共查询到20条相似文献,搜索用时 31 毫秒
1.
M. K. Harrop-Allin M. Cropper P. J. Hakala C. Hellier T. Ramseyer 《Monthly notices of the Royal Astronomical Society》1999,308(3):807-817
We apply our technique for indirect imaging of the accretion stream to the polar HU Aquarii, using eclipse profiles observed when the system was in a high accretion state. The accretion stream is relatively luminous, contributing as much as the accretion region on the white dwarf, or more, to the overall system brightness. We model the eclipse profiles using a model stream consisting of a ballistic trajectory from the L1 point followed by a magnetically channelled trajectory that follows a dipole field line out of the orbital plane. We perform model fits using two geometries: a stream that accretes on to both footpoints of the field line, and a stream that accretes only on to the footpoint of the field line above the orbital plane. The stream images indicate that the distribution of emission along the stream is not a simple function of the radial distance from the white dwarf. The stream is redirected by the magnetic field of the white dwarf at a distance 1.0–1.3×1010 cm from the white dwarf; this implies a mass transfer rate in the range 8–76×1016 g s−1 . The absorption dips in the light curve indicate that the magnetically entrained part of the stream moves from 42° to 48° from the line of centres over the three nights of observation. This is in close agreement with the results of the one-footpoint models, suggesting that this is the more appropriate geometry for these data. The stream images show that, in almost all sections of the stream, the flux peaks in B and is successively fainter in U , V and R . 相似文献
2.
M.K. Harrop-Allin S.B. Potter† Mark Cropper 《Monthly notices of the Royal Astronomical Society》2001,326(2):788-798
We apply our technique for indirect imaging of the accretion stream to the polar HU Aqr, using eclipse profiles observed when the system was in a low-accretion state. The eclipse profile is different from that in the high state, and more variable from cycle to cycle. We find that the stream maps are brightest near the white dwarf and there is no significant brightening in the threading region. In the low state the stream threads on to the magnetic field closer to the L1 point than in the high state, with a footpoint of the accreting field line at high latitude. We then produce maps of the accretion region from polarimetry using Stokes imaging. These show that the majority of the accretion occurs near the equator. The difference between the maps may be explained if most of the stream material is not emitting significantly in the low state. If so, neither the stream eclipse mapping nor Doppler tomography techniques will trace the bulk of the accretion flow between the two stars. 相似文献
3.
Sonja Vrielmann Axel D. Schwope 《Monthly notices of the Royal Astronomical Society》2001,322(2):269-279
We present a new mapping algorithm, the Accretion Stream Mapping (ASM), which uses the full phase-coverage of a light curve to derive spatially resolved intensity distributions along the accretion stream in magnetic cataclysmic variables of AM Herculis type (polars). The surface of the accretion stream is approximated as a 12-sided (duodecadon-shaped) tube. After successfully testing this method on artificial data we applied it to emission-line light curves of H β , H γ and He ii λ 4686 of the bright eclipsing polar HU Aqr. We find hydrogen and helium line emission bright in the threading region of the stream where the stream couples on to magnetic field lines. It is particularly interesting that the stream is bright on the irradiated side facing the white dwarf, which highlights the interplay of collisional and radiative excitation/ionization. 相似文献
4.
5.
In this paper we present Physical Parameter Eclipse Mapping (PPEM) of UBVRI eclipse light curves of UU Aqr from high to low states. We used a simple, pure hydrogen LTE model to derive the temperature and surface density distribution in the accretion disc. The reconstructed effective temperatures in the disc range between 9000 K and 15000 K in the inner part of the disc and below 7000 K in the outer parts. In the higher states it shows a more or less prominent bright spot with Teff between about 7000 K and 8000 K. The inner part of the disc (R < 0.3R) isL1 optically thick at all times, while the outer parts of the disc up to the disc edge (0.51 ± 0.04RL1 in the high state and 0.40 ± 0.03RL1 in the low state) deviate from a simple black body spectrum indicating that either the outer disc is optically thin or it shows a temperature inversion in the vertical direction. While during high state the disc is variable, it appears rather stable in low state. The variation during high state affects the size of the optically thick part of the disc, the white dwarf or boundary layer temperature and the uneclipsed component (originating in a disc chromosphere and/or cool disc wind), while the actual size of the disc remains constant. The difference between high and low state is expressed as a change in disc size that also affects the size of the optically thick part of the disc and the presence of the bright spot. Using the PPEM method we retrieve a distance for UU Aqr of 207±10 pc, compatible with previous estimates. 相似文献
6.
M.A.C. Perryman M. Cropper G. Ramsay F. Favata A. Peacock N. Rando A. Reynolds 《Monthly notices of the Royal Astronomical Society》2001,324(4):899-909
We present high-time-resolution optical photometry of the eclipsing binary UZ For using a superconducting tunnel junction (STJ) device, a photon-counting array detector with intrinsic energy resolution. Three eclipses of the ∼18-mag 126.5-min orbital binary were observed using a 6×6 array of tantalum STJs at the 4.2-m William Herschel Telescope on La Palma. The detector presently provides individual photon arrival-time accuracy to about 5 μs, and a wavelength resolution of about 60 nm at 500 nm, with each array element capable of counting up to ∼5000 photon s−1 . The data allow us to place accurate constraints on the accretion geometry from our time- and spectrally resolved monitoring, especially of the eclipse ingress and egress. We find that there are two small accretion regions, located close to the poles of the white dwarf. The positions of these are accurately constrained, and show little movement from eclipse to eclipse, even over a number of years. The colour of the emission from the two regions appears similar, although their X-ray properties are known to be significantly different: we argue that the usual accretion shock may be absent at the non-X-ray-emitting region, and instead the flow here interacts directly with the white dwarf surface; alternatively, a special grazing occultation of this region is required. There is no evidence for any quasi-periodic oscillations on time-scales of the order of seconds, consistent with relatively stable cyclotron cooling in each accretion region. 相似文献
7.
8.
9.
10.
Gavin Ramsay & Peter J. Wheatley 《Monthly notices of the Royal Astronomical Society》1998,301(1):95-100
We present low–medium resolution optical spectroscopy of the eclipsing AM Her system MN Hya (RX J0929–24). We determine the magnetic field strength at the primary accretion region of the white dwarf to be 42 MG from the spacing of cyclotron features visible during π ∼ 0.4–0.7. From spectra taken during the eclipse we find that the secondary has an M3–4 spectral type. Combined with the eclipse photometry of Sekiguchi, Nakada &38; Bassett and an estimate of the interstellar extinction we find a distance of ∼300–700 pc. We find unusual line variations at π ∼ 0.9: Hα is seen in absorption and emission. This is at the same point in the orbital phase at which a prominent absorption dip is seen in soft X-rays. 相似文献
11.
The magnetic cataclysmic variable HU Aquarii displayed pronounced quasi‐periodic modulations of its eclipse timing. These were interpreted in terms of the light‐travel time (LTT) effect caused by a circumbinary planet or planetary system. We report new photometric observations that revealed another precise eclipse timing for the October 2013 epoch, the first obtained in a high accretion state after many years in low or intermediate states. The eclipse was observed to occur earlier by 95.3 ± 2.0 s or 62.8 ± 2.0 s than expected for an assumed linear or quadratic ephemeris, respectively. The implied apparent strong evolution of the orbital period calls for a revision of the current planetary model or the planetary parameters. The object deserves further monitoring to uncover the true nature of the observed variability and to constrain the properties of the proposed planet or planetary system. The new observations prove that advanced amateur equipment can successfully be used in the growing field of planet search in wide circumbinary orbits via the LTT effect. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
12.
13.
14.
15.
Lung-Yih Chiang Peter Coles Pavel Naselsky 《Monthly notices of the Royal Astronomical Society》2002,337(2):488-494
We present spectroscopic and high-speed photometric data of the eclipsing polar V895 Cen. We find that the eclipsed component is consistent with it being the accretion regions on the white dwarf. This is in contrast to Stobie et al. who concluded that the eclipsed component was not the white dwarf. Further, we find no evidence for an accretion disc in our data. From our Doppler tomography results, we find that the white dwarf has M ≳0.7 M⊙ . Our indirect imaging of the accretion stream suggests that the stream is brightest close to the white dwarf. When we observed V895 Cen in its highest accretion state, emission was concentrated along field lines leading to the upper pole. There is no evidence for enhanced emission at the magnetic coupling region. 相似文献
16.
Gavin Ramsay † Mark Cropper 《Monthly notices of the Royal Astronomical Society》2007,379(3):1209-1216
We present XMM–Newton observations of the eclipsing polar V2301 Oph which cover nearly 2.5 binary orbital cycles and two eclipses. This polar is believed to have the lowest magnetic field strength (7 MG) of any known polar. We find evidence for structure in the X-ray eclipse profile which shows a 'standstill' feature lasting 26 ± 4 s. This allows us to place an upper limit on the mass of the white dwarf of ∼1.2 M⊙ . We find no evidence for quasi-periodic oscillations (QPOs) in the frequency range 0.02–10 Hz. This coupled with the absence of QPOs in RXTE data suggests that, if present, any oscillations in the shock front have a minimal effect on the resultant X-ray flux. We find no evidence for a distinct soft X-ray component in its spectrum – it therefore joins another seven systems which do not show this component. We suggest that those systems which are asynchronous, have low mass-transfer rates or have accretion occurring over a relatively large fraction of the white dwarf are more likely to show this effect. We find that the specific mass-transfer rate has to be close to 0.1 g cm−2 s−1 to predict masses which are consistent with that derived from our eclipse analysis. This may be due to the fact that the low magnetic field strength allows accretion to take place along a wide range of azimuth. 相似文献
17.
David A. H. Buckley Lilia Ferrario Dayal T. Wickramasinghe & Jeremy A. Bailey 《Monthly notices of the Royal Astronomical Society》1998,295(4):899-906
We report polarimetric, spectropolarimetric and photometric observations of the eclipsing ROSAT cataclysmic variable RX J0929.1−2404, which confirm that the system is a new polar (AM Herculis system). This brings the number of eclipsing polars to nine, with RX J0929.1−2404 being only the third such system above the period gap. Circular polarization variations from ∼−20 to 10 per cent are seen over the 3.39-h orbital period, with a minimum around the time of eclipse. The photopolarimetric data were modelled using arc-shaped cyclotron emission regions in a centred dipole geometry. Results imply that RX J0929.1−2404 is a 'two-pole' system, with one emission region partially visible at all orbital phases. Spectropolarimetry observations show some evidence for the presence of cyclotron humps in the continuum, with spacings consistent with a magnetic field strength of ∼20 MG. Photometry of the eclipses provides information on the size of the emission region, which is consistent with a hotspot on the surface of the white dwarf. The eclipse duration implies an inclination in the range 70°≲ i ≲78°. 相似文献
18.
19.
20.
Peter J. Wheatley Richard G. West 《Monthly notices of the Royal Astronomical Society》2003,345(3):1009-1014
We present the XMM–Newton X-ray eclipse light curve of the dwarf nova OY Car. The eclipse ingress and egress are well resolved for the first time in any dwarf nova placing strong constraints on the size and the location of the X-ray emitting region. We find good fits to a simple linear eclipse model, giving ingress/egress durations of 30 ± 3 s (Δφorb = 0.0054 ± 0.0005) . Remarkably, this is shorter than the ingress/egress duration of the sharp eclipse in the optical, as measured by Wood et al. (1989) and ascribed to the white dwarf (43 ± 2 s) . We also find that the X-ray eclipse is narrower than the optical eclipse by 14 ± 2 s , which is precisely the difference required to align the second and third contact points of the X-ray and optical eclipses. We discuss these results and conclude that X-ray emission in OY Car arises most likely from the polar regions of the white dwarf.
Our data were originally reported by Ramsay et al. (2001b) , but they did not make a quantitative measurement of eclipse parameters. We have also corrected important timing anomalies present in the data available at that time. 相似文献
Our data were originally reported by Ramsay et al. (2001b) , but they did not make a quantitative measurement of eclipse parameters. We have also corrected important timing anomalies present in the data available at that time. 相似文献