首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil dust aerosol is the largest contributor to aerosol mass concentrations in the troposphere and has considerable effects on air quality and climate. Arid and semi-arid areas of East Asia are one of the important dust source regions thus it is crucial to understand dust mobilization and accurately estimate dust emissions in East Asia. However, present dust models still contain large uncertainties with dust emissions that remain a significant contributor to the overall uncertainties in the model. In this study, we attempt to reduce these uncertainties by using an inverse modeling technique and obtain optimized dust emissions. We use Moderate Resolution Imaging Spectrometer (MODIS) aerosol optical depths (AODs) and groundbased mass concentrations of particles less than 10 μm in aerodynamic diameter (PM10) observations over East Asia in May 2007. The MODIS AODs are validated with AErosol RObotic NETwork (AERONET) AODs. The inversion uses the maximum a posteriori method and the GEOS-Chem chemical transport model (CTM) as a forward model. The model error is large over dust source regions including the Gobi Desert and Mongolia. We find that inverse modeling analyses from the MODIS and PM10 observations consistently result in decrease of dust emissions over Mongolia and the Gobi Desert. Whereas over the Taklamakan Desert and Manchuria, the inverse modeling analyses from both observations yield contrast results such as increase of dust sources using MODIS AODs, while decrease of those using PM10 observations. We discuss some limitations of both observations to obtain the optimized dust emissions and suggest several strategies for the improvement of dust emission estimates in the model.  相似文献   

2.
The operational Asian Dust Aerosol Model (ADAM)1 in Korea Meteorological Administration has been modified to the ADAM2 model to be used as an operational forecasting model all year round not only in Korea but also in the whole Asian domain (70-160°E and 5-60°N) using the routinely available World Meteorological Organization (WMO) surface reporting data and the Spot/vegetation Normalized Difference Vegetation Index (NDVI) data for the period of 9 years from 1998 to 2006. The 3-hourly reporting WMO surface data in the Asian domain have been used to re-delineate the Asian dust source region and to determine the temporal variation of the threshold wind speed for the dust rise. The dust emission reduction factor due to vegetation in different surface soil-type regions (Gobi, sand, loess, and mixed soil) has been determined with the use of NDVI data. It is found that the threshold wind speed for the dust rise varies significantly with time (minimum in summer and maximum in winter) and surface soil types with the highest threshold wind speed of 8.0 m?s?1 in the Gobi region and the lowest value of 6.0 m?s?1 in the loess region. The statistical analysis of the spot/vegetation NDVI data enables to determine the emission reduction factor due to vegetation with the free NDVI value that is the NDVI value without the effect of vegetation and the upper limit value of NDVI for the dust rise in different soil-type regions. The modified ADAM2 model has been implemented to simulate two Asian dust events observed in Korea for the periods from 31 March to 2 April 2007 (a spring dust event) and from 29 to 31 December 2007 (a winter dust event) when the observed PM10 concentration at some monitoring sites in the source region exceeds 9,000 μg m?3. It is found that ADAM2 model successfully simulates the observed high dust concentrations of more than 8,000 μg m?3 in the dust source region and 600 μg m?3 in the downstream region of Korea. This suggests that ADAM2 has a great potential for the use of an operational Asian dust forecast model in the Asian domain.  相似文献   

3.
The Asian dust forecasting model, Mongolian Asian Dust Aerosol Model (MGLADAM), has been operated by the National Agency for Meteorology and Environmental Monitoring of Mongolia since 2010, for the forecast of Asian dust storms. In order to evaluate the performance of the dust prediction model, we simulated Asian dust events for the period of spring 2011. Simulated features were compared with observations from two sites in the dust source region of the Gobi desert in Mongolia, and in the downstream region in Korea. It was found that the simulated wind speed and friction velocity showed a good correlation with observations at the Erdene site (one of the sites in the Gobi desert). The results show that the model is proficient in the simulation of dust concentrations that are within the same order of magnitude and have similar start and end times, compared with PM10 observed at two monitoring sites in the Gobi regions. Root Mean Square Error (RMSE) of the dust simulation ranges up to 200 μg m?3 because of the high concentrations in source regions, which is three times higher than that in the downstream region. However, the spatial pattern of dust concentration matches well with dust reports from synoptic observation. In the downwind regions, it was found that the model simluated all reported dust cases successfully. It was also found that the RMSE in the downwind region increased when the model integration time increased, but that in the source regions did not show consistent change. It suggests that MGLADAM has the potential to be used as an operational dust forecasting model for predicting major dust events over the dust source regions as well as predicting transported dust concentrations over the downstream region. However, it is thought that further improvement in the emission estimation is necessary, including accurate predictions in surface and boundary layer meteorology. In the downwind regions, background PM10 concentration is considerably affected by other aerosol species, suggesting that a consideration of anthropogenic pollutants will be required for accurate dust forecasting.  相似文献   

4.
Asian dust events occurred in Asia during March 2010 were simulated using the Asian Dust Aerosol Model 2 (ADAM2). The performance of the model for simulations of surface dust concentrations and dust event occurrences was tested at several monitoring sites located in the dust source region and the downstream region of Korea. The observed and modeled dust event occurrences at each monitoring site were defined with the hourly observed and modeled dust concentrations that were used to evaluate the performance of the model by constructing a contingency table for the dust event occurrence. It was found that the model simulated quite well the starting and ending times of dust events with their peak dust concentrations for most dust events occurred both in the dust source region and the downstream region of Korea. However, the model failed to simulate a few dust events observed in both regions mainly due to the inaccurate simulations of the meteorological fields. Inaccurate simulations of wind speeds have caused for the model to simulate dust events poorly in the dust source region whereas poor simulations of precipitation of the fifth-generation mesoscale model (MM5) model have led to miss dust events in the downstream region of Korea. The contingency table made with the hourly data for the dust event occurrence made it possible to evaluate the ADAM2 model for the simulation of the dust event occurrence. It was found that the model has the probabilistic simulation capability for dust events of about 78% with the hit rate of more than 83% and the false alarm rate of about 27% for the dust events occurred during March in 2010. The probabilistic capability of the model could be much improved by improving the meteorological model (MM5 model).  相似文献   

5.
Results are presented of monitoring measurements of the mass concentration of PM10 (particles with the size of less than 10 μm) and PM2.5 (less than 2.5 μm) fine-dispersed aerosol fractions at the Sainshand and Zamyn-Üüd stations located in the Gobi Desert of Mongolia. Revealed are the annual variations of the mass concentration of PM10 and PM2.5 fine-dispersed aerosol fractions at these stations in 2008. The maximum values of monthly mean concentration during the year were observed in May in the period of dust storms. On the days with the steady calm weather, the mass concentrations of PM10 and PM2.5 varied within 5–8 μg/m3 (PM10) and 3–5 μg/m3 (PM2.5) at the Sainshand station. During the dust storms, the maximum values of concentration exceeded 1400 μg/m3 (PM10) and 380 μg/m3 (PM2.5) that is by 28 (PM10) and 15 (PM2.5) times higher than the maximum permissible concentration for the European Union. Results are given of studying the frequency and duration of dust storms in recent 20 years (1991–2010) in the Eastern Gobi Desert.  相似文献   

6.
Dust storms commonly occur during the pre-monsoon (summer) season in north and northwest parts of India. Characteristics of dust events of the pressure gradient type are well understood. However, comprehensive studies on mechanism of convective dust storms in India are few. A convective dust storm which occurred on 21 April 2010 in association with a western disturbance over North India was hence studied. In the absence of in situ data, we used available satellite data to study the event. Dust storm that occurred on 20 April 2010 on the surface of the Thar Desert transported dust to northern and northwestern parts of India (Rajasthan, Haryana, Delhi and some parts of Uttar Pradesh). This formed a background of aerosols that affected the thunderstorm formed in association with western disturbance and the strong updraft in the thunderstorm carried the dust lingering in the atmosphere to higher altitudes. Large amount of aerosols carried to higher altitude suppressed the chance of precipitation by affecting the cloud top microphysics. Enhancement in evaporation due to an increase in aerosol concentration and strong downdrafts during dissipation of the thunderstorm resulted in emission of dust particles which led to the convective dust event of 21 April 2010.  相似文献   

7.
Aerosol properties of mineral particles in the far field of an African desert dust outbreak were investigated that brought Saharan dust over the Mediterranean in different layers to Portugal. The measurements were performed inside the project Desert Aerosols over Portugal (DARPO) which was linked to the Saharan Mineral Dust Experiment (SAMUM). The maximum particle mass concentration was about 150 μg m−3 and the corresponding scattering coefficient was 130 M m−1 which results in a mass scattering efficiency of 0.87 m2 g−1. The aerosol optical depth reached values up to 0.53 and the lidar ratio was between 45 and 50 in the whole dust loaded column. A comparison between particle size distributions and refractive indices derived from different instruments and models showed a general good agreement but some minor differences could also be observed. Measurements as well as calculations with a particle transport model suggest that there is a relatively higher concentration of very large particles in the upper region of the dust layer than on the surface which is likely connected with meteorological conditions at the observational site (Évora, Portugal).  相似文献   

8.
A data assimilation (DA) system using ground PM10 observation for Asian Dust Aerosol Model version 2 (ADAM2), which is the operational dust forecasting model of Korea Meteorological Administration (KMA), has been developed with the optimal interpolation (OI) method. The observations are provided by the PM10 network operated by KMA. Three DA experiments are performed to simulate a dust event observed in Korea from 1 March to 31 May 2009 with different assimilation cycles of 24 (DA24), 12 (DA12), and 06 hours (DA06). 48-hour forecasts from the adjusted Initial Condition (IC) of dust concentration are compared with control simulation (CTL) and observation from independent stations. It is found that CTL simulates spatial patterns of dust emitted and transported associated with a developing low pressure system over the dust source regions quite well, compared with satellite measurement. However, it appears that there is considerable uncertainty in estimating the concentration of dust. With IC adjustment, the model simulates improved dust concentration, showing considerably reduced RMSE, particularly for the prediction within 12 hours of forecast. At the same time, it is shown that the time interval of DA affects the predictability of ADAM2, so that DA06 appears to have better predictability within a 12-hour simulation, reducing RMSE by 50% compared with CTL. This suggests that assimilating PM10 to the dust prediction model using OI has the potential to predict air quality in Korea when the cycle of assimilation is sufficiently short.  相似文献   

9.
Model simulations and hydrological reanalysis data for 2007 are applied to investigate the impact of long-range desert dust transport on hydrometeor formation over coastal East Asia.Results are analyzed from Hong Kong and Shanghai,which are two representative coastal cities of East Asia.Long-range desert dust transport impacts mainly spring and summer clouds and precipitation over coastal East Asia.In spring,clouds and precipitation come mainly from large-scale condensation and are impacted mainly by dust from the Gobi,Sahara,and Thar deserts.These desert dusts can participate in the precipitation within and below the clouds.At lower latitudes,the dust particles act mainly as water nuclei.At higher latitudes,they act as both water nuclei and ice nuclei.The effect of Gobi,Sahara,and Thar dust on large-scale clouds and precipitation becomes stronger at higher latitudes.In summer,clouds and precipitation over coastal East Asia come mainly from convection and are impacted mainly by dust from the Taklamakan,Arabian,and Karakum-Kavir deserts.Most Taklamakan dust particles can participate in precipitation within convective clouds as ice nuclei,while Arabian and Karakum-Kavir dust particles participate only as water nuclei in precipitation below the clouds.The effect of Taklamakan dust on convective clouds and precipitation becomes stronger at lower latitudes.Of all the desert dusts,that from the Gobi and Taklamakan deserts has the relatively largest impact.Gobi dust impacts climate change in coastal East Asia by affecting spring water clouds at higher latitudes.  相似文献   

10.
科尔沁沙地流动沙丘与玉米地辐射特性比较分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2001年夏季内蒙古科尔沁沙地地区大气边界层实验观测资料,对比分析了流动沙丘和临近流动沙丘的玉米地两种典型下垫面的辐射通量特征。结果表明:流动沙丘和玉米地地区的总辐射与大气逆辐射相近,差异不足2%。净辐射、地表反照率、有效辐射存在较大差异,流动沙丘的净辐射明显小于玉米地,其中反照率差异的贡献约为60%,长波辐射差异的贡献约为40%。流动沙丘的反照率、有效辐射明显大于玉米地,反照率高出中国西北HEIFE实验沙漠地区约10%,有效辐射则小于沙漠地区。  相似文献   

11.
通过对甘肃省河西黑河流域沙漠、戈壁地区1990年夏季?ngstr?n大气浑浊度系数的计算分析,总结出了该种特殊下垫面条件下大气浊度特征。并由大气浑浊度系数及波长指数的变化,定性讨论了这一地区大气中沙尘的消光特性及其生成、消散过程。进一步应用Volz方法和Arao方法粗略地估计了这一地区大气在不同条件下的沙尘含量。  相似文献   

12.
尘卷风的形成、结构和卷起沙尘过程的数值研究   总被引:6,自引:0,他引:6  
文中应用数值算法对尘卷风的发展过程进行了模拟计算与分析。通过模拟计算得到了尘卷风的内部详细结构和运动过程。研究表明尘卷风是由于地面局部增热不均匀而形成的一种特殊的旋转对流运动。在尘卷风形成的过程中 ,外围空气通过贴近地面的薄层被地面加热后流向中心部位 ,外围空气的旋转能量在中心部位得到加强形成尘卷风 ,其旋转能量是热泡原来具有的旋转能量的局部集中和一部分势能转化而形成的 ,其旋转方向是由热对流泡的初始旋转方向所决定。尘卷风是一种类兰金涡 ,旋转速度和压力的分布具有兰金组合涡的特点 ;在成熟阶段 ,尘卷风的详细结构可以粗略地分为 4个区域———地面附近的气流汇聚区域、柱状的涡核区域、旋风与地面作用形成的转角风区域以及涡核外部的外围气流区域。转角区域可以细分为两个子区域———外围的方位角风区域(在该区域 ,上升气流运动方向与轴线之间有一定的夹角 ,称为方位角 )和中心的下沉停滞气流区域。尘卷风中心的低压和急速的上升气流可使大量沙尘扬起 ,不同直径的沙尘颗粒在尘卷风的作用下运动轨迹不同 ,因此卷起不同大小沙尘的尘卷风的外形也是不同的。  相似文献   

13.
The cross-correlation function was used in conjunction with the daily values of the aerosol index (AI) from the Total Ozone Mapping Spectrometer (TOMS) to establish and qualify a source-receptor relationship between dust over the Gobi desert and the West Coast of the United States.An objective method that can be used to determine the trajectory of dust transport and the transportation time at different locations along the trajectory across the Pacific are presented in this report.The spring season was analyzed (March to May),and the results showed that dust reaches the western United States in approximately five to six days.Although dust transport from the Gobi desert was demonstrated in the present study,the proposed cross-correlation technique can be applied to other regions and can be used to obtain useful insights on relationships between major dust sources and downwind receptor locations utilizing remotely sensed dust estimates.  相似文献   

14.
西北干旱区地表辐射特性的初步研究   总被引:11,自引:10,他引:11  
利用2000年5-6月敦煌(戈壁)陆面过程野外观测实验加强期的地表辐射观测资料以及HEIFE中绿洲(张掖)和沙漠两站1991年同期的地表辐射观测资料,分析了三种不同下垫面晴天地表辐射各分量的日变化特征。结果表明:绿洲地区和沙漠区总辐射略高于敦煌戈壁区;地表反射率沙漠区和敦煌区明显高于绿洲区,地面有效辐射戈壁区最大,张掖绿洲区最小,地表净辐射张掖绿洲区明显大于沙漠和戈壁区。  相似文献   

15.
The Saharan Mineral Dust Experiment (SAMUM) was conducted in May and June 2006 in Tinfou, Morocco. A H-TDMA system and a H-DMA-APS system were used to obtain hygroscopic properties of mineral dust particles at 85% RH. Dynamic shape factors of 1.11, 1.19 and 1.25 were determined for the volume equivalent diameters 720, 840 and 960 nm, respectively.
During a dust event, the hydrophobic number fraction of 250 and 350 nm particles increased significantly from 30 and 65% to 53 and 75%, respectively, indicating that mineral dust particles can be as small as 200 nm in diameter. Log-normal functions for mineral dust number size distributions were obtained from total particle number size distributions and fractions of hydrophobic particles. The geometric mean diameter for Saharan dust particles was 715 nm during the dust event and 570 nm for the Saharan background aerosol.
Measurements of hygroscopic growth showed that the Saharan aerosol consists of an anthropogenic fraction (predominantly non natural sulphate and carbonaceous particles) and of mineral dust particles. Hygroscopic growth and hysteresis curve measurements of the 'more' hygroscopic particle fraction indicated ammonium sulphate as a main component of the anthropogenic aerosol. Particles larger than 720 nm in diameter were completely hydrophobic meaning that mineral dust particles are not hygroscopic.  相似文献   

16.
In May/June 2006, the largest mineral dust experiment to date (Saharan Mineral Dust Experiment, SAMUM-1) was conducted in Southern Morocco. The aim was to characterize dust particles near the world's largest mineral dust source, and to quantify dust-related radiative effects. At one of the two ground-based measurement sites dust particle size distribution, optical, hygroscopic, chemical and structural particle characteristics were measured. One research aircraft mainly measured solar spectral irradiances and surface albedo. The other aircraft provided in situ physical aerosol measurements and samples and lidar profiles through the dust layers. Three ground-based lidars were operated at the second ground-based measurement site. They determined optical dust properties, particle shape and temporal development of dust layers. Columnar, ground-based sun photometer measurements complemented the lidar data. Additionally a station in Évora, Portugal monitored dust outbreaks from the North African source region to the Iberian Peninsula during SAMUM-1.
Volumetric and columnar closure exercises utilized these detailed measurements of dust characteristics together with optical and radiative transfer models. Concurrent developments of a mesoscale dust transport model were validated with the experimental data. The paper gives an overview over rationale and design of SAMUM-1, introduces and highlights the subsequent reports on experimental and modelling results.  相似文献   

17.
The aerosol index (AI) of the Total Ozone Mapping Spectrometer (TOMS) satellite data (1979 2001) was analyzed to reveal the climatological long-distance path of dust transport from Asia to North America. The AI in the west coast of the United States is highly correlated with that in the Gobi desert. Additionally, from the TOMS satellite images, it can be seen that very strong plumes advect from Asia to the west coast of North America in typical dust storm cases. When applying the sourcereceptor relationship to detect the northern dust transport path between the Gobi source region and the west coast of the United States receptor region, it is evident that the dust plume can be transported northward beyond 60°N from its source region and that it takes 5 to 6 days to reach the west coast of the United States. The cross correlation technique shown in this work is a useful tool that can be applied in other regions to give useful insights into relationships between major dust sources and downwind receptor locations by using remotely sensed dust observations.  相似文献   

18.
Dust sediments collected from 1995 to 1998 in Beijing, Dunhuang, Inner Mongolia, Kashi, the Kunlun Mountains, Lanzhou, Ningxia, the Taklimakan Desert, and Xi‘an, China, were characterized in terms of their physical, chemical, and mineralogical properties. Most aerosols and dust analysed ranged in texture from silty clay to clay loam. Their median particle diameters (Mds) generally ranged between 5 to 63μm,coinciding with those of loess from central China and the finest sand from northwestern China. The dust sediments were characterized by a predominance of SiO2 and Al2O3, followed by K2O. Their SiO2/Al2O3and K2O/SiO2 molar ratios ranged from 5.17 to 8.43 and from 0.009 to 0.0368, respectively. The mass concentration spectrum during a dust storm showed a single peak, rather than the triple peak generally observed under clear sky conditions. The dominant minerals were chlorite, illite, calcite, and dolomite.These physical, chemical, and mineralogical properties were consistent with those of aeolian soils and loess in western and central China. The results suggest that aerosols and fine-gained fractions of dust sediments collected in northern China are mainly composed of soil material transported from the arid and semiarid regions of China and Mongolia by prevailing winds. The rate of deposition and properties of dust falling on eastern China were strongly influenced by meteorological conditions, season, latitude, longitude, and altitude of the sampling sites.  相似文献   

19.
In this study, a regional air quality model system (RAQMS) was applied to investigate the spatial distributions and seasonal variations of atmospheric aerosols in 2006 over East Asia. Model validations demonstrated that RAQMS was able to reproduce the evolution processes of aerosol components reasonably well. Ground-level PM10 (particles with aerodynamic diameter ≤10 μm) concentrations were highest in spring and lowest in summer and were characterized by three maximum centers: the Taklimakan Desert (~1000 μg m-3), the Gobi Desert (~400 μg m-3), and the Huabei Plain (~300 μm-3) of China. Vertically, high PM10 concentrations ranging from 100 μg m-3 to 250 μg m-3 occurred from the surface to an altitude of 6000 m at 30o--45oN in spring. In winter, the vertical gradient was so large that most aerosols were restricted in the boundary layer. Both sulfate and ammonium reached their highest concentrations in autumn, while nitrate reached its maximum level in winter. Black carbon and organic carbon aerosol concentrations reached maximums in winter. Soil dust were strongest in spring, whereas sea salt exerted the strongest influence on the coastal regions of eastern China in summer. The estimated burden of anthropogenic aerosols was largest in winter (1621 Gg) and smallest in summer (1040 Gg). The sulfate burden accounted for ~42% of the total anthropogenic aerosol burden. The dust burden was about twice the anthropogenic aerosol burden, implying the potentially important impacts of the natural aerosols on air quality and climate over East Asia.  相似文献   

20.
The mineralogy and possible sources of spring dust particles over Beijing   总被引:2,自引:0,他引:2  
A severe Asian Dust Storm (ADS) event occurred on 16-17 April 2006 in northern China. The mineral compositions of dust samples were analyzed using X-ray diffraction (XRD). The results indicated that dust particles of the "17 April 2006" dust storm were dominated by quartz (37.4%) and clay (32.9%), followed by plagioclase (13.7%), with small amounts of calcite, K-feldspar, dolomite, hornblende and gypsum (all less than 10%). The clay fractions with diameter less than 2 μm were separated from the dust storm particles by centrifuging and were further analyzed by XRD. The results revealed that the clay species were mainly illite/smectite mixed layers (I/S) (49%) and illite (34%), with small amount of kaolinite (8%) and chlorite (9%).
In order to evaluate the feasibility of using the mineralogy to trace the sources of dust particles, the XRD results of the "17 April 2006" dustfall particles were compared with the dust particles over past years. The results confirmed that the finer dust particles represented by the ADS PM10 displayed a smaller quartz/clay ratio than the dustfall particles. The dust storm particles, either from the ADS PM10 or from the "17 April 2006" dustfall, showed a lower level of dolomite contents and lower dolomite/clay ratios compared with the non-dust storm dustfall particles. This implies that dolomite could be used to distinguish between the dust contributions from local and non-local sources. Similar trends were found for the gypsum and the gypsum/clay ratio. Moreover, the two dustfall samples had a lower level of illite/smectite mixed layers and a higher level of illite than airborne PM10, implying that the dustfall particles tend to be enriched with illite in its clay fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号