首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Quartz grains in hydrothermally altered granites from the Isle of Skye are highly heterogeneous and not equilibrated in oxygen isotope ratio at the 20 μm scale. Ion microprobe analysis of one grain shows a gradient of 13‰ over 400 μm and a greater range in δ 18O than all quartz previously analyzed on the Isle of Skye. Other crystals from the same outcrop are homogeneous. Digitized cathodoluminescence images reveal patterns of magmatic zoning and brittle fracturing not otherwise detectable. The ion probe analysis correlates low δ 18O values on a micro-scale to one set of healed cracks. Thus, quartz exchanges oxygen isotopes primarily by solution and reprecipitation along fractures, in contrast to more reactive feldspar that appears to exchange from the grain boundary inward. Macroscopic models of isotope exchange are not realistic for these rocks; the flow of hydrothermal fluids was heterogeneous, anisotropic and crack controlled. Received: 23 October 1995/Accepted: 9 April 1996  相似文献   

2.
The petrography, petrology, and oxygenisotope geochemistry of granulite-facies granitic and syenitic orthogneisses of the Diana and Stark complexes, Adirondack Mountains, New York, show that the extent and nature of resetting of isotopic and mineralogic systems is highly variable. There is a strong correlation between retrogression and shearing, and the rocks may be divided texturally into: (1) unsheared lithologies that preserve little-retrogressed pyroxene-or hornblendebearing peak-metamorphic mineralogies; and (2) sheared rocks that underwent retrogression, marked by the growth of late biotite, in centimetre-to metre-wide shear zones after the peak of metamorphism. Oxygen fugacities in the unsheared lithologies were estimated for reintegrated mineral compositions from magnetiteilmenite (Mt-Ilm) and ferrosilite-magnetic-quartz (Fs-Mt-Qtz) equilibria. Mt-Ilm yields logfO2Mt-Ilm values of-15.9 to-17.6 (0.6 to 1.3 log units below the fayalite-magnetite-quartz buffer, FMQ) and temperatures of 670–745°C that agree with those from other geothermometry and phase equilibria studies. These data suggest that, aside from oxyexsolution of ilmenite from magnetite, the Fe-Ti system underwent only minor resetting during cooling, and the Fe-Ti oxides yield good estimates of peak-metamorphic temperatures and fO2. In unsheared ilmenite + magnetite + orthopyroxene + quartz assemblages, values of logfO2Mt-Ilm are lower than logfO2Fs-Mt-Qtz by an average of 0.6 when the orthopyroxene activity model of Sack and Ghiorso is used. Minor resetting of the Fe-Ti oxides, analytical errors, and errors in the placement of end-member reactions probably account for this relatively small difference in fO2 values. Whole-rock 18O values of unsheared Diana and Stark lithologies range from 4.0 to 10.3 reflecting pre-regional metamorphic oxygen-isotope ratios. Peak-metamorphic minerals preserve high-temperature oxygen-isotope fractionations, and, in many samples, the effective diffusion of oxygen in minerals ceased at higher temperatures than predicted from wet experimental diffusion data. These data suggest that the rocks did not contain an aqueous fluid phase during cooling. The combination of petrologic, isotopic, and textural data also permits a detailed study of shearing and retrogression. Ilmenites in the sheared lithologies underwent greater degrees of hematite loss than in the unsheared rocks, resulting in logfO2Mt-Ilm values as low as-24.1 (3.1 log units below FMQ) and Mt-Ilm temperatures that are up to 175°C below regional estimates. Sheared rocks also have higher 18O values (up to 13.3). During shearing, 18O values of biotite, K-feldspar, and magnetite reset readily, while the degree of isotopic resetting of quartz correlates with the intensity for recrystallization.This paper is a contribution to IGCP Project 304, Lower Crustal Processes  相似文献   

3.
Contour maps showing variations in carbon and oxygen isotope ratios may be useful as a guide to ore. Previous literature suggests that the isotopic composition of carbon is related to the environment in which it is deposited. Sedimentary syngenetic ore deposits are also related to the depositional environment in which they occur and should therefore be related to the isotopic composition of the carbon deposited along with the ore. Although metamorphism may obscure palaeontological and stratigraphic indicators of environment, the isotopic composition of organic carbon appears to be unaffected by it. Previous literature suggests that variations in oxygen isotopes can be used also as a guide to certain epigenetic ore deposits.
Zusammenfassung Isotopenverteilungskarten sind nützliche Hilfsmittel bei der Erzprospektion. In der Literature wird auf die Abhängigkeit der Isotopen-Zusammensetzung vom Ablagerungsmilieu aufmerksam gemacht. Sedimentäre syngenetische Erzlagerstätten sind ohne Zweifel vom Ablagerungsmilieu abhängig. Es liegt deshalb nahe, die Isotopen-Zusammensetzung des darin enthaltenen Kohlenstoffs mit derjenigen der erzbildenden chemischen Elemente zu vergleichen. Obwohl metamorphe Prozesse paläontologische und stratigraphische Prozesse verwischen können, scheint die Isotopen-Zusammensetzung davon unbeeinflußt zu bleiben. Als Hilfsmittel können weiterhin die in der Literatur beschriebenen Isotopenverhältnisse des Sauerstoffs herangezogen werden.
  相似文献   

4.
A detailed oxygen isotope study of detrital quartz and authigenic quartz overgrowths from shallowly buried (<1 km) quartz arenites of the St. Peter Sandstone (in SW Wisconsin) constrains temperature and fluid sources during diagenesis. Quartz overgrowths are syntaxial (optically continuous) and show complex luminescent zonation by cathodoluminescence. Detrital quartz grains were separated from 53 rocks and analyzed for oxygen isotope ratio by laser fluorination, resulting in an average δ18O of 10.0 ± 0.2‰ (1SD, n = 109). Twelve thin sections were analyzed by CAMECA-1280 ion microprobe (6-10 μm spot size, analytical precision better than ±0.2‰, 1SD). Detrital quartz grains have an average δ18O of 10.0 ± 1.4‰ (1SD, n = 91) identical to the data obtained by laser fluorination. The ion microprobe data reveal true variability that is otherwise lost by homogenization of powdered samples necessary for laser fluorination. Laser fluorination uses samples that are one million times larger than the ion microprobe. Whole rock (WR) samples from the 53 rocks were analyzed by laser fluorination, giving δ18O between 9.8‰ and 16.7‰ (n = 110). Quartz overgrowths in thin sections from 10 rocks were analyzed by ion microprobe and average δ18O = 29.3 ± 1.0‰ (1SD, n = 161).Given the similarity, on average, of δ18O for all detrital quartz grains and for all quartz overgrowths, samples with higher δ18O(WR) values can be shown to have more cement. The quartz cement in the 53 rocks, calculated by mass balance, varies from <1 to 21 vol.% cement, with one outlier at 33 vol.% cement. Eolian samples have an average of 11% cement compared to marine samples, which average 4% cement.Two models for quartz cementation have been investigated: high temperature (50-110 °C) formation from ore-forming brines related to Mississippi Valley Type (MVT) mineralization and formation as silcretes at low temperature (10-30 °C). The homogeneity of δ18O for quartz overgrowths determined by ion microprobe rules out a systematic regional variation of temperature as predicted for MVT brines and there are no other known heating events in these sediments that were never buried to depths >1 km. The data in this study suggest that quartz overgrowths formed as silcretes in the St. Peter Sandstone from meteoric water with δ18O values of −10‰ to −5‰ at 10-30 °C. This interpretation runs counter to conventional wisdom based on fibrous or opaline silica cements suggesting that the formation of syntaxial quartz overgrowths requires higher temperatures. While metastable silica cements commonly form at high degrees of silica oversaturation following rapid break-down reactions of materials such as of feldspars or glass, the weathering of a clean quartz arenite is slower facilitating chemical equilibrium and precipitation of crystallographically oriented overgrowths of α-quartz.  相似文献   

5.
High Mg-Al spinel-sapphirine granulites, orthopyroxene-bearing quartzofeldspathic granulites, two pyroxene-bearing mafic granulites and metapelitic gneisses are exposed around Paderu, Eastern Ghats Belt. Geothermobarometry in orthopyroxene-bearing quartzofeldspathic granulites and mafic granulites indicate near isobaric cooling through 90°C from ca. 720°C to 630°C, at 8.0 kbar. However, signatures of ultrahigh temperature metamorphism are recorded from the mineralogy and reaction textures in the high Mg-Al granulites. Mineral reactions deduced in this work, when combined with others described by Lalet al (1987) from the same area and plotted in an appropriate petrogenetic grid in the system FMASO indicate an ACW path comprising a high dT/dP prograde arm reaching Pmax − Tmax = 9.5 kbar, ∼ 1000°C, followed by near-isobaric cooling down to 9 kbar, 900°C and subsequent decompressive reworking.  相似文献   

6.
7.
The laser fluorination technique reported here for analyzing the oxygen isotope composition (δ18O) of fine quartz size fractions 50-20, 20-10, 10-5, 5-2, 2-1 and <1 μm has been validated by comparison with the ion microprobe technique. It yields accurate δ18O data with an external precision better than 0.15‰. This is a significant methodological improvement for isotopic studies dealing with materials such as soil or biogenic oxides and silicates: particles are often too small and recovered in insufficient amount to be easily handled for ion microprobe analysis. Both techniques were used to investigate δ18O composition of a Cretaceous quartzite and silcrete sequence from the South-East of France. Quartzite cements average 31.04 ± 1.93‰. They formed from Mid-Cretaceous seawater. Higher in the series, silcretes cements average 26.66 ± 1.36‰. They formed from Upper- or post-Upper-Cretaceous soil water and groundwater. Oxygen isotope data show that the silicification steps from one mineralogical phase to another and from one layer to another (including from an upper pedogenic silcrete to a lower groundwater silcrete) occurred in a closed or weakly evaporating hydrological system.  相似文献   

8.
An empirical calibration for the oxygen isotope fractionation between biogenic silica and water was determined for diatom frustules sampled from living diatom communities in the Jemez Mountains of northern New Mexico, USA. Over a temperature range from 5.1 to 37.8 °C, the silica-water fractionation is defined by the equation 1000 ln α(silica-water) = 2.39(±0.13) × 106T−2 + 4.23(±1.49). This relationship is in close agreement with other published silica-water fractionation factors for laboratory cultured diatom samples; however, it is as much as 8‰ lower than equilibrium quartz-water fractionations and 3-4‰ lower than observed silica-water fractionations in diatomaceous silica collected from sediment traps and sediment cores. There are three possible explanations for the disparate silica-water fractionation factors observed in diatom silica: (1) silica does not precipitate in equilibrium with ambient water, (2) silica does precipitate in equilibrium with ambient water, but the silica-water fractionation factor for diatom silica is considerably less than the equilibrium fractionation factor for quartz-water, or (3) silica precipitation is influenced by a ‘vital’ effect, where the δ18O value of the water inside the diatom cell walls is lower than the δ18O values of ambient water.Post-mortem loss of organic material results in an alteration or ‘maturation’ of diatom silica in which silica reequilibrates with a silica-water fractionation closer to the equilibrium quartz-water fractionation. Alteration is likely to occur rapidly after the diatom frustule loses its organic coating, either as it settles through the water column or at the sediment-water interface; δ18O values recorded by paleo-diatom silica therefore do not record growing conditions but more likely record conditions at the sediment-water interface. In the case of lacustrine environments, where the bottom water remains at a nearly constant 4 °C, the reequilibration of diatom silica with bottom conditions could reduce or remove the conflating effects of temperature on δ18O values recorded by paleo-diatom silica and provide direct information on the δ18O value of the lake water.  相似文献   

9.
Oxygen isotope studies were carried out across units of a Neoproterozoic nappe system, south of São Francisco Craton. A temperature decrease toward the base of the system is found, consistent with a previously recognized inverted metamorphic pattern. The tectonic contact of the basal unit and the reworked southern São Francisco craton show a steep temperature gradient, suggesting that low temperature thrusting acted as the dominant tectonic process. The contrasts between the δ18O values of the Três Pontas-Varginha and Carmo da Cachoeira nappes and the differences among the samples and minerals are consistent with the preservation of sedimentary isotopic composition during metamorphism. The small differences in the δ18O values between the undeformed and the deformed calc-silicate samples (1.6‰) suggest that the δ18O value of mylonitization fluids was close to that which equilibrated with the metamorphic assemblage. The distinct δ18O values of metapelitic and calc-silicate samples and the great temperature difference from one type to the other indicate that no large-scale fluid interaction processes occurred during metamorphism. Oxygen isotopic estimations of both Três Pontas-Varginha undeformed rocks and Carmo da Cachoeira unaltered equivalents indicate δ18O values of up to 18‰. Comparison between these values and those from the ‘basement’ orthogneisses (8.3–8.5‰) indicates the latter are not sources for the metapelites.  相似文献   

10.
Strata-bound sulfide deposits associated with clastic, marine sedimentary rocks, and not associated with volcanic rocks, display distributions of S34 values gradational between two extreme types: 1. a flat distribution ranging from S34 of seawater sulfate to values about 25 lower; and 2. a narrow distribution around value S34 (sulfide)=S34 (seawater sulfate) –50, and skewed to heavier values. S34 (seawater sulfate) is estimated from contemporaneous evaporites. There is a systematic relation between the type of S34 distribution and the type of depositional environment. Type 1 occurs in shallow marine or brackish-water environments; type 2 occurs characteristically in deep, euxinic basins. These distributions can be accounted for by a model involving bacterial reduction of seawater sulfate in systems which range from fully-closed batches of sulfate (type 1) to fully open systems in which fresh sulfate is introduced as reduction proceeds (type 2). The difference in the characteristic distributions requires that the magnitude of the sulfate-sulfide kinetic isotope effect on reduction be different in the two cases. This difference has already been suggested by the conflict between S34 data for modern marine sediments and laboratory experiments. The difference in isotope effects can be accounted for by Rees' (1973) model of steady-state sulfate reduction: low nutrient supply and undisturbed, stationary bacterial populations in the open system settings tend to generate larger fractionations.
Zusammenfassung Schichtgebundene Sulfid-Lagerstätten in Begleitung von klastischen, marinen Sedimentgesteinen ohne Beteiligung vulkanischer Gesteine zeigen kontinuierliche Verteilungen der S34-Werte zwischen zwei Extremtypen: 1. Eine flache Verteilung im Bereich von S34-Werten des Seewasser-Sulfats bis zu Werten, die etwa 25 niedriger liegen. 2. Eine eng begrenzte Verteilung um den S34 (Sulfid)-Wert=S34 (Seewasser-Sulfat) –50 und asymmetrischer Verteilungskurve mit stärkerer Besetzung bei den schwereren Werten. Das S34 (Seewasser-Sulfat) wird von gleichaltrigen Evaporiten abgeleitet. Es besteht eine systematische Beziehung zwischen der Art der S34-Verteilung und dem Milieu des Ablagerungsraumes. Typ 1 tritt im marinen Flachwasser oder in brackischer Umgebung auf. Typ 2 ist charakteristisch für tiefe euxinische Becken. Diese Verteilungen können erklärt werden mit Hilfe eines Modells mit bakterieller Reduktion von Meerwasser-Sulfat in Systemen, die von völlig abgeschlossenen Sulfat-Mengen (Typ 1) bis zu völlig offenen Systemen reichen, in die bei fortschreitender Reduktion frisches Sulfat zugeführt wird (Typ 2). Der Unterschied in den charakteristischen Verteilungen setzt voraus, daß die Stärke der kinetischen Sulfat-Sulfid-Isotopen-Wirkung auf die Reduktion in beiden Fällen verschieden ist. Dieser Unterschied wurde bereits wegen der Widersprüche zwischen den verschiedenen S34-Werten heutiger mariner Sedimente und Laborexperimente vermutet. Der Unterschied in der Isotopen-Wirkung kann durch das Modell von Rees (1973) für kontinuierlich ablaufende Sulfat-Reduktion erklärt werden. Geringes Nahrungsangebot und ungestörte, gleichbleibende Bakterien-Populationen in offenen Systemen neigen zur Erzeugung stärkerer Fraktionierungen.
  相似文献   

11.
We found thirty compound chondrules in two CV3 carbonaceous chondrites. The abundance in each meteorite relative to single chondrules is 29/1846 (1.6%) in Allende and 1/230 (0.4%) in Axtell. We examined petrologic features, major element concentrations and oxygen isotopic compositions. Textural, compositional and isotopic evidence suggests that multiple, different mechanisms are responsible for the formation of compound chondrules.Seven compound chondrules are composed of two conjoined porphyritic chondrules with a blurred boundary. At the boundary region of this type of compounds, a poikilitic texture is commonly observed. This suggests that the two chondrules were melted when they came to be in contact. On the other hand, seventeen compound chondrules consist of two conjoined chondrules with a discrete boundary. The preservation of spherical boundary planes of an earlier-formed chondrule of this type implies that it already solidified before fusing with a later-formed chondrule that was still melted. Six samples out of 17 compound chondrules of this type are composed of two BO chondrules. The BO-BO compound chondrules have a unique textural feature in common: the directions of the barred olivines are mostly parallel between two chondrules. This cannot be explained by a simple collision process and forces another mechanism to be taken into consideration.The remaining six compound chondrules differ from the others; they consist of an earlier-formed chondrule enclosed by a later-formed chondrule. A large FeO enrichment was observed in the later-formed chondrules and the enrichment was much greater than that in the later-formed chondrules of other types of compounds. This is consistent with the relict chondrule model, which envisages that the later-formed chondrule was made by a flash melting of a porous FeO-rich dust clump on an earlier-formed chondrule. The textural evidence of this type of compound shows that the earlier-formed chondrule has melted again to varying degrees at the second heating event. This implies that FeO concentrations in bulk chondrules increases during the second heating event if an earlier-formed chondrule was totally melted together with the FeO-rich dust aggregates.Silicate minerals such as olivine and low-Ca pyroxene in compound chondrules have oxygen isotope compositions similar to those in single chondrules from CV3 chondrites. The oxygen isotope composition of each part of the compound chondrule is basically similar to their chondrule pair, but silicates in some chondrules show varying degrees of 16O-enrichment down to −15‰ in δ18O, while those in their partners have 16O-poor invariable compositions near 0 ‰ in δ18O. This implies that the two chondrules in individual compounds formed in the same environments before they became conjoined and the heterogeneous oxygen isotope compositions in some chondrules resulted from incomplete exchange of oxygen atoms between 16O-rich chondrule melts and 16O-poor nebular gas.  相似文献   

12.
Mass-spectrometric stable isotope measurements of CO2 use molecular ion currents at mass-to-charge ratios m/z 44, 45 and 46 to derive the elemental isotope ratios n(13C)/n(12C) and n(18O)/n(16O), abbreviated 13C/12C and 18O/16O, relative to a reference. The ion currents have to be corrected for the contribution of 17O-bearing isotopologues, the so-called ‘17O correction’. The magnitude of this correction depends on the calibrated isotope ratios of the reference. Isotope ratio calibrations are difficult and are therefore a matter of debate. Here, I provide a comprehensive evaluation of the existing 13C/12C (13R), 17O/16O (17R) and 18O/16O (18R) calibrations of the reference material Vienna Standard Mean Ocean Water (VSMOW) and CO2 generated from the reference material Vienna Pee Dee Belemnite (VPDB) by reaction with 100% H3PO4 at 25 °C (VPDB-CO2). I find , 18RVSMOW/10−6 = 2005.20 ± 0.45, 13RVPDB-CO2/10-6= 11124 ± 45, and 18RVPDB-CO2/10-6=2088.37±0.90. I also rephrase the calculation scheme for the 17O correction completely in terms of relative isotope ratio differences (δ values). This reveals that only ratios of isotope ratios (namely, 17R/13R and 13R17R/18R) are required for the 17O correction. These can be, and have been, measured on conventional stable isotope mass spectrometers. I then show that the remaining error for these ratios of isotope ratios can lead to significant uncertainty in the derived relative 13C/12C difference, but not for18O/16O. Even though inter-laboratory differences can be corrected for by a common ‘ratio assumption set’ and/or normalisation, the ultimate accuracy of the 17O correction is hereby limited. Errors of similar magnitude can be introduced by the assumed mass-dependent relationship between 17O/16O and 18O/16O isotope ratios. For highest accuracy in the 13C/12C ratio, independent triple oxygen isotope measurements are required. Finally, I propose an experiment that allows direct measurement of 13R17R/18R.  相似文献   

13.
The differences between the CO2 and O2 concentrations in soil air and atmospheric air have been measured where sulfide mineralization occurs beneath transported exotic overburden in semi-arid and arid areas of the USA, South West Africa (Namibia) and Saudi Arabia. These mineralizations are reflected near surface by anomalous levels of CO2 and O2 in soil air, whereas in most cases heavy-metal anomalies are absent. The normal background variability of CO2 and O2 in soil air falls with increasing aridity, and anomaly definition improves with increasing aridity. Thus soil air CO2 and O2 data are potentially useful in exploring for concealed mineralization, especially in regions with an arid climate or conspicuous dry season.  相似文献   

14.
We measured the δ18O of cellulose (δ18Ocel) extracted from fossil wood collected at 9 sites in the northern and southern hemispheres as a potential source of information about precipitation δ18O (δ18Oppt) in the past and paleotemperatures. The samples had been buried in fluvial sediments for periods of time ranging from ca. 45 million to 250 years. At the oldest localities (high latitude, Eocene- through Pliocene-age sites in Canada and Russia), mean annual temperature (MAT) estimates derived from the modern relationship between MAT and δ18Ocel are 6-16 °C lower than the MAT estimates derived from other biological proxies. Estimates of Pleistocene and Holocene mean annual temperatures are close to the modern values at those sites. These results are consistent with other recent findings that the MAT/δ18Oppt relationship across North America was not constant throughout the Cenozoic. Paleo-δ18Oppt estimates derived from fossil cellulose and the modern North American relationship between δ18Ocel and δ18Oppt are within the current annual range of δ18Oppt values at all locations. The middle Eocene δ18Oppt we determined from arctic cellulose samples (−21.9‰) is consistent with river water δ18O determined in two other studies (−19.1‰ to −22‰). These findings provide some evidence that a precipitation δ18O signal may be retained in wood cellulose during millions of years of burial, and that latitudinal patterns in δ18Oppt may not have changed much during the past 45 Ma. These interpretations depend, of course, on the assumption that the isotopic composition of the cellulose has not changed during burial, an assumption for which it is difficult to gather direct evidence. XRD analysis shows that the crystalline form of the fossil cellulose we used to estimate paleoprecipitation δ18O and paleo-MAT is the same as that of modern cellulose, and that the samples are free of quartz and iron oxide contaminants that result in negative errors in measured δ18Ocel.  相似文献   

15.
王浩铮  张华锋  翟明国 《岩石学报》2015,31(6):1694-1710
高级变质岩的变质历史是反演地壳构造-热事件的重要依据,然而高温扩散和重结晶作用能够改造造岩矿物中的主量元素分布,这对峰期变质温压条件的反演产生很不利的影响。相对于主量元素,微量元素,尤其是离子半径较大的REE,由于其在晶格中的扩散速率远小于主量元素,在高级叠加变质过程有可能记录前期变质作用。本文以胶北地体的高压基性麻粒岩为研究对象,通过详细的岩相学和矿物化学分析,初步解析了变质重结晶过程中的矿物微量元素再分配特征及其对变质作用的指示意义。岩相学上的证据表明这些样品经历了麻粒岩相变质和后期重结晶作用。单矿物的原位化学成分分析,峰期矿物石榴石、单斜辉石的主量元素Mg、Fe、Ca等二价阳离子分布均一,但部分稀土元素及微量元素则表现出钟形剖面环带分布,暗示主量元素遭受到成份扩散及重结晶所致的元素再分配,微量元素可记录峰期历史。结合主、微量元素温压计,我们分别估算了胶东基性高压麻粒岩的峰期(828℃、1.27GPa)和中压麻粒岩相退变质温压条件(810~840℃、0.6~1.0GPa),并推测其后期经历过角闪岩相退变质叠加。结合前人的年代学工作,我们认为该基性麻粒岩经历了近等温快速减压的变质历史。  相似文献   

16.
Zircon from a lower crustal metapelitic granulite (Val Malenco, N‐Italy) display inherited cores, and three metamorphic overgrowths with ages of 281 ± 2, 269 ± 3 and 258 ± 4 Ma. Using mineral inclusions in zircon and garnet and their rare earth element characteristics it is possible to relate the ages to distinct stages of granulite facies metamorphism. The first zircon overgrowth formed during prograde fluid‐absent partial melting of muscovite and biotite apparently caused by the intrusion of a Permian gabbro complex. The second metamorphic zircon grew after formation of peak garnet, during cooling from 850 °C to c. 700 °C. It crystallized from partial melts that were depleted in heavy rare earth elements because of previous, extensive garnet crystallization. A second stage of partial melting is documented in new growth of garnet and produced the third metamorphic zircon. The ages obtained indicate that the granulite facies metamorphism lasted for about 20 Myr and was related to two phases of partial melting producing strongly restitic metapelites. Monazite records three metamorphic stages at 279 ± 5, 270 ± 5 and 257 ± 4 Ma, indicating that formation ages can be obtained in monazite that underwent even granulite facies conditions. However, monazite displays less clear relationships between growth zones and mineral inclusions than zircon, hampering the correlation of age to metamorphism. To overcome this problem garnet–monazite trace element partitioning was determined for the first time, which can be used in future studies to relate monazite formation to garnet growth.  相似文献   

17.
Sulfate-reducing bacteria (SRB) are ubiquitous in anoxic environments where they couple the oxidation of organic compounds to the production of hydrogen sulfide. This can be problematic for various industries including oil production where reservoir “souring” (the generation of H2S) requires corrective actions. Nitrate or nitrite injection into sour oil fields can promote SRB control by stimulating organotrophic nitrate- or nitrite-reducing bacteria (O-NRB) that out-compete SRB for electron donors (biocompetitive exclusion), and/or by lithotrophic nitrate- or nitrite-reducing sulfide oxidizing bacteria (NR-SOB) that remove H2S directly. Sulfur and oxygen isotope ratios of sulfide and sulfate were monitored in batch cultures and sulfidic bioreactors to evaluate mitigation of SRB activities by nitrate or nitrite injection. Sulfate reduction in batch cultures of Desulfovibrio sp. strain Lac15 indicated typical Rayleigh-type fractionation of sulfur isotopes during bacterial sulfate reduction (BSR) with lactate, whereas oxygen isotope ratios in unreacted sulfate remained constant. Sulfur isotope fractionation in batch cultures of the NR-SOB Thiomicrospira sp. strain CVO was minimal during the oxidation of sulfide to sulfate, which had δ18OSO4 values similar to that of the water-oxygen. Treating an up-flow bioreactor with increasing doses of nitrate to eliminate sulfide resulted in changes in sulfur isotope ratios of sulfate and sulfide but very little variation in oxygen isotope ratios of sulfate. These observations were similar to results obtained from SRB-only, but different from those of NR-SOB-only pure culture control experiments. This suggests that biocompetitive exclusion of SRB took place in the nitrate-injected bioreactor. In two replicate bioreactors treated with nitrite, less pronounced sulfur isotope fractionation and a slight decrease in δ18OSO4 were observed. This indicated that NR-SOB played a minor role during dosing with low nitrite and that biocompetitive exclusion was the major process. The results demonstrate that stable isotope data can contribute unique information for understanding complex microbial processes in nitrate- and sulfate-reducing systems, and offer important information for the management of H2S problems in oil reservoirs and elsewhere.  相似文献   

18.
A Pleistocene valley-fill alluvial succession deposited in the Kleszczów Graben, central Poland, has been studied in the Belchatów openpit mine. The succession, palynologically documented to represent the Drenthe/Warthe interstadial, consists of three alluvial complexes whose component lithofacies associations indicate a fluvial system evolving from temperate-climate meandering river to transitional-type shallow braided network, to periglacial well-developed braided river influenced by aeolian sand supply. The study suggests that the abundance of fine-grained overbank deposits, occurrence of peats/palaeosols and fining-upward cyclothems are diagnostic attributes of perennial meandering river alluvium, which may indicate temperate climatic conditions. Periglacial braided river alluvium is recognizable by an admixture of wind-derived sand grains with aeolian surface textures and by the occurrence of ice-wedge features, indicative of cold climatic conditions. The distinction between the two basic types of alluvium is aided by the analysis of architectural elements and palaeocurrent directional data. The study demonstrates that sedimentological facies analysis can be a useful tool for the recognition of palaeoclimatic changes in Pleistocene alluvial successions.  相似文献   

19.
Os isotope ratios in pyrrhotite-bearing pelitic rocks of the ∼1.85 Ga Virginia Formation are variable, with perturbations linked to the emplacement of the ∼1.1 Ga Duluth Complex. Pyrrhotite in footwall rocks of the contact aureole show evidence for a mixing event at 1.1 Ga involving a low 187Os/188Os fluid. However, because rocks with perturbed pyrrhotite Os isotope ratios occur 1½ km or more from the Duluth Complex, the fluid is unlikely to have been of magmatic origin. Fluid inclusions in layer-parallel quartz veins provide evidence of the involvement of a boiling fluid at temperatures between ∼300 and 400 °C. Analyses of fluid inclusions via LA-ICP-MS show that the fluids contain up to 1.7 wt% Na, 1.1 wt% K, 4330 ppm Fe, 2275 ppm Zn, and 415 ppm Mg. The veins also contain pyrite or pyrrhotite, plus minor amounts of chalcopyrite, bornite, pentlandite, and sphalerite. The Re-Os isotopic ratios of pyrite from the veins indicate that they crystallized from low 187Os/188Os fluids (<0.2). δ18O values of vein quartz range from 7.7‰ to 9.5‰, consistent with an origin involving fluid with a relatively low δ18O value between 2‰ and 5‰. Meteoric water with such a low δ18O value could have interacted with the igneous rocks of the Complex and would have acquired Os with a low 187Os/188Os ratio. Strongly serpentinized olivine-rich rocks of the Complex are commonly characterized by such low δ18O values and we propose that the fluid involved in serpentinization was also responsible for the perturbation of the Os isotopic system recorded by pyrrhotite in the Virginia Formation. Two important observations are that only pyrrhotite-bearing assemblages in the contact aureole show isotopic perturbation and that intervals showing Os exchange are spatially restricted, and not uniformly distributed. Os exchange and mixing has occurred only where temperatures were sufficient to convert pyrite to pyrrhotite, and where time-integrated water-rock ratios in the aureole were high enough to provide a supply of Os.Troctolitic and gabbroic rocks of the Partridge River Intrusion, Duluth Complex, are characterized by Os isotope ratios that are indicative of variable degrees of crustal contamination (γOs values of ∼0-543). Xenoliths of carbonaceous and sulfidic pelitic rocks of the Virginia Formation found in the igneous rocks provide evidence that Os was released by organic matter and pyrite in the sedimentary rocks and assimilated by mantle-derived magma. However, residual pyrrhotite produced as a result of pyrite breakdown in the xenoliths is characterized by 187Os/188Os ratios that are much lower than anticipated and similar to those of pyrrhotite in the contact aureole. The Os exchange and addition shown by pyrrhotite in the xenoliths highlight an unusual cycle of Re-Os liberation during devolatilization, kerogen maturation, and pyrite to pyrrhotite conversion (processes that contribute to magma contamination), followed by Os uptake by pyrrhotite during back reaction involving magma and/or fluid characterized by a relatively low 187Os/188Os ratio. The extreme Os uptake recorded by pyrrhotite in the xenoliths, as well as the lesser degree of uptake recorded by pyrrhotite in the contact aureole, is in line with the high Os diffusivity in pyrrhotite experimentally determined by Brenan et al. (2000). Our data confirm that Os isotope ratios in pyrrhotite-bearing rocks may be readily perturbed. For this reason caution should be exercised in the interpretation of Os isotope ratios in rocks where pyrrhotite may be the primary host of Os.  相似文献   

20.
This paper characterizes late Holocene basalts and basaltic andesites at Medicine Lake volcano that contain high pre-eruptive H2O contents inherited from a subduction related hydrous component in the mantle. The basaltic andesite of Paint Pot Crater and the compositionally zoned basaltic to andesitic lavas of the Callahan flow erupted approximately 1000 14C years Before Present (14C years b.p.). Petrologic, geochemical and isotopic evidence indicates that this late Holocene mafic magmatism was characterized by H2O contents of 3 to 6 wt% H2O and elevated abundances of large ion lithophile elements (LILE). These hydrous mafic inputs contrast with the preceding episodes of mafic magmatism (from 10,600 to ∼3000 14C years b.p.) that was characterized by the eruption of primitive high alumina olivine tholeiite (HAOT) with low H2O (<0.2 wt%), lower LILE abundance and different isotopic characteristics. Thus, the mantle-derived inputs into the Medicine Lake system have not always been low H2O, primitive HAOT, but have alternated between HAOT and hydrous subduction related, calc-alkaline basalt. This influx of hydrous mafic magma coincides temporally and spatially with rhyolite eruption at Glass Mountain and Little Glass Mountain. The rhyolites contain quenched magmatic inclusions similar in character to the mafic lavas at Callahan and Paint Pot Crater. The influence of H2O on fractional crystallization of hydrous mafic magma and melting of pre-existing granite crust beneath the volcano combined to produce the rhyolite. Fractionation under hydrous conditions at upper crustal pressures leads to the early crystallization of Fe-Mg silicates and the suppression of plagioclase as an early crystallizing phase. In addition, H2O lowers the saturation temperature of Fe and Mg silicates, and brings the temperature of oxide crystallization closer to the liquidus. These combined effects generate SiO2-enrichment that leads to rhyodacitic differentiated lavas. In contrast, low H2O HAOT magmas at Medicine Lake differentiate to iron-rich basaltic liquids. When these Fe-enriched basalts mix with melted granitic crust, the result is an andesitic magma. Since mid-Holocene time, mafic volcanism has been dominated primarily by hydrous basaltic andesite and andesite at Medicine Lake Volcano. However, during the late Holocene, H2O-poor mafic magmas continued to be erupted along with hydrous mafic magmas, although in significantly smaller volumes. Received: 4 January 1999 / Accepted: 30 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号