首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the standard map model, we study the stickiness effect of invariant tori, particularly the role of hyperbolic sets in this effect. The diffusion of orbits originated from the neighborhoods of hyperbolic points, periodic islands and torus is studied. We find that they possess similar diffusion rules, but the diffusion of orbits originated from the neighborhood of a torus is faster than that originated near a hyperbolic set. The numerical results show that an orbit in the neighborhood of a torus spends most of time around hyperbolic invariant sets. We also calculate the areas of islands with different periods. The decay of areas with the periods obeys a power law, and the absolute values of the exponents increase monotonously with the perturbation parameter. According to the results obtained, we conclude that the stickiness effect of tori is caused mainly by the hyperbolic invariant sets near the tori, and the diffusion speed becomes larger when orbits diffuse away from the torus.  相似文献   

2.
We investigate the orbital diffusion and the stickiness effects in the phase space of a 3-dimensional volume preserving mapping. We first briefly review the main results about the stickiness effects in 2-dimensional mappings. Then we extend this study to the 3-dimensional case, studying for the first time the behavior of orbits wandering in the 3-dimensional phase space and analyzing the role played by the hyperbolic invariant sets during the diffusion process. Our numerical results show that an orbit initially close to a set of invariant tori stays for very long times around the hyperbolic invariant sets near the tori. Orbits starting from the vicinity of invariant tori or from hyperbolic invariant sets have the same diffusion rule. These results indicate that the hyperbolic invariant sets play an essential role in the stickiness effects. The volume of phase space surrounded by an invariant torus and its variation with respect to the perturbation parameter influences the stickiness effects as well as the development of the hyperbolic invariant sets. Our calculations show that this volume decreases exponentially with the perturbation parameter and that it shrinks down with the period very fast.  相似文献   

3.
The dynamics of the two Jupiter triangular libration points perturbed by Saturn is studied in this paper. Unlike some previous works that studied the same problem via the pure numerical approach, this study is done in a semianalytic way. Using a literal solution, we are able to explain the asymmetry of two orbits around the two libration points with symmetric initial conditions. The literal solution consists of many frequencies. The amplitudes of each frequency are the same for both libration points, but the initial phase angles are different. This difference causes a temporary spatial asymmetry in the motions around the two points, but this asymmetry gradually disappears when the time goes to infinity. The results show that the two Jupiter triangular libration points should have symmetric spatial stable regions in the present status of Jupiter and Saturn. As a test of the literal solution, we study the resonances that have been extensively studied in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006). The resonance structures predicted by our analytic theory agree well with those found in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006) via a numerical approach. Two kinds of chaotic orbits are discussed. They have different behaviors in the frequency map. The first kind of chaotic orbits (inner chaotic orbits) is of small to moderate amplitudes, while the second kind of chaotic orbits (outer chaotic orbits) is of relatively larger amplitudes. Using analytical theory, we qualitatively explain the transition process from the inner chaotic orbits to the outer chaotic orbits with increasing amplitudes. A critical value of the diffusion rate is given to separate them in the frequency map. In a forthcoming paper, we will study the same problem but keep the planets in migration. The time asymmetry, which is unimportant in this paper, may cause an observable difference in the two Jupiter Trojan groups during a very fast planet migration process.  相似文献   

4.
The purpose of this work is to show that chaos control techniques (OGY, in special) can be used to efficiently keep a spacecraft around another body performing elaborate orbits. We consider a satellite and a spacecraft moving initially in coplanar and circular orbits, with slightly different radii, around a heavy central planet. The spacecraft, which is the inner body, has a slightly larger angular velocity than the satellite so that, after some time, they eventually go to a situation in which the distance between them becomes sufficiently small, so that they start to interact with one another. This situation is called as an encounter. In previous work we have shown that this scenario is a typical situation of a chaotic scattering for some well-defined range of parameters. Considering this scenario, we first show how it is possible to find the unstable periodic orbits that are located in the chaotic invariant set. From the set of unstable periodic orbits, we select the ones that can be combined to provide the desired elaborate orbit. Then, chaos control technique based on the OGY method is used to keep the spacecraft in the desired orbit. Finally, we analyze the results and make considerations regarding a realistic scenario of space exploration.  相似文献   

5.
For the circular restricted three-body problem of celestial mechanics with small secondary mass, we prove the existence of uniformly hyperbolic invariant sets of non-planar periodic and chaotic almost collision orbits. Poincaré conjectured existence of periodic ones and gave them the name “second species solutions”. We obtain large subshifts of finite type containing solutions of this type.  相似文献   

6.
In this paper the effect of the Galactic tidal field on a Sun–comet pair will be considered when the comet is situated in the Oort cloud and planetary perturbations can be neglected. First, two averaged models were created, one of which can be solved analytically in terms of Jacobi elliptic functions. In the latter system, switching between libration and circulation of the argument of perihelion is prohibited. The non-averaged equations of motion are integrated numerically in order to determine the regions of the ( e ,  i ) phase space in which chaotic orbits can be found, and an effort is made to explain why the chaotic orbits manifest in these regions only. It is evident that for moderate values of semimajor axis, a ∼50 000 au , chaotic orbits are found for ( e <0.15 , 40°≤ i ≤140°) as determined by integrating the evolution of the comet over a period of 104 orbits. These regions of chaos increase in size with increasing semimajor axis. The typical e-folding times for these orbits range from around 600 Myr to 1 Gyr and thus are of little practical interest, as the time-scales for chaos arising from passing stars are much shorter. As a result of Galactic rotation, the chaotic regions in ( e ,  i ) phase space are not symmetric for prograde and retrograde orbits.  相似文献   

7.
We consider the possibility of particles being injected at the interior of a reconnecting current sheet (RCS), and study their orbits by dynamical systems methods. As an example we consider orbits in a 3D Harris type RCS. We find that, despite the presence of a strong electric field, a 'mirror' trapping effect persists, to a certain extent, for orbits with appropriate initial conditions within the sheet. The mirror effect is stronger for electrons than for protons. In summary, three types of orbits are distinguished: (i) chaotic orbits leading to escape by stochastic acceleration, (ii) regular orbits leading to escape along the field lines of the reconnecting magnetic component, and (iii) mirror-type regular orbits that are trapped in the sheet, making mirror oscillations. Dynamically, the latter orbits lie on a set of invariant KAM tori that occupy a considerable amount of the phase space of the motion of the particles. We also observe the phenomenon of 'stickiness', namely chaotic orbits that remain trapped in the sheet for a considerable time. A trapping domain, related to the boundary of mirror motions in velocity space, is calculated analytically. Analytical formulae are derived for the kinetic energy gain in regular or chaotic escaping orbits. The analytical results are compared with numerical simulations.  相似文献   

8.
A new fully numerical method is presented which employs multiple Poincaré sections to find quasiperiodic orbits of the Restricted Three-Body Problem (RTBP). The main advantages of this method are the small overhead cost of programming and very fast execution times, robust behavior near chaotic regions that leads to full convergence for given family of quasiperiodic orbits and the minimal memory required to store these orbits. This method reduces the calculations required for searching two-dimensional invariant tori to a search for closed orbits, which are the intersection of the invariant tori with the Poincaré sections. Truncated Fourier series are employed to represent these closed orbits. The flow of the differential equation on the invariant tori is reduced to maps between the consecutive Poincaré maps. A Newton iteration scheme utilizes the invariance of the circles of the maps on these Poincaré sections in order to find the Fourier coefficients that define the circles to any given accuracy. A continuation procedure that uses the incremental behavior of the Fourier coefficients between close quasiperiodic orbits is utilized to extend the results from a single orbit to a family of orbits. Quasi-halo and Lissajous families of the Sun–Earth RTBP around the L2 libration point are obtained via this method. Results are compared with the existing literature. A numerical method to transform these orbits from the RTBP model to the real ephemeris model of the Solar System is introduced and applied.  相似文献   

9.
We discuss the issue of ordered and chaotic trajectories in the Bohmian approach of Quantum Mechanics from points of view relevant to the methods of Celestial Mechanics. The Bohmian approach gives the same results as the orthodox (Copenhagen) approach, but it considers also underlying trajectories guided by the wave. The Bohmian trajectories are rather different from the corresponding classical trajectories. We give examples of a classical chaotic system that is ordered quantum-mechanically and of a classically ordered system that is mostly chaotic quantum mechanically. Then we consider quantum periodic orbits and ordered orbits, that can be represented by formal series of the “third integral” type, and we study their asymptotic properties leading to estimates of exponential stability. Such orbits do not approach the “nodal points” where the wavefunction ψ vanishes. On the other hand, when an orbit comes close to a nodal point, chaos is generated in the neighborhood of a hyperbolic point (called X-point). The generation of chaos is maximum when the X-point is close to the nodal point. Finally we remark that high order periodic orbits may behave as “effectively ordered” or “effectively chaotic” for long times before reaching the period.  相似文献   

10.
Two simple and efficient numerical methods to explore the phase space structure are presented, based on the properties of the "dynamical spectra". 1) We calculate a "spectral distance" D of the dynamical spectra for two different initial deviation vectors. D → 0 in the case of chaotic orbits, while D → const ≠ 0 in the case of ordered orbits. This method is by orders of magnitude faster than the method of the Lyapunov Characteristic Number (LCN). 2) We define a sensitive indicator called ROTOR (ROtational TOri Recongnizer) for 2D maps. The ROTOR remains zero in time on a rotational torus, while it tends to infinity at a rate ∝ N = number of iterations, in any case other than a rotational torus. We use this method to locate the last KAM torus of an island of stability, as well as the most important cantori causing stickiness near it. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The paper deals with different kinds of invariant motions (periodic orbits, 2D and 3D invariant tori and invariant manifolds of periodic orbits) in order to analyze the Hamiltonian direct Hopf bifurcation that takes place close to the Lyapunov vertical family of periodic orbits of the triangular equilibrium point L4 in the 3D restricted three-body problem (RTBP) for the mass parameter, μ greater than (and close to) μR (Routh’s mass parameter). Consequences of such bifurcation, concerning the confinement of the motion close to the hyperbolic orbits and the 3D nearby tori are also described.  相似文献   

12.
Hyperbolic meteor orbits from the catalog of 64,650 meteors observed by the multistation video meteor network located in Japan (SonotaCo 2009) have been investigated with the aim of determining the relation between the frequency of hyperbolic and interstellar meteors. The proportion of hyperbolic meteors in the data decreased significantly (from 11.58% to 3.28%) after a selection of quality orbits, which shows its dependence on the quality of observations. Initially, the hyperbolic orbits were searched for meteors unbound due to planetary perturbation. It was determined that 22 meteors from the 7489 hyperbolic orbits in the catalog (and 2 from the selection of the orbits with the highest quality) had had a close encounter with a planet, none of which, however, produced essential changes in their orbits. Similarly, the fraction of hyperbolic orbits in the data, which could be hyperbolic by reason of a meteor's interstellar origin, was determined to be at most 3.9 × 10?2. From the statistical point of view, the vast majority of hyperbolic meteors in the database have definitely been caused by inaccuracy in the velocity determination. This fact does not necessarily assume great measurement errors, since, especially near the parabolic limit, a small error in the value of the heliocentric velocity of a meteor can create an artificial hyperbolic orbit that does not really exist. The results show that the remaining 96% of meteoroids with apparent hyperbolic orbits belong to the solar system meteoroid population. This is also supported by their high abundance (about 50%) among the meteor showers.  相似文献   

13.
Orbits in the principal planes of triaxial potentials are known to be prone to unstable motion normal to those planes, so that three dimensional investigations of those orbits are needed even though they are two dimensional. We present here an investigation of such orbits in the well known logarithmic potential which shows that the third dimension must be taken into account when studying them and that the instability worsens for lower values of the forces normal to the plane. Partially chaotic orbits are present around resonances, but also in other regions. The action normal to the plane seems to be related to the isolating integral that distinguishes regular from partially chaotic orbits, but not to the integral that distinguishes partially from fully chaotic orbits.  相似文献   

14.
The spectra of ‘stretching numbers’ (or ‘local Lyapunov characteristic numbers’) are different in the ordered and in the chaotic domain. We follow the variation of the spectrum as we move from the centre of an island outwards until we reach the chaotic domain. As we move outwards the number of abrupt maxima in the spectrum increases. These maxima correspond to maxima or minima in the curve a(θ), where a is the stretching number, and θ the azimuthal angle. We explain the appearance of new maxima in the spectra of ordered orbits. The orbits just outside the last KAM curve are confined close to this curve for a long time (stickiness time) because of the existence of cantori surrounding the island, but eventually escape to the large chaotic domain further outside. The spectra of sticky orbits resemble those of the ordered orbits just inside the last KAM curve, but later these spectra tend to the invariant spectrum of the chaotic domain. The sticky spectra are invariant during the stickiness time. The stickiness time increases exponentially as we approach an island of stability, but very close to an island the increase is super exponential. The stickiness time varies substantially for nearby orbits; thus we define a probability of escape Pn(x) at time n for every point x. Only the average escape time in a not very small interval Δx around each x is reliable. Then we study the convergence of the spectra to the final, invariant spectrum. We define the number of iterations, N, needed to approach the final spectrum within a given accuracy. In the regular domain N is small, while in the chaotic domain it is large. In some ordered cases the convergence is anomalously slow. In these cases the maximum value of ak in the continued fraction expansion of the rotation number a = [a0,a1,... ak,...] is large. The ordered domain contains small higher order chaotic domains and higher order islands. These can be located by calculating orbits starting at various points along a line parallel to the q-axis. A monotonic variation of the sup {q}as a function of the initial condition q0 indicates ordered motions, a jump indicates the crossing of a localized chaotic domain, and a V-shaped structure indicates the crossing of an island. But sometimes the V-shaped structure disappears if the orbit is calculated over longer times. This is due to a near resonance of the rotation number, that is not followed by stable islands. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We apply the spectral formulation of the Nekhoroshev theorem to investigate the long-term stability of real main belt asteroids. We find numerical indication that some asteroids are in the so-called Nekhoroshev stability regime, that is they are on chaotic orbits but their motion is stable over very long times. We have analyzed the motion of bodies in different regions of the belt, to assess the sensitivity of our method. We found that it allows us to clearly discriminate between different dynamical regimes, such as the one described by the Nekhoroshev stability, the one well described by the KAM theory, and the unstable chaotic regime in which diffusion in phase space can be detected over time spans much shorter than the age of the solar system.  相似文献   

16.
The cooling of gas in the centres of dark matter haloes is expected to lead to a more concentrated dark matter distribution. The response of dark matter to the condensation of baryons is usually calculated using the model of adiabatic contraction, which assumes spherical symmetry and circular orbits. Following Gnedin et al., we improve this model by modifying the assumed invariant from M ( r ) r to     , where r and     are the current and orbit-averaged particle positions. We explore the effect of the bulge in the inner regions of the halo for different values of the bulge-to-disc mass ratio. We find that the bulge makes the velocity curve rise faster in the inner regions of the halo. We present an analytical fitting curve that describes the velocity curve of the halo after dissipation. The results should be useful for dark matter detection studies.  相似文献   

17.
The hyperbolic meteor orbits among the 4,581 photographic and 62,906 radar meteors of the IAU MDC have been analysed using statistical methods. It was shown that the vast majority of hyperbolic orbits has been caused by the dispersion of determined velocities. The large proportion of hyperbolic orbits among the known meteor showers strongly suggests the hyperbolicity of the meteors is not real. The number of apparent hyperbolic orbits increases inversely proportional to the difference between the mean heliocentric velocity of meteor shower and the parabolic velocity limit. The number of hyperbolic meteors in the investigated catalogues does not, in any case, represent the number of interstellar meteors in observational data. The apparent hyperbolicity of these orbits is caused by a high spread in velocity determination, shifting a part of the data through the parabolic limit.  相似文献   

18.
We consider the scattering motion of the planar restricted three-body problem with two equal masses on a circular orbit. Using the methods of chaotic scattering we present results on the structure of scattering functions. Their connection with primitive periodic orbits and the underlying chaotic saddle are studied. Numerical evidence is presented which suggests that in some intervals of the Jacobi integral the system is hyperbolic. The Smale horseshoe found there is built from a countable infinite number of primitive periodic orbits, where the parabolic orbits play a fundamental role.  相似文献   

19.
This paper summarises a numerical investigation of phase mixing in time-independent Hamiltonian systems that admit a coexistence of regular and chaotic phase space regions, allowing also for low amplitude perturbations idealised as periodic driving, friction, and/or white and coloured noise. The evolution of initially localised ensembles of orbits was probed through lower order moments and coarse-grained distribution functions. In the absence of time-dependent perturbations, regular ensembles disperse initially as a power law in time and only exhibit a coarse-grained approach towards an invariant equilibrium over comparatively long times. Chaotic ensembles generally diverge exponentially fast on a time scale related to a typical finite time Lyapunov exponent, but can exhibit complex behaviour if they are impacted by the effects of cantori or the Arnold web. Viewed over somewhat longer times, chaotic ensembles typical converge exponentially towards an invariant or near-invariant equilibrium. This, however, need not correspond to a true equilibrium, which may only be approached over very long time scales. Time-dependent perturbations can dramatically increase the efficiency of phase mixing, both by accelerating the approach towards a near-equilibrium and by facilitating diffusion through cantori or along the Arnold web so as to accelerate the approach towards a true equilibrium. The efficacy of such perturbations typically scales logarithmically in amplitude, but is comparatively insensitive to most other details, a conclusion which reinforces the interpretation that the perturbations act via a resonant coupling.  相似文献   

20.
We compare two different N-body models simulating elliptical galaxies. Namely, the first model is a non-rotating triaxial N-body equilibrium model with smooth center, called SC model. The second model, called CM model, is derived from the SC by inserting a central mass in it, so that all possible differences between the two models are due to the effect of the central mass. The central mass is assumed to be mainly due to a massive central black hole of mass about 1% of the total mass of the galaxy. By using the fundamental frequency analysis, the two systems are thoroughly investigated as regards the types of orbits described either by test particles, or by the real particles of the systems at all the energy levels. A comparison between the orbits of test particles and the orbits of real particles at various energy levels is made on the rotation number plane. We find that extensive stable regions of phase space, detected by test particles remain empty, i.e. these regions are not occupied by real particles, while many real particles move in unstable regions of phase space describing chaotic orbits. We run self-consistently the two models for more than a Hubble time. During this run, in spite of the noise due to small variations of the potential, the SC model maintains (within a small uncertainly) the number of particles moving on orbits of each particular type. In contrast, the CM model is unstable, due to the large amount of mass in chaotic motion caused by the central mass. This system undergoes a secular evolution towards an equilibrium state. During this evolution it is gradually self-organized by converting chaotic orbits to ordered orbits mainly of the short axis tube type approaching an oblate spheroidal equilibrium. This is clearly demonstrated in terms of the fundamental frequencies of the orbits on the rotation number plane and the time evolution of the triaxiality index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号