The buildings are taken into account explicitly in the mesh and the forested areas are modelled with two approaches: the classical roughness wall law and a drag porosity. A comparison has been performed between the calculated values and the median of measured values of the normalized TKE and the normalized friction velocity, for each wind sector of 10°. A very good agreement is obtained with the drag porosity model, whereas the classical roughness law leads to a strong underestimation downstream of the forested areas. However, this large improvement of the results using the drag porosity model can only be obtained with a refinement of the grid, especially in forested areas, and an accurate land-use map.  相似文献   

14.
A three-dimensional, non-hydrostatic mesoscale model is used to study boundary-layer structure over an area characterized by the city of Copenhagen, the Øresund strait, and adjacent coastal farmland. Simulations are compared with data obtained on June 5, 1984 during the Øresund experiment.Under moderately strong wind conditions, a stable internal boundary layer (IBL) developed over the Øresund strait during the day. Near-surface winds decelerate over water due to diminished vertical momentum transfer.The turbulent kinetic energy field closely reflects the surface roughness distribution due to the imposed relatively strong wind forcing. TKE budgets over water, farmland and a city area are discussed by inspection of vertical profiles of the individual terms. The buoyancy term is used to indicate IBL heights because it changes sign at the boundary between different stability regimes. Measured and simulated dissipation rates show a decrease in the transition zone as the air travels over water and an abrupt increase when the IBL over a downwind city area is intersected. The top of the stable IBL is characterized by a minimum in the vertical TKE profile.  相似文献   

15.
We estimated the turbulent kinetic energy (TKE) dissipation rate for thirty-two 1-h intervals of unstable stratification covering the stability range 0.12 ≤ −z/L ≤ 43 (z/L is the ratio of instrument height to the Obukhov length), by fitting Kolmogorov’s inertial subrange spectrum to streamwise spectra observed over a desert flat. Estimated values are compatible with the existence of local equilibrium, in that the TKE dissipation rate approximately equalled the sum of shear and buoyant production rates. Only in the neutral limit was the turbulent transport term in the TKE budget measured to be small.  相似文献   

16.
南京一次雷雨的闪电特征与多尺度资料分析   总被引:2,自引:2,他引:2  
顾媛  魏鸣 《气象科学》2013,33(2):146-152
为探究闪电与其他气象要素之间的关系及可预报性,本文利用探空资料、多普勒天气雷达资料、闪电定位仪资料、卫星云图资料和地面自动气象站资料,对2009年7月7日南京雷雨天气进行多尺度分析.结果表明:暴雨过程中负地闪始终占较大比例,正地闪的数目在雷暴消散阶段稍有增长;地闪频数与地面风速时序变化呈现很好的一致性;雷暴来临前风矢位温特征表明对流云发展高度较高,对流层顶的薄层超低温为强对流发生提供了热力不稳定的先兆信息,整层大气深厚的顺时针垂直切变及中低层偏南风为强对流天气提供了有利的动力和水汽条件,为雷暴潜势预报提供了依据;地闪分布与雷达回波顶高、强的风切变区域以及暴雨落区有明显对应关系;负地闪密集区位于雷达强回波核前方强度为40 ~45dBz区域处,对于回波的未来移向有指示作用.  相似文献   

17.
雷暴探测研究的进展   总被引:2,自引:0,他引:2  
陈洪滨  朱彦良 《大气科学》2012,36(2):411-422
雷暴是指伴有雷鸣和闪电的强对流性天气系统,它一方面是春末和夏季许多地区主要的降水源,另一方面在全球范围内每年都要造成重大的人员和财产损失,因此是天气学、气象学和大气科学中的重要研究对象.雷暴发生和发展机制与条件的研究,雷暴(潜势)的数值天气预报,雷暴的临近预报预警,都需要多种技术手段获取的观测资料来支撑.过去半个多世纪...  相似文献   

18.
The variations in several climatological characteristics are studied on the basis of hourly (half-hourly) meteorological terminal observations at 51 aerodromes of the Russian Federation in 2001–2015. For every aerodrome extreme temperature, wind speed and gusts, and QNH are analyzed for the above period. Using data for three consecutive 5-year periods, variations in the number of days with temperature above 30°C or below -30°C, with wind speed of ≥10 m/s and gusts of ≥15 m/s are considered. The occurrence frequency of significant weather events affecting the takeoff and landing (fog, blizzard, freezing precipitation, thunderstorm) is investigated. The results for aerodromes with positive or negative trends in the occurrence frequency of weather phenomena in 2001–2015 are presented.  相似文献   

19.
The structure of the marine atmospheric boundarylayer and the validity ofMonin–Obukhov similarity theory over the seahave been investigated using longterm measurements. Three levels of turbulencemeasurements (at 10 m, 18 mand 26 m) at Östergarnsholm in themiddle of the Baltic Sea have beenanalysed. The results show that turbulentparameters have a strong dependenceon the actual height due to wave influence.The wind profile and thus thenormalised wind gradient are very sensitiveto wave state. The lower part of theboundary layer can be divided into three heightlayers, a wave influenced layerclose to the surface, a transition layer andan undisturbed ordinary surfacelayer; the depth of the layers is determinedby the wave state. This heightstructure can, however, not be found for thenormalised dissipation, which is onlya function of the stability, except duringpronounced swell where the actualheight also has to be accounted for. Theresults have implications for the heightvariation of the turbulent kinetic energy(TKE) budget. Thus, the imbalancebetween production and dissipation willalso vary with height according to thevariation of wave state. This, in turn,will of course have strong implicationsfor the inertial dissipation method, inwhich a parameterisation of the TKEbudget is used.  相似文献   

20.
In this study, the impact of different land initial conditions on the simulation of thunderstorms and monsoon depressions is investigated using the Weather Research and Forecasting (WRF) model. A control run (CNTL) and a simulation with an improved land state (soil moisture and temperature) using the High Resolution Land Data Assimilation System (HRLDAS, experiment name: EHRLDAS) are compared for three different rainfall cases in order to examine the robustness of the assimilation system. The study comprises two thunderstorm cases (one in the pre-monsoon and one during the monsoon) and one monsoon depression case that occurred during the Interaction of Convective Organisation, Atmosphere, Surface and Sea (INCOMPASS) field campaign of the 2016 Indian monsoon. EHRLDAS is shown to yield improvements in the representation of location-specific rainfall, particularly over land. Further, it is found that surface fluxes as well as convective indices are better captured for the pre-monsoon thunderstorm case in EHRLDAS. By analysing components of the vorticity tendency equation, it is found that the vertical advection term is the major contributor towards the positive vorticity tendency in EHRLDAS compared to CNTL, hence improving localised convection and consequently facilitating rainfall. Significant improvements in the simulation of the pre-monsoon thunderstorm are noted, as seen using Automatic Weather Station (AWS) validation, whereas improvements in the monsoon depression are minimal. Further, it is found that vertical advection (moisture flux convergence) is the major driver modulating the convective circulation in localised thunderstorm (monsoon depression) cases and these dynamics are better represented by EHRLDAS compared to CNTL. These findings underline the importance of accurate and high resolution land-state conditions in model initial conditions for forecasting severe weather systems, particularly the simulation of localised thunderstorms over India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号