首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南海西南海域表层沉积物中微量元素Ba的地球化学特征   总被引:1,自引:1,他引:0  
分析南海西南海域表层沉积物中微量元素Ba的地球化学特征,并探讨生物成因Ba的分布及其与表层海水生产力的关系。南海西南海域表层沉积物Ba总量的变化范围为398~1 270 μg/g,平均值为851 μg/g,从上陆坡到下陆坡,沉积物中的Ba含量逐渐增加;微量元素Ba主要赋存于陆源碎屑相和生物成因相中,且明显受到沉积环境水深和陆源物质输入的影响。生物成因Ba含量的变化范围为30.6~938 μg/g,陆坡区和深海区平均值分别为495 μg/g、349 μg/g,占沉积物Ba总量的54%和51%,总体上,与沉积物Ba总量具有相对一致的分布特征。尽管研究区表层沉积物中Al、Ti成分为典型的陆源碎屑组分,但是,利用大陆上地壳Ba/Al比值和陆坡区沉积物回归分析获得的Ba/Al比值进行生物成因Ba的计算,过高地估算了沉积物中陆源Ba的含量;而采用页岩Ba/Ti比值来估算陆坡区表层沉积物中的生物成因Ba含量显得相对可靠。在深海区,利用经验的Ba/Al或Ba/Ti比值均不能获得有效的生物成因Ba值。因此,在获取沉积物中生物成因钡含量时,需结合各海区的特点选取合适的参数来扣除陆源Ba的含量。  相似文献   

2.
Down-core variations of granulometric, geochemical and mineral magnetism of a 70-cm long sediment core retrieved from the eastern Bay of Bengal abyssal region were studied to understand sedimentation pattern and sediment provenance during the last ~12 kyr BP. Based on down-core physical and elemental variations, three units were identified: unit 3 (70–43 cm) is a ~30 cm thick clayey silt organic carbon-rich (0.5–0.92%) turbidite probably delivered by the Brahmaputra River during the late Quaternary period. Units 2 (43–24 cm) and 1 (24–0 cm) represent enhanced and reduced supply of coarse-grained detrital sediments from the Ganges River during early and late Holocene period, respectively. Increased terrigenous supply dilutes calcium carbonate (CaCO3) and biogenic elements (P, Ba and Cu) in units 3 and 2. On the contrary, a reduction in detrital input enhances CaCO3 and biogenic elements in unit 1. Lithogenic elements (Ti, Al, K and Rb) and shale-normalized REE patterns in all three units suggest terrigenous source. The shift in provenance from the Brahmaputra to the Ganges derived sediments is evident by a sharp increase in sediment grain size, increased concentration and grain size assemblages of magnetic minerals, lithogenic elements concentration and Lan/Ybn ratio. This study highlights terrigenous dilution on biogenic sedimentation in the eastern Bay of Bengal sediments.  相似文献   

3.
This study introduces an alkaline leaching technique for the simultaneous analysis of biogenic silica and aluminium in sediments. Measuring aluminium facilitates the discrimination between silica from the biogenic (BSiO2) and the non-biogenic fraction, because it originates almost solely from the lithogenic phase. The method was tested using fine-grained silicagel, standard clay minerals, artificial sediments, and natural samples ranging from fresh diatoms to aged sediment from different depositional settings. To determine the BSiO2 content, four different models each describing the dissolution curves, but of increasing complexity, were applied and for each different type of sample the optimum model was selected on the basis of F-test statistics. For mixtures of silicagel and clay minerals, the contribution of Si from the dissolution of clay was negligible compared to Si originating from silicagel. For natural samples with high clay content, complex dissolution curves were observed and single-phase first order dissolution was the exception. This deviation from `ideal' behavior could only be recognized because of high-resolution sampling, especially in the first 20 minutes of the experiment. For most of the samples, the distinction between the biogenic silica fraction and the silica originating from dissolution of clays could be made on the basis of the Si/Al ratios and reactivity constants of the dissolving phases calculated with the models. Clay minerals typically dissolve slowly at a Si/Al ratio close to 1–2, depending on the type of clay mineral. In contrast, biogenic silica displays a wide range of reactivities and Si/Al ratios. Fresh biogenic silica from the water column usually has a high reactivity and a low Al content. Aged biogenic silica from the sediments has a lower reactivity, but Si/Al ratios as low as 5 were found. The method as described here therefore presents an accurate method to analyze biogenic silica in marine sediments with a relatively high clay mineral content.  相似文献   

4.
Since the Carboniferous, tropical latitudes have been the site of formation of many economic coal deposits, most of which have a restricted range of mineralogical composition as a result of their depositional environment, climatic conditions, and diagenesis. Mineralogical and microscopic investigations of tropical peats from Tasek Bera, Peninsular Malaysia, were performed in order to better understand some of these factors controlling the nature, distribution and association of inorganic matter in peat-forming environments. Distribution and nature of the inorganic fraction of peat deposits give insight into the weathering conditions and detrital input into the mire system. Because the inorganic composition of peat deposits is determined by plant communities, height of water table, and climate, the results of the quantitative and qualitative analysis can be used to reconstruct palaeoclimatic conditions.Tasek Bera is a peat-accumulating basin in humid tropical Malaysia with organic deposits of low- to high-ash yield and thus representative of many ancient peat-forming environments. Clay minerals dominate the mineralogical composition of the peat and organic-rich sediments, while quartz and clays dominate the underlying siliciclastic deposits. Kaolinite is the most abundant clay mineral in the organic deposits with minor amounts of illite and vermiculite. Particle size analyses indicate that >50% of the inorganic detrital fraction is <2 μm. Most detrital quartz grains range in size from fine silt to fine sand. The fine sand fraction accounts for a maximum of 5 wt.% of the inorganic constituents. In addition, abundant biogenic and non-biogenic, Al- and Si-rich amorphous matter occur. In the ombrotrophic (low-nutrient) environment, biogenic inorganic material contributes up to >75% of the ash constituents. As a consequence, the vegetational communities make an important contribution to the inorganic and overall ash composition of peats and coals. The ash content of the often inundated peat consists on average of 10% opaline silica from diatoms and sponge spicules, while the ash of the top deposits may have up to 50% biogenic silica. Hence, Al- and Si-hydroxides and the opaline silica from diatoms and sponges represent a large repository of Al and Si, which may form the basis of mineral transformation, neoformation and alteration processes during coalification of the peat deposits. As a result, most coal deposits from paleotropical environments are anticipated to have little to no biogenic inorganic material but high amounts of secondary clays, such as kaolinite (detrital kaolinite, resilisified kaolinite, or desilisified gibbsite) or illite, and various amounts of detrital and authigenetic quartz.  相似文献   

5.
Germanium and silicon, dissolved in seawater, are considered to be incorporated into biogenic opal with no or little fractionation, which permitted to use diatoms as reliable recorders of seawater Ge/Si. Does some fractionation occur during diagenesis, preventing the use of Ge/Si in ancient sediments? We examined the Ge/Si ratio of fossil sponges and flint nodules of the Cretaceous Chalk Formation of northern France. Though disputed, silica in this formation is considered to originate from sponges. No fractionation is observed between sponges and diagenetic flints, which allows us to observe whether Ge/Si bears a biogenic or detrital signature. We may thus confirm that sponges were the main silica supplier during the chalk deposition. The Ge/Si ratio may be used to identify a biogenic signature in cherts where the origin of silica is dubious.  相似文献   

6.
应用扫描电子显微镜对白山地区新厂期上斜正笔石式树形笔石的体壁进行了能谱分析,测出了笔石体壁中的Mg、Ca、Al、Fe、Si、S、K7种元素的含量,其中Mg、Al、Fe、Si、S、K6种元素含量稳定,含量从高到低依次为Fe,Si、Al、S、Mg、K。这6种元素可能是构成笔石体壁原始化学成分中的重要元素。  相似文献   

7.
Geochemistry and origin of elements in some UK coals   总被引:3,自引:0,他引:3  
Twenty-four UK coals ranging in rank with 4.6%–37.6% volatile matter were analysed for 46 major and trace elements. The samples were obtained from the UK Coal Bank and are representative of the major UK coal fields. The major element distributions are interpreted in terms of the mineralogical variations—quartz and kaolinite are largely responsible for the Si and Al, carbonates for Ca and Mg and pyrite for Fe. Also exerting an influence in some samples are siderite, Al-phosphate minerals and illite. Based on statistical relationships with the major elements, Rb, Cr, Th, Ce, Zr, Y, Ga, La, Ta, Nb and V are thought to be mainly present in the clay minerals, and As, Mo, Sb, Tl, Se and Bi and Pb are probably present in pyrite. Strontium and Ba are concentrated in a restricted number of samples related to the phosphate minerals. Germanium is the only element for which a major organic association can be demonstrated. Elements with an indirect association with the organic matter are Na, Cl, and Br in porefluids and possibly Te. The ash content is controlled mainly by the detrital input and the trace elements related to the ash content are therefore those elements associated with the clay minerals. Variations with rank would appear to be mainly related to the moisture content (porefluids). The trace elements associated with the quartz and clay minerals are thought to be dominantly detrital in origin. The non-detrital elements, essentially those contained in pyrite, are thought to have been incorporated in the depositional environment from waters with enhanced salinities through seawater ingress, hence there are positive relationships between S and trace element concentrations.  相似文献   

8.
Abstract: Major, trace, and rare earth element contents were determined for sedimentary iron ores from the Gunma iron deposit. The deposit was precipitated from a spring water on the hillside of the active Kusatsu-Shirane Volcano. The ores are mainly composed of goethite and jarosite with various proportions of silicified andesitic detritus. Microbial fossils are often preserved well in goethite-rich ores. Goethite was likely precipitated by both inorganic and biogenic (biologically induced mineralization; BIM) processes, whereas jarosite was precipitated inorganically from the spring water. Si, Ti, Al, Mn, Mg, Ca, Na, Co, Rb, Y, Zr, Nb, Hf, Ta, U, and middle-heavy REEs (Sm-Lu) in the ores are dominantly derived from a detrital component (silicified andesitic rocks). On the other hand, Zn and V are likely to have been inorganically coprecipitated with goethite. Preferential uptake of P, Sc, Cu, Mo, Ba, Th, and light REEs occurs in the BIM ores. Unique enrichment of these elements is a promising indicator of biomineralization for ancient sedimentary iron deposits.  相似文献   

9.
The separated clay fraction (material <μ) of surface and sub-surface sediment samples from the southwestern Barents Sea is described. The partitioning of the major and minor elements within the different grain-size fractions of the sediment and between detrital and non-detrital phases demonstrates that the clay chemistry of these oxic shelf sediments is terrigenous in origin.The clays are a variable mixture of micaceous debris and illite with chloritic material, minor expandable clay and occasional kaolinite. Carbonate debris and amphibole occur locally. The semi-quantitative analysis suggests the existence of a considerable variation in the relative content of the principal mineralogical components and this is confirmed by the investigation of the major and minor elements. The terrigenous chemistry provides a more sensitive index of clay variability and allows the recognition of three distinct petrographic provinces.  相似文献   

10.
《地学前缘(英文版)》2020,11(4):1353-1367
Chronologically well-constrained loess-palaeosols(recorded glacial and inter-glacial climate) revealed pedogenesis induced ionic substitutions,caused end-member compositional deviations in illite and chlorite,linked to widespread climatic changes occurred during Late Pleistocene.Further,micro-level climatic resolution is yet to be resolved.Thus,layer-wise X-ray diffraction analyses of clay separates,followed by Rietveld refinement revealed varied cell parameters and interatomic distances.Obtained values for detrital and pedogenic illite and chlorite when plotted against stratigraphic succession show notable changes in the crystallographic axes.The illite lattices associated with inadequately pedogenized palaeosols have been altered into illite/smectite mixed layers,but,the chlorite lattices represent expansion of a-,b-and contraction of c-axes with much greater amount of distortions,suggestive of warm-humid and acidic environment.The detrital 48,44 and 83,74 bonded illite and chlorite with2 sub-types each,when pedogenized retained 48,44 and 34;and 83 and 74 bonds(in their neo-formed 3 and 2 sub-types),respectively.The Al-O bond shows expansion,but,unchanged Si-O and decreased Si-K and K-O bonds show loss of Al and retention of Si and K ions in the illite lattices.The illite with 32 atoms and 48 bonds represent contraction of K-O,Si-K,Al-O and Si-O bonds caused bond reinforcement;however,loss of Al~(3+)reflects all-out illite alteration.Owing to Al-O and K-O bond expansion,major K~+ and Al~(3+) ionic loss occurred during the LGM,however,further ionic loss depends upon the magnitude of the loess-palaeosol weathering that they have suffered.The clilate sensitive Fe,Mg and Al ionic losses for Fe-O,Mg-O and Al_(11)-O_9 bond length expansions were recognized in the chlorite lattices.Such ionic losses are common,but,complete distortion is attributed to Al,Si,Fe and Mg ionic losses,followed by weakening of Al-O,Si-O,Fe-O and Mg-O bonds.Though,Si-O_4 and Fe_1-O_4 bonds,and Si and Fe_(1 st) ions remain intact.Thus,three major glacial episodes of ~5 ka each occurred under alkaline environment,but,intervened by two successive cycles of 55 ka each,encompassing three alternate warm and cold climatic sub-cycles of 12-15 ka.But,the coldness increases with each warm-cold sub-cycle that attained the glacial maxima.Further,these events correlate well with the deep-sea records of the North Atlantic(MIS-1 to MIS-5 e) and CLP loess-palaeosols(~127 ka).  相似文献   

11.
The distribution of silicon isotopes along a meridional transect at 140°W longitude in the Eastern Equatorial Pacific was used to test the hypothesis that δ30Si of silicic acid in surface waters should correlate with net silica production rates (gross silica production minus silica dissolution) rather than rates of gross silica production due to the opposing Si isotope fractionations associated with silica production and silica dissolution. Variations in δ30Si appeared significantly correlated with net silica production rates in equatorial surface waters and not with gross production rates. Around the Equator, values of δ30Si as low as deep water values occurred in the upper mesopelagic in a zone of net silica dissolution and high detrital biogenic silica content, where the release of low δ30Si silicic acid from opal dissolution would be expected to decrease δ30Si. The δ30Si of the deep water at 140°W appears constant for depths >2000 m and is similar to the deep water at 110°W. This study brings to light the importance of considering Si fractionation during diatom silica dissolution, the biological fractionation during silica production and physical factors such as currents and mixing with adjacent water masses when interpreting silicon isotope distributions.  相似文献   

12.
Cyclostratigraphic analysis conducted on a continuous high-resolution marine record from the western most Mediterranean reveals well-identified paleoclimate cycles for the last 20,000 yr. The detrital proxies used (Si/Al, Ti/Al, Zr/Al, Mg/Al, K/Al, Rb/Al) are related to different sediment-transport mechanisms, including eolian dust and fluvial runoff, which involve fluctuations in the atmosphere–hydrosphere systems. These fluctuations are accompanied by changes in marine productivity (supported by Ba/Al) and bottom-water redox conditions (Cu/Al, V/Al, Zn/Al, Fe/Al, Mn/Al, U/Th). Spectral analysis conducted using the Lomb–Scargle periodogram and the achieved significance level implemented with the permutation test allowed us to establish major periodicities at 1300, 1515, 2000, and 5000 yr, and secondary peaks at 650, 1087, and 3000 yr. Some of these cycles also agree with those previously described in the North Atlantic Ocean and circum-Mediterranean records. The periodicities obtained at 2000 and 5000 yr support a global connection with records distributed at high, mid, and low latitudes associated with solar activity, monsoonal regime and orbital forcing. The 1300- and 1515-yr cycles appear to be linked with North Atlantic climate variability and the African monsoon system. Thus, the analyzed record provides evidence of climate cycles and plausible forcing mechanisms coupled with ocean–atmosphere fluctuations.  相似文献   

13.
Three sediment cores in a north-south transect (3°N to 13°S) from different sediment types of the Central Indian Ocean Basin (CIOB) are studied to understand the possible relationship between magnetic susceptibility (χ) and Al, Fe, Ti and Mn concentrations. The calcareous ooze core exhibit lowest χ (12.32 × 10−7 m3 kg−1), Al (2.84%), Fe (1.63%) and Ti (0.14%), terrigenous clay core with moderate χ (29.93 × 10−7 m3 kg−1) but highest Al (6.84%), Fe (5.20%) and Ti (0.44%), and siliceous ooze core with highest χ (38.06 × 10−7 m3 kg−1) but moderate Al (4.49%), Fe (2.80%) and Ti (0.19%) contents. The distribution of χ and detrital proxy elements (Al, Fe, and Ti) are identical in both calcareous and siliceous ooze. Interestingly, in terrigenous core, the behaviour of χ is identical to only Ti content but not with Al and Fe suggesting possibility of Al and Fe having a non-detrital source. The occurrence of phillipsite in terrigenous clay is evident by the Al-K scatter plot where trend line intersects K axis at more than 50% of total K suggesting excess K in the form of phillipsite. Therefore, the presence of phillipsite might be responsible for negative correlation between χ and Al (r = −0.52). In siliceous ooze the strong positive correlations among χ, Alexc and Feexc suggest the presence of authigenic Fe-rich smectite. High Mn content (0.5%) probably in the form of manganese micronodules is also contributing to χ in both calcareous and siliceous ooze but not in the terrigenous core where mean Mn content (0.1%) is similar to crustal abundance. Thus, χ systematically records the terrigenous variation in both the biogenic sediments but in terrigenous clay it indirectly suggests the presence of authigenic minerals.  相似文献   

14.
Brian Jones 《Sedimentology》2020,67(4):1844-1878
Phosphatic limestones on the west end of Little Cayman, at an elevation of 3 to 4 m above sea level and ca 320 to 550 m inland of the coast, lie on top of a phytokarst surface that defines the upper boundary of the Pedro Castle Formation (Pliocene). These phosphatic limestones are formed of phosphatic lithoclasts, detrital phosphate grains, coated grains (glaebules), composite coated grains, biofragments and phosphate rafts that are held in a matrix that is formed of micrite, calcite cement, and non-crystalline masses formed of P, Al, Si and Fe. The phosphate in these limestones is primarily hydroxylapatite, whereas the overlying soils, found in some areas, are formed of hydroxylapatite, crandallite and minor amounts of boehemite, kaolinite and quartz. Textures in the lithoclasts and detrital phosphate grains indicate that they were derived from older insular phosphates that that were largely removed by mining in 1890 to 1895. The coated grains (glaebules) typically have nuclei formed of a detrital phosphate grains that are encased by non-crystalline cortical laminae that are composed primarily of Al with their variable red colour reflecting the variable Fe content. The phosphatic limestones developed in a low-lying coastal area where the guano produced by a large seabird colony that was close to or mixed with terra rossa and marine carbonates that were washed onshore during storms/hurricanes. The Al, Fe, Si and rare earth elements found in the phosphatic limestones came from the terra rossa. Critically, this study documents the complex depositional regimes and diagenetic processes that can exist at the interface of marine carbonates, coastal phosphates and terrestrial soils as sea-level fluctuations control phases of sediment accumulation that were periodically interrupted by periods of non-deposition.  相似文献   

15.
We used X-ray absorption spectroscopy at the Al K-edge to investigate the atomic structure of biogenic silica and to assess the effect of Al on its crystal chemistry. Our study provides the first direct evidence for a structural association of Al and Si in biogenic silica. In samples of cultured diatoms, Al is present exclusively in fourfold coordination. The location and relative intensity of X-ray absorption near-edge structure (XANES) features suggests the structural insertion of tetrahedral Al inside the silica framework synthesized by the organism. In diatom samples collected in the marine environment, Al is present in mixed six- and fourfold coordination. The relative intensity of XANES structures indicates the coexistence of structural Al with a clay component, which most likely reflects sample contamination by adhering mineral particles. Extended X-ray absorption fine structure spectroscopy has been used to get Al-O distances in biogenic silica of cultured diatoms, confirming a tetrahedral coordination. Because of its effect on solubility and reaction kinetics of biogenic silica, the structural association between Al and biogenic silica at the stage of biosynthesis has consequences for the use of sedimentary biogenic silica as an indicator of past environmental conditions.  相似文献   

16.
High-resolution 27Al MAS NMR spectra of natural leucite recorded at H 0=11.7T contain three resolvable resonances at 27Al δ i = 69.2, 64.7, and 61.0±0.5 ppm. These three resonances are assigned to the three inequivalent framework positions of leucite: T3, T2, and T1, respectively. Fitting the observed spectra yields a Si,Al distribution for leucite in which approximately one-half of the Al is in T1 and one-quarter in each of T2 and T3. This Si,Al distribution differs substantially from those obtained by previous workers using 29Si NMR spectroscopy and X-ray diffraction. New 29Si NMR spectra and revision of previously reported 29Si NMR peak assignments, however, make the 27Al and 29Si NMR results consistent. The 27Al δ i correlate linearly with the mean T-O-T′ bond angles of the average structure, which allows the peak assignments to be made. However, this correlation lies distinctly toward higher frequency and larger bond angles than correlations for Si,Al ordered aluminosilicates, suggesting that the mean T(Al)-O-T′(Si) bond angle for each site in leucite is smaller than the mean bond angle of the average structure, which is averaged over T(Al)-O-T′(Si) and T(Si)-OT′(Si,Al) angles.  相似文献   

17.
Studies on surface water characters of the estuarine environment of Iraq, northwestern Arabian Gulf, define three subdivisions of salinity: oligohaline, polyhaline, and euhaline. Textural analysis reveals that surface sediments covering the bottom are composed of six distinct classes: silty clay, clayey silt, sand-silt-clays, clayey sand, silty sand and sand. Five physiographic subdivisions are identified and described fluvial-estuarine, tidal mud flats (subtidal flat, lower intertidal flat, upper intertidal flat, supratidal flat), sand bars, Abdallah-Shetana channel and submerged estuarine distributary channel and bar systems. The content of organic matter in the sediments ranges from 0.24-3.69 per cent by weight. High values were recorded from the Abdallah-Shetana channel while lower values are confined to sand bars and submerged estuarine distributary channel and bar systems. Carbonates, quartz, feldspar, and halite are the main mineral constituents of the non-clay grade sediments; carbonates are present mainly as low-magnesium calcite followed by dolomite and high-magnesium calcite. Aragonite is present only in trace amounts. Both detrital and biogenic sources are suggested for low-magnesium calcite. A detrital source for dolomite and a biogenic source for high-magnesium calcite and aragonite are proposed.  相似文献   

18.
The quartz-pebble conglomerate (QPC)-hosted detrital uranium mineralization is unique in character in terms of their restricted distribution before 2.2 Ga atmosphere during pre-Great Oxidation Event (pre-GOE). Such QPC paleoplacer deposits over the world are good targets for moderate to high tonnage and low grade uranium deposits and more importantly for their gold content. The Mahagiri Quartzite, dated c. 3.02 Ga for their youngest detrital zircon population, is developed unconformably over the Mesoarchean Singhbhum Granite (3.44 Ga to 3.1 Ga). The Mahagiri Quartzite includes a conglomerate-pebbly sandstone dominated subaerial alluvial fan to coastal braided plain sequence in the lower parts and shallow marine mature quartz arenite in the upper parts. The alluvial fan-braided plain deposits in the lower parts host a number of pyritiferous and uraniferous conglomerate and pebbly sandstone beds. The uraninite grains are rounded to subrounded in outline suggesting mechanical transport and detrital origin. Together with detrital pyrite and uraninite constitute the example of > 3.0 Ga paleoplacer closely comparable to the Witwatersrand Au–U deposits. EPMA and SEM-EDS studies suggest that the uraninite grains are rich in Th (> 4 wt.%), S and REE-Y. Chemical formula calculations from EPMA analyses suggest uraninite grains belong to two populations with different oxidation states as revealed from Y/REE and cation U4 +: U6 + [apfu] ratios. The U contents of the detrital uraninite grains from Mahagiri are significantly lower than that of the ideal stoichiometric composition of UO2. This is mainly due to higher amount of heterovalent cationic substitution by Th, REE, Y, Pb, and Ca in Mahagiri QPC uraninite structures, and partial alteration and metamictization of uraninites. Alteration due to metamictization resulted in elevated concentration of Si, Al, P, and Ca in more altered and metamict uraninite grains. The REE pattern is typically flat with comparable LREE–HREE concentration. The high Th content flat REE-pattern suggests that the uraninitere presents high temperature phases (> 350 °C) and are magmatic in origin. The Mahagiri detrital uraninite grains suggest existence of highly felsic and K-rich (richer than TTG) granodiorite–granite–monzogranite suites (GGM) of rocks older than 3.1 Ga in the Singhbhum craton.  相似文献   

19.
Sedimentary biogenic silica from Redeyef in Gafsa basin (southern Tunisia) was analysed for its 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra and complemented by X-ray diffraction and SEM observations. The 29Si MAS NMR spectrum is characterized by the abundance of hydroxylated silicon, displayed in resonance intensities and reflects a clear tendency towards dissolution of diatomaceous amorphous silica and the occurrence of the hydrated silica, which is the main component that ensures the diagenetic transition via the mechanism of dissolution–precipitation to other more crystalline silica phases, after the lost of its hydroxyls groups (water) by heating (burial). 27Al MAS NMR reveals two coordinations of Al; the octahedrally coordinated Al suggests the presence of clay relics trapped during crystal growth or a microcrystalline zeolite (clinoptilolite detected by SEM observations), while the tetrahedrally coordinated Al suggests the presence of minor quantities of minerals with tetrahedral Al, such as an Al-rich fluid and/or minerals such as feldspars.  相似文献   

20.
 The electronic structure of the three polymorphs of Al2SiO5, andalusite, sillimanite, and kyanite, is studied by linearized-augmented-plane-wave (LAPW) calculations using the WIEN code. Total energy calculations verify, in agreement with recent pseudopotential calculations, that andalusite is the most stable phase, followed by sillimanite and kyanite.We determine the electronic charge density distribution and find strong polarizations on all oxygen ions. We identify different polarizations due to Al or Si neighbors which depend on their respective distances to the oxygen atom. The chemical bonding is not purely ionic in nature but has important covalent contributions. Electric field gradients (EFGs) at all sites are calculated and agree well (within 10%) with available experimental data on Al. We identify the origin of the EFGs and demonstrate its relation to the nearest-neighbor coordination and the resulting anisotropy of the electronic charge distribution. Received: 22 March 2000 / Accepted: 3 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号