首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李军  黄敬峰  游松财 《地理科学》2012,(11):1384-1390
以浙江省仙居县为实验样区,通过气温空间分布的地形调节统计模型,使用10个气象站(哨)气温资料和4种不同空间分辨率的DEM(5 m,源于1∶1万数字化地形图;30 m,来源于Aster GDEM v2;90 m,来源于SRTMv4.1;900 m,源于GTOPO30’)模拟不同空间尺度年均气温空间分布,比较其误差大小及随宏观地形(海拔高度)和微观地形(坡度和坡向)的分布差异。结果表明:基于4种不同空间分辨率DEM模拟气温呈较大空间分布差异性;随着DEM空间分辨率减小,误差逐渐增加,空间差异性降低。微观地形因子(坡度和坡向)随空间分辨率的变化产生显著变化,明显影响气温空间分布,不同坡度和坡向间年均气温差最高可达到10~12.5℃,最小仅为1.9~2.6℃。  相似文献   

2.
贵州高原复杂地形下太阳总辐射精细空间分布   总被引:1,自引:0,他引:1  
海拔、坡度、坡向以及周围地形遮蔽作用,造成山区各部位接受到的太阳辐射能有很大差异. 在前人研究的基础上,对以前的模型进行了一些改进,考虑了坡度、坡向和地形相互遮蔽作用对复杂地形下天文辐射的影响,基于数字高程模型(DEM)数据,研制了以复杂地形下天文辐射为起始数据的复杂地形下太阳总辐射的分布式模型,在模型中还考虑了散射辐射的各向异性及坡地反射辐射对复杂地形下太阳总辐射的影响.应用100 m×100 m分辨率的DEM数据及气象站常规观测气象资料,计算了贵州高原复杂地形下100 m×100 m分辨率的复杂地形下太阳总辐射.结果表明:(1) 局地地形因子如坡度、坡向、地形遮蔽等对太阳总辐射影响显著,地形对复杂地形下太阳总辐射的影响是不容忽视的.(2)在缺乏复杂地形下坡面考察资料的情况下,建立以常规气象站观测资料为主的物理经验统计模型是实现细网格辐射资源计算的可行途径.  相似文献   

3.
旅游用地作为城市旅游发展的载体,其用地选择对于旅游地可持续发展与生态保护具有重要意义。以张家界为例,分析了地形因子影响下的旅游用地结构及其成因机制。研究结果表明:(1)张家界旅游用地主要集中在海拔200~1 000 m和坡度5°~35°的范围,沿坡向的用地在135°~225°和315°~360°更占优势;(2)旅游用地中水域和建设用地集中在海拔600 m和25°坡度以下地段,而林草地则在海拔200~1 000 m和坡度5°~35°地段更占优势,分布相对均匀;(3)各类旅游用地与海拔和坡度具有更高的相关性,其拟合系数在0.6以上,坡向与旅游用地的相关性较低,拟合系数仅为0.06。城市旅游用地结构是城市旅游发展中各类用地在资源、区位以及市场影响下的结果,是人地关系相互作用的重要体现。城市旅游用地结构特征指示了城市发展规模、环境容量以及发展路径等,对于城市旅游的持续发展和生态保护具有重要意义。  相似文献   

4.
起伏地形下黄河流域太阳直接辐射分布式模拟   总被引:11,自引:0,他引:11  
基于数字高程模型(DEM)数据和气象站观测资料建立了起伏地形下太阳直接辐射分布式计算模型,模型充分考虑了地形因子(坡向、坡度、地形相互遮蔽)对起伏地形下太阳直接辐射空间分布的影响;以1km×1km分辨率的DEM数据作为地形的综合反映,计算了起伏地形下黄河流域1km×1km分辨率太阳直接辐射的空间分布;深入分析了起伏地形下太阳直接辐射受地理、地形因子影响的变化规律。结果表明:受地形起伏和坡向、坡度等局地地形因子的影响,山区年太阳直接辐射量的空间差异比较明显,向阳山坡(偏南坡)的年直接辐射量明显高于背阴山坡(偏北坡)  相似文献   

5.
基于数字高程模型(DEM)数据和气象站观测资料建立了起伏地形下太阳直接辐射分布式计算模型,模型充分考虑了地形因子(坡向、坡度、地形相互遮蔽)对起伏地形下太阳直接辐射空间分布的影响;以1km×1km分辨率的DEM数据作为地形的综合反映,计算了起伏地形下黄河流域1km×1km分辨率太阳直接辐射的空间分布;深入分析了起伏地形下太阳直接辐射受地理、地形因子影响的变化规律.结果表明受地形起伏和坡向、坡度等局地地形因子的影响,山区年太阳直接辐射量的空间差异比较明显,向阳山坡(偏南坡)的年直接辐射量明显高于背阴山坡(偏北坡).  相似文献   

6.
多模型耦合方法被广泛应用于同震滑坡易发性评价研究,但耦合证据权重法和其他方法的改进型证据权重法鲜有涉及。该文以北海道地震震中区为研究区,基于震前和震后高精度遥感影像解译出5977处同震滑坡(以中小型为主),选取高程、坡度、距断层距离、距水系距离等8个滑坡易发性评价因子,对同震滑坡的空间分布规律和控制因子进行分析,发现同震滑坡集中发育在距断层小于5 km、距水系小于800 m、峰值地面加速度(PGA)0.5 g、高程90~250 m、坡度20°~40°、坡向东至东南向、岩性以页岩和砾岩为主的区域内;基于改进型证据权重法,综合考虑地形、地质和水文条件对北海道同震滑坡易发性进行评价,经ROC曲线评价模型验证,发现改进模型曲线下面积(AUC)为0.916,较原模型(AUC为0.870)精度有明显提高。改进模型能为同震滑坡易发性评价提供新的研究思路,并为震后区域防灾减灾提供科学依据。  相似文献   

7.
基于GIS的长江三峡库区滑坡影响因子分析   总被引:10,自引:1,他引:10  
利用GIS技术和统计方法,对三峡库区选定的研究区域(面积4539km2)滑坡空间分布和地形、地质等滑坡内部因子之间相关性进行统计计算。在建立地质、地形数据库等滑坡因子空间数据库和滑坡空间分布数据库(数据比例尺均为1∶10000)基础上,从地形数据库提取25m分辨率DEM,再派生出高程、高差、坡度、坡向、平面曲率、剖面曲率等地形影响因子;从地质数据库提取地层和岩性组合影响因子。将各个定性的因子按一定规则进行重分类、转换为25m分辨率的栅格数据格式,在GIS中进行地图代数运算、统计计算滑坡和各影响因子相关性。结果表明,滑坡分布和Q4、J1x,J1z、S岩性岩组;90m以下、90~135m和135~175m三个高程带;15~20m局部高差;10°~25°坡度;北、南和西北方向及-1~1曲率范围等影响因子相关性等级都大于1,为滑坡发生的主要影响因子类属。研究的结果是进行滑坡易发性评价的基础,可以指导库区滑坡灾害管理、土地利用等。  相似文献   

8.
天文辐射是辐射计算、太阳能资源评估及其他相关研究领域重要的起始参量,由于坡度、坡向和地形之间相互遮蔽等局地地形因子的影响,使实际起伏地形下获得的天文辐射与水平面上获得的天文辐射有一定差异。确定实际起伏地形下天文辐射是比较困难的。应用数字高程模型(DEM)数据和地理信息系统(G IS),建立起伏地形下天文辐射分布式计算模型,计算了起伏地形下贵州高原100 m×100 m分辨率天文辐射精细空间分布,分析了局地地形因子对起伏地形下天文辐射的影响。结果表明:(1)贵州高原起伏地形下天文辐射的空间分布具有明显的地域分布特征。(2)贵州高原起伏地形下天文辐射年总量平均为481.7~13 041.8 M J/m2,1月、7月天文辐射分别为0.0~1 244.7 M J/m2、0.0~1 264.8 M J/m2。(3)局地地形因子对起伏地形下天文辐射空间分布的影响随季节和纬度变化,虽然坡度、坡向和地形遮蔽对天文辐射的影响,在太阳高度角较低的1月比太阳高度角较高的7月相对较大,但因为7月水平面获得的天文辐射的强度相对较大,7月局地地形对天文辐射的影响依然显著。因此,贵州高原起伏地形对天文辐射的影响是不容忽视的。  相似文献   

9.
本研究利用天山胜利达坂地区2014—2016年Landsat系列卫星的57景ETM+或OLI遥感影像,基于SNOMAP算法提取研究区积雪面积,并结合DEM数据研究了海拔高度、坡向和坡度对研究区积雪空间分布的影响。结果表明,随着海拔的增加,积雪覆盖率持续增加;阴坡积雪覆盖率约是阳坡的2~3倍。进一步的一般线性模型(GLM)分析表明:海拔、坡向和坡度均显著影响积雪的空间分布,但各地形因子的影响程度在不同季节有所差异。在冬季(12~2月),坡向是影响积雪覆盖率空间变异的主要地形因子,贡献了积雪覆盖率总变异的57%,约是海拔的2倍,坡度的4.5倍。对其他季节而言,海拔是主要影响因子,其次是坡向,坡度的影响最小。  相似文献   

10.
豫西山地植被NDVI及其气候响应的多维变化   总被引:3,自引:1,他引:2  
豫西山地是秦岭山系在河南境内的余脉,处于亚热带向暖温带的过渡区域,是气候变化的敏感区。利用S-G滤波算法重构2000-2013年MODIS-NDVI时序影像,结合DEM、气温和降水数据,运用趋势分析、相关性分析等方法探讨豫西山地NDVI及其气候响应的多维变化。结果表明:(1)14年来豫西山地NDVI呈增长态势,增速为0.041/10a。NDVI值随山地海拔升高先增后降,随坡度增加而增大,在各坡向的分布相差不大。(2)植被在1100 m海拔区恢复概率最高,在1700 m区域退化概率最高;在10°~20°坡度区域恢复概率最高,在0°~5°区域退化概率最高;坡向对植被变化的分异作用不明显。(3)不同海拔、坡度、坡向上的植被所受影响因素不同,高海拔区植被动态主要受降水控制;不同坡度上的植被NDVI与气温的相关性均大于与降水的;在不同坡向上差异不明显。(4)崤山、熊耳山、伏牛山三大山脉北坡NDVI增速均大于南坡;北坡植被对降水变化较敏感,而南坡植被对气温变化较敏感。这些都是在全球变化背景下该区生态环境响应的重要信号,反映了过渡带生态响应因子对山地生态系统的重要性。  相似文献   

11.
贵州高原复杂地形下月平均日最高气温分布式模拟   总被引:4,自引:1,他引:3  
在前人研究的基础上,对以前的模型进行改进,考虑了坡度、坡向和地形相互遮蔽作用对复杂地形下天文辐射的影响,基于数字高程模型(DEM)数据,建立以天文辐射为起始数据的复杂地形下月平均日最高气温的分布式模型,在模型中考虑了海拔高度、复杂地形下太阳总辐射、日照百分率对月平均日最高气温的影响.以贵州高原为例.应用100m×100m分辨率的DEM数据.1960-2000年贵州省及周边102个气象站常规气象要素观测资料以及NOAA-AVHRR观测资料,10个气象站的太阳辐射量资料,计算了贵州高原各月及年平均日最高气温精细空间分布.结果表明:(1)坡度、坡向、地形遮蔽对月平均日最高气温的影响较大,由于局地地形因子的影响,复杂地形下月平均日最高气温的空间分布具有明显的地域分布特征,局地地形对月平均日最高气温的影响是不容忽视的.(2)季节不同,局地地形因子对复杂地形下月平均日最高气温空间分布的影响不同,冬半年大于夏半年.月平均日最高气温随海拔高度的增加而降低.南坡随坡度的增大而升高:北坡随坡度的增大而降低.在坡向影响上,1-5月、10-12月偏北坡月平均日最高气温偏低,偏南坡月平均日最高气温偏高;7-8月因太阳高度较高,因此出现相反的情况.北坡高于南坡.  相似文献   

12.
小尺度地形因子对农地土壤质量的影响研究   总被引:3,自引:1,他引:2  
地形差异是土地利用结构和空间分布格局分异的重要影响因子,也是土地质量的重要参评因素.选择泰山东麓多种地貌类型过渡区,利用数字高程模型(DEM)提取研究区坡度、高程等地形因子信息,通过GIS空间分析划分研究区农地土壤质量等级,利用SPSS统计分析高程、坡度等地形因子对土壤质量的影响.结果表明:土壤质量等级随地形变化呈规律性演替,坡度和高程与土壤质量呈极显著相关关系,且坡度对土壤质量的影响大于高程;随着坡度的上升,土壤质量分值呈抛物线趋势,而随着高程的上升,土壤质量呈降低趋势,且各高程段内不同坡度等级土壤质量分值也呈抛物线走势;土壤质量的最高分值位于坡度2°~5°、高程0~150 m的地形部位.  相似文献   

13.
地形条件与山地灾害的发育密切相关,是山地灾害危险性评价的重要因子.以四川省芦山县“4·20”7.0级强烈地震灾区的芦山、宝兴、天全3县为研究区,应用GIS技术计算研究区坡度、地形位指数与地形起伏度,通过流域水文分析方法实现宝兴县子流域划分并提取沟床纵比降,分析灾区地形因子特征,结合灾后崩塌滑坡遥感解译结果,探讨次生山地灾害分布与地形因子的关系.结果表明,研究区坡度大于25°的面积占区域总面积的73.89%,地形位指数大于0.4的区域面积占总面积的85.92%,起伏度大于500 m的占87.41%,各地形因子面积比率最大的区段分别为坡度35°~40°、地形位指数0.648 ~0.666、起伏度500~1 000 m;宝兴县子流域沟床纵比降数值集中于100‰ ~ 300‰范围内.坡度30°~50°的区域为崩塌滑坡的高发地段;崩塌滑坡的优势地形位处于地形位指数0.228~0.246和0.34~0.61之间的区域;起伏度在500~1 000m的区域为崩塌滑坡的集中分布区.研究结果可为灾害评估及灾后恢复重建提供参考依据.  相似文献   

14.
豫西山地是秦岭山系在河南境内的余脉,处于亚热带向暖温带的过渡区域,是气候变化的敏感区。利用S-G滤波算法重构2000-2013年MODIS-NDVI时序影像,结合DEM、气温和降水数据,运用趋势分析、相关性分析等方法探讨豫西山地NDVI及其气候响应的多维变化。结果表明:(1)14年来豫西山地NDVI呈增长态势,增速为0.041/10a。NDVI值随山地海拔升高先增后降,随坡度增加而增大,在各坡向的分布相差不大。(2)植被在<1100 m海拔区恢复概率最高,在>1700 m区域退化概率最高;在10°~20°坡度区域恢复概率最高,在0°~5°区域退化概率最高;坡向对植被变化的分异作用不明显。(3)不同海拔、坡度、坡向上的植被所受影响因素不同,高海拔区植被动态主要受降水控制;不同坡度上的植被NDVI与气温的相关性均大于与降水的;在不同坡向上差异不明显。(4)崤山、熊耳山、伏牛山三大山脉北坡NDVI增速均大于南坡;北坡植被对降水变化较敏感,而南坡植被对气温变化较敏感。这些都是在全球变化背景下该区生态环境响应的重要信号,反映了过渡带生态响应因子对山地生态系统的重要性。  相似文献   

15.
以浙江省仙居县为实验区,通过气温空间分布的地形调节统计模型,并使用了10个气象站(哨)的气温资料和不同空间分辨率的DEM(均来源于1:1万的数字化地形图),模拟了不同空间尺度的年平均气温空间分布,比较了它们的误差大小以及随宏观地形(海拔)和微观地形(坡度和坡向)的分布差异.结果表明:基于不同空间分辨率DEM模拟的平均气温呈现较大的空间分布差异性;随着DEM空间分辨率的减小,误差逐渐增加(最大绝对误差为2.04℃,相对误差为15.10%),且空间差异性降低.而且微观地形因子(坡度和坡向)随着空间分辨率的变化产生显著变化,进而明显影响气温的空间分布,不同坡度之间的年平均气温差最大为9.5℃,最小为1.8℃.不同坡向之间的年平均气温差最大为12.2℃,最小为2.4℃.  相似文献   

16.
澜沧江-湄公河流域人口分布及其与地形的关系   总被引:2,自引:0,他引:2  
基于90 m×90 m数字高程模型(DEM)和1 km×1 km的人口密度栅格数据,采用GIS空间分析与数理统计方法,研究了澜沧江-湄公河流域的人口分布格局及其与高程、坡度、坡向和地形起伏度的关系。结果表明:1.澜沧江-湄公河流域人口分布呈北疏南密的基本格局,人口最为密集的区域位于南端的湄公河三角洲,源头杂多县则是大片无人区;2.澜沧江-湄公河流域人口密度随海拔由低到高经历了一个急降缓升又下降至尖灭的变化过程,人口总量随海拔呈现倒指数增长变化;3.澜沧江-湄公河流域80%强的人口集中分布在坡度≤2°的平坦区域,当坡度达到38°时,人口累积曲线趋于平稳;4.澜沧江-湄公河流域各坡向人口分布较为均衡,坡向对人口分布的影响不显著;5.澜沧江-湄公河流域人口密度与地形起伏度成倒指数关系,地形起伏度对人口分布的影响较为显著,流域内大部分人口分布于低起伏地区。  相似文献   

17.
以HJ卫星CCD影像为数据源,计算和分析赣南2008和2011年植被覆盖演变和空间分布特征及与地貌因子关系。结果表明:红壤区域植被覆盖度与高程在2008、2011年相关系数分别为0.946 1、0.954 5,具有强正相关性;植被退化主要集中在高植被覆盖区域,100~300 m高程、1~5°坡度、306~360°坡向范围分别占总退化面积的88.84%,88.41%,30.73%;50~150 m高程、13°以下坡度和27°坡度以上区域为退化最剧烈区域。量化了植被覆盖与地貌因子的关系,为红壤区域环境治理和监测提供科学依据,具有一定的实用价值。  相似文献   

18.
本文基于90 m分辨率DEM,利用Arc GIS10.1软件对达日断裂地形起伏度、条带剖面、水系等方面进行提取分析,对其构造地貌特征进行研究。从最大高差-面积比法得到最佳分析窗口为43×43,其最大高差稳定的区域范围为14.98 km2。地形起伏度在15~870 m,地形起伏度大于270 m的区域占83.89%,其中起伏度大于575 m的区域占48.50%,其地形以山地地形为主。研究区的坡度在0°~50°,并且起伏度大的区域往往坡度也比较大,其受区域构造活动性影响比较大。研究区域内山体上部有多级夷平面发育,主要夷平面是4 400 m和4550 m左右,最高海拔约为4 720 m,最低海拔约为4 100 m。研究区内水系比较发育,研究区水系密度在0~0.81 km/km2,水系流向和水系密度大致NW向,与断裂走向大致相当,故研究区的水系受断裂活动构造的影响非常大。研究区的地貌特征受活动构造影响所控制,其造成地形起伏度较大,在达日断裂的影响下,断裂上下盘的地貌特征表现出明显的差异。  相似文献   

19.
坡度指标通常基于DEM数据以固定算法直接提取。坡度误差主要来源于算法模型误差和数据误差等,很少顾及在建立DEM时空间参考系方向的变化引起的坡度差异。本文以数学高斯曲面为基准,通过改变参考系X、Y轴方向,对不同参考系下的DEM数据以三阶反距离平方权差分坡度算法提取坡度并分析其差异,结果表明:1.空间参考系方向变化对坡度差异的影响与地表剖面曲率有关,在山顶、谷底以及鞍部等坡度变化较为明显的地形区域,较为显著,两者成一定的正相关,而且与坡向变化率也存在相关关系。2.坡度、坡向差异随着空间参考系方向变化呈现周期性,周期为90°,近似按正弦(y=a·sin(1/2kπ+φ)φ∈[0,π/2])规律变化,在45°处达到峰值,而在0°与90°附近,6°范围内平均差异变化较为平缓,但与正弦曲线偏离较大,且随着空间分辨率的降低,参考系方向引起的坡度、坡向差异有增加的趋势。实验表明在研究区建立独立参考系时应顺应平均坡向原则,以减小参考系方向对坡度、坡向的影响。  相似文献   

20.
DEM结构特征对坡度坡向的影响分析   总被引:12,自引:0,他引:12  
数字高程模型已严格定义为按规则格网阵列记录的地形高程数据,其固有的结构特征(如格网分辨率、格网方向、高程数据准确度等)直接影响DEM对地形表达和坡度、坡向的计算精度。该文通过理论和数据独立的DEM实验分析方法,研究了DEM结构特征对坡度、坡向的影响,得出如下结论:1)高分辨率的DEM并不一定能给出高精度的坡度、坡向计算结果;2)可通过g=bm/ms×180/π×cos2S来选择合适的DEM分辨率;3)三阶不带权差分算法的坡度、坡向计算结果对DEM方向有较强的依赖性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号