首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The paper summarizes paleomagnetic and rock-magnetic data on the Late Cretaceous diatremes and associated dikes from the Minusa trough located within the southwestern Siberian Platform. It is shown that the stable characteristic component of magnetization is superimposed magnetization (in physical sense). It is linked to Fe-rich titanomagnetite produced by the decay and oxidation of Ti-rich titanomagnetite derived from a primary magma. This process, however, coincides in time with the intrusion cooling, which is supported by paleomagnetic tests. Correlation of magnetic polarity with 39Ar/40Ar ages suggests that the acquired stable characteristic component of magnetization corresponds to magnetic Chrons C33-C32 and characterizes the Middle Campanian magnetic field (74–82 Ma). The mean paleomagnetic pole for this span is located at 82.8° N, 188.5° E, with α95 = 6.1 and, within confidence intervals, coincides with the reference data from the European part of the Eurasian plate. The excellent agreement between virtual paleomagnetic poles testifies that the intraplate motions in the Mesozoic resulting in the crust deformation of Central Asia ceased in the late Cretaceous or were so small that elude detection by the paleomagnetic method.  相似文献   

3.
The Vendian–Lower Cambrian tectonomagmatic activation took place in the northeastern Siberian Craton, within the Olenek Uplift and in the Kharaulakh segment of the Verkhoyansk fold-and-thrust belt (the lower reaches of the Lena River). The Early Paleozoic volcanic activity in the Olenek Uplift is expressed in the form of basitic diatremes, small basaltic covers, and doleritic dikes and sills intruding and covering the Upper Vendian carbonate deposits. The material specificity of the Lower Cambrian basites and their mantle sources, jointly with the Vendian–Cambrian sedimentation history, gives reason to consider the Lower Cambrian riftogenesis and the associated magmatism as a consequence of the plume–lithosphere interaction in the northeastern Siberian Craton.  相似文献   

4.
Sterane hydrocarbons (HCs) of bitumoids of organic matter (OM) from the Lower Cambrian Sinyaya formation of the northern slope of the Aldan anteclise were studied using the chromatography-mass spectrometry technique. Norlanostanes C29 and lanostanes C30 were first discovered in fossilized OM from Cambrian sedimentary basins. This report considers the features of sedimentation, diagenesis, and maturity of lanosteroid-containing organic matter. Lanostane HCs are recommended for usage as biomarkers of oilproducing rocks of the Sinyaya formation to determine the source of naphthides in the eastern part of the Siberian platform.  相似文献   

5.
A model of the formation of the Ulkan trough was specified on the basis of new geochemical and geochronological data. The volcanics of the Ulkan Group exhibit geochemical features typical of the rocks of two modern geodynamic settings: suprasubduction and within-plate ones. The combination of the components derived from the different-depth sources in the magmatic chambers explains the formation of the volcanics with mixed geochemical signatures. The age of the granitoids of three phases of the Ulkan Massif is determined within the range of 1730–1925 Ga. The granites of the first and third phases have positive ɛNd(T) of + 3.5 and + 0.7, respectively. The granites of the first phase of the Ulkan Complex were likely derived from the Paleoproterozoic juvenile crust with an age of 1.84–1.95 Ga. The effusive rocks of the Ulkan Group were presumably formed in a geodynamic setting of a Cordilleran-type transform continental margin. Judging from the model TNd(DM) age, these geodynamic conditions operated >1.84 Ga ago.  相似文献   

6.
Types and lateral and vertical distribution of silicification in Riphean (largely dolomitic) rocks of the Yurubcha-Tokhomo zone of the Siberian Craton are discussed. It is shown that quartz and pyroclastic material in sediments were subjected to intense dissolution in a highly alkaline Riphean basin with the release of silica. Rapid and abrupt decrease in alkalinity during hiatus and desiccation periods resulted in the precipitation of dissolved silica and silicification of near-surface sediments. Lateral distribution of silicification was controlled by the redistribution of silica during the pre-Vendian hiatus, when surface waters were filtered through a carbonate massif with the simultaneous karst formation and silica dissolution. In the water discharge area, secondary silica was precipitated owing to changes in pH values and other physicochemical conditions.  相似文献   

7.
8.
Doklady Earth Sciences - Comprehensive studies of peridotitic xenoliths from the Udachnaya kimberlite (Yakutian diamond province, Siberian craton) confirm that garnet shows inverse correlation of...  相似文献   

9.
We report a new paleomagnetic determination of Paleoproterozoic rocks from the Siberian craton which showed a positive baked contact test and a stable age of the high-temperature NRM component. The mean paleomagnetic pole of Siberia for ~1730 Ma located at 42.9° S, 109.6° E (α95 = 5.3°) is compatible with the pole positions obtained recently for the middle and late Early Proterozoic.  相似文献   

10.
The kimberlite fields scattered across the NE part of the Siberian Craton have been used to map the subcontinental lithospheric mantle (SCLM), as it existed during Devonian to Late Jurassic time, along a 1000-km traverse NE–SW across the Archean Magan and Anabar provinces and into the Proterozoic Olenek Province. 4100 garnets and 260 chromites from 65 kimberlites have been analysed by electron probe (major elements) and proton microprobe (trace elements). These data, and radiometric ages on the kimberlites, have been used to estimate the position of the local (paleo)geotherm and the thickness of the lithosphere, and to map the detailed distribution of specific rock types and mantle processes in space and time. A low geotherm, corresponding approximately to the 35 mW/m2 conductive model of Pollack and Chapman [Tectonophysics 38, 279–296, 1977], characterised the Devonian lithosphere beneath the Magan and Anabar crustal provinces. The Devonian geotherm beneath the northern part of the area was higher, rising to near a 40 mW/m2 conductive model. Areas intruded by Mesozoic kimberlites are generally characterised by this higher, but still ‘cratonic' geotherm. Lithosphere thickness at the time of kimberlite intrusion varied from ca. 190 to ca. 240 km beneath the Archean Magan and Anabar provinces, but was less (150–180 km) beneath the Proterozoic Olenek Province already in Devonian time. Thinner Devonian lithosphere (140 km) in parts of this area may be related to Riphean rifting. Near the northern end of the traverse, differences in geotherm, lithosphere thickness and composition between the Devonian Toluopka area and the nearby Mesozoic kimberlite fields suggest thinning of the lithosphere by ca. 50–60 km, related to Devonian rifting and Triassic magmatism. A major conclusion of this study is that the crustal terrane boundaries defined by geological mapping and geophysical data (extended from outcrops in the Anabar Shield) represent major lithospheric sutures, which continue through the upper mantle and juxtapose lithospheric domains that differ significantly in composition and rock-type distribution between 100 and 250 km depth. The presence of significant proportions of harzburgitic and depleted lherzolitic garnets beneath the Magan and Anabar provinces is concordant with their Archean surface geology. The lack of harzburgitic garnets, and the chemistry of the lherzolitic garnets, beneath most of the other fields are consistent with the Proterozoic surface rocks. Mantle sections for different terranes within the Archean portion of the craton show pronounced differences in bulk composition, rock-type distribution, metasomatic overprint and lithospheric thickness. These observations suggest that individual crustal terranes, of both Archean and Proterozoic age, had developed their own lithospheric roots, and that these differences were preserved during the Proterozoic assembly of the craton. Data from kimberlite fields near the main Archean–Proterozoic suture (the Billyakh Shear Zone) suggest that reworking and mixing of Archean and Proterozoic mantle was limited to a zone less than 100 km wide.  相似文献   

11.
12.
This study aims at summarizing available geological and geochemical data on known Proterozoic platinum-bearing ultramafic-mafic massifs in the south of Siberia. Considering new data on geochemistry and geochronology of some intrusions, it was feasible to compare ore-bearing complexes of different time spans and areas and to follow their relationships with the recognized large igneous provinces. In the south of Siberia, the platinum-bearing massifs might be united into three age groups: Late Paleoproterozoic (e.g., Chiney complex, Malozadoisky massif), Late Mesoproterozoic (e.g., Srednecheremshansky massif), and Neoproterozoic (e.g., Kingash complex, Yoko-Dovyren massif, and massifs in the center of the East Sayan Mts.). In most massifs but Chiney the initial magmas are magnesium-rich. On paleogeodynamic reconstructions, the position of the studied massifs is the evidence that three most precisely dated events in North Canada continued into southern Siberia: In the period 1880-1865 Ma, it was the Ghost-Mara River-Morel LIP; at 1270-1260 Ma, the Mackenzie LIP; and at 725-720 Ma, Franklin LIP. In Siberia, the mostly productive massifs with respect to PGE-Ni-Cu mineralization are those linked with the Franklin LIP: Verkhny Kingash, Yoko-Dovyren, and central part of the Eastern Sayan Mountains, e.g., Tartay, Zhelos, and Tokty-Oy.  相似文献   

13.
The composition and structure of principal key-sections for the Tira (Late Vendian) and Danilovo (Late Vendian-Early Cambrian) Horizons were characterized on the basis of deep-drilling data and studies of natural outcrops along the peripheries of the Kureika syneclise. The typical sedimentary formations/associations were recognized, their vertical and lateral successions were distinguished, and their deposition environments were interpreted. A distribution pattern scheme of thicknesses and depositional environments of Upper Vendian-Lower Cambrian deposits was compiled at the 1: 1000000 scale. The reservoir characteristics of the formations are discussed and forecasted for poorly studied areas of the northwestern Siberian platform.  相似文献   

14.
Doklady Earth Sciences - Olivine is the most common rock-forming mineral of the majority of the lithospheric mantle rocks beneath ancient cratons. This study provides the information about an...  相似文献   

15.
Doklady Earth Sciences - The eastern boundary of the Siberian Craton was formed as a result of rifting that split the continent late in the Middle Paleozoic. The paleomagnetic data derived from the...  相似文献   

16.
17.
18.
We present new paleomagnetic data for continental flood basalts (Siberian traps) obtained from cores of two boreholes in the northwestern Noril'sk area, within the Kharaelakh and Vologochan basins. Paleomagnetic measurements of lava and tuff samples from KhS-59 and SSV-19 boreholes allowed reconstructing and correlating the polarity patterns. Thus multiple paleomagnetic anomalies (PMA) have been discovered as brief polarity changes in narrow intervals of the magnetostratigraphic section above the principle reversal at the boundary between the Ivakin and Syverma Formations.The most prominent anomalies are observed at the bases of the Morongo and Mokulai Formations. The samples from the anomalous intervals differ from those of other intervals neither in rock magnetic properties, nor in mineralogy and magnetic grain sizes. Therefore, the revealed PMA record excursions of the geomagnetic field. Comparison of the results with the Meishan Global Stratotype Section and Point (GSSP) of the Permian–Triassic boundary implies a revision to the P–T position in the trap basalt succession of the Noril'sk area. Judging by the EMF behavior, basalts in this part of the trap province erupted for at least 500 kyr during an interval of stable normal polarity.  相似文献   

19.
Doklady Earth Sciences - The present paper presents new U–Pb and Sm–Nd age data obtained for granulites of the Cheremshanskaya Unit enclosing metamorphosed volcano-sedimentary sulfide...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号