首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenic from natural and anthropogenic sources is a worldwide contaminant of aqueous environments, such as groundwater and soils. The present investigation was performed on Mexican soils contaminated with residues from metallurgical processes that have shown a natural As attenuation. Experimental aqueous arsenic extractions in these were successfully simulated for almost half of the soil samples using a database updated for all known metal arsenate formation constants, revealing the predominance of solubility-controlled As mobility via Pb, mixed Pb–Cu, and Ca arsenate solid formation. The relatively low total Fe/As ratios (2–13 w/w) present in the soils studied, together with the high and equivalent contents of As, Pb, and Cu in these, favor the precipitation process over As(V) adsorption to Fe oxides, despite a 2% average Fe content in the soils studied. Under these conditions bicarbonate was found to be a highly unsuitable extractant due to its indirect As release from the solid arsenates, via heavy metal carbonate precipitation processes.  相似文献   

2.
Soil contamination with As and potentially harmful metals is a widespread problem around the world especially from mining and metallurgical wastes, which release substantial amounts of these elements to the environment in potentially mobile species. Recently, it has been found that in various Mexican soils contaminated with these types of wastes, arsenate is not in the form of sorbed species on Fe oxides present in the soils, as generally reported in the literature, but in the form of very insoluble compounds such as Pb, Cu and Ca arsenates. Here a thermodynamic model is applied and validated with the results from wet chemical experiments to determine the fundamental geochemical conditions governing the mobility of As in the presence of Pb. For this purpose, a relatively simple but fundamental system of goethite (α-FeOOH)/As(V)/Pb(II)/carbonate was defined as a function of the As(V)/Fe(III) ratio, in a pH range of 5–10. The speciation model included the simultaneous inclusion of triple layer surface complexation and arsenate precipitation equilibria. The model predicts that from very low total As(V)/Fe(III) molar ratios (0.012 at pH 7) the precipitation mechanism significantly influences the attenuation of As(V), and rapidly becomes the dominant process over the adsorption mechanism. Model results identify the quantitative conditions of predominance for each mechanism and describe the transition conditions in which relatively large fractions of adsorbed, precipitated and dissolved As(V) species prevail. Experimental measurements at selected As(V)/Fe(III) ratios and pH confirmed the predictions and validated the coupled thermodynamic model utilized.  相似文献   

3.
The chemical speciation of potentially toxic elements (As, Cd, Cu, Pb, and Zn) in the contaminated soils and sulfides-rich tailings sediments of an abandoned tungsten mine in Korea was evaluated by conducting modified BCR sequential extraction tests. Kinetic and static batch leaching tests were also conducted to evaluate the potential release of As and other heavy metals by acidic rain water and the leaching behaviors of these heavy metals. The major sources of the elements were As-, Zn- and Pb-bearing sulfides, Pb carbonates (i.e., cerussite), and Pb sulfates (i.e., anglesite). The biggest pollutant fraction in these soil and tailing samples consists of metals bound to the oxidizable host phase, which can be released into the environment if conditions become oxidative, and/or to residual fractions. No significant difference in total element concentrations was observed between the tailings sediments and contaminated soils. For both sample types, almost no changes occurred in the mobility of As and the other heavy metals at 7 days, but the mobility increased afterwards until the end of the tests at 30 days, regardless of the initial pH. However, the mobility was approximately 5–10 times higher at initial pH 1.0 than at initial pHs of 3.0 and 5.0. The leached amounts of all the heavy metal contents were higher from tailings sediments than from contaminated soils at pH > 3.0, but were lower at pH < 3.0 except for As. Results of this study suggest that further dissolution of heavy metals from soil and tailing samples may occur during extended rainfall, resulting in a serious threat to surface and groundwater in the mine area.  相似文献   

4.
《Applied Geochemistry》1997,12(3):243-254
Column flow-through experiments reacting wastewater solutions with sandy loam soil samples were performed to study heavy metal attenuation by two soils with different physical and chemical properties. Reacted soil columns were leached with synthetic acid rain to study the mobility of attenuated heavy metals under leaching conditions. This study demonstrates that cation exchange, surface adsorption, chelation with solid organic material, and precipitation were the important attenuation mechanisms for the heavy metals (Cd, Cr, Cu, Mo, Ph, and Zn). Adsorption on soil hydrous oxide surfaces was the primary attenuation mechanism for Cd and Zn in both soils, and for Cu in a soil with low organic matter content. Wastewater solution pH is also an important factor that influences the retention of heavy metals. Cadmium, Cu, Cr, and Zn became mobile after prolonged application of spiked wastewater solution, either through saturation of soil adsorption sites or due to decreasing pH. Only Cr, Pb, and Mo, which are attenuated primarily through precipitation, show significant net retention by soil. Acid rain water removed heavy metals left in the column residual pore solution and weakly sorbed heavy metals in the soils, and has the ability to mobilize some strongly attenuated heavy metals, especially when the soil organic matter content is high. The results have important applications in predicting heavy metal mobility in contaminated soil, the disposal of acid mine drainage, and assessing the risks of landfall leachate leakage.  相似文献   

5.
《Applied Geochemistry》2005,20(2):397-408
In situ stabilization of metals in contaminated soils by addition of industrial by-products is an attractive remediation technique. In this work, mixtures of metal-spiked (Cd, Cu and Pb) samples from the Ap horizons of two acid soils and solid samples of 4 industrial by-products (red gypsum, phosphogypsum, sugar foam and dolomitic residue) were incubated in order to assess the efficiency of the by-products for the in situ remediation of contaminated soils. Single (DTPA extraction and TCLP test) and sequential chemical extraction procedures were used to examine the availability and potential mobility of the metals retained as a result of the treatments. Both the sugar foam and dolomitic residue reduced the availability and mobility of Cd, Cu and to a lesser extent, Pb. On the other hand, red gypsum and phosphogypsum proved effective in immobilizing Pb and, to a lesser extent, Cu. However, both gypsum-like by-products were not so effective in reducing Cd availability and mobility.  相似文献   

6.
Spatial distribution patterns of As, Ba, Cd, Cr, Cu, Mn, Ni, Pb, U and Zn were determined in topsoil samples collected after 40 years of chemical remediation conducted in the inoperative “Staszic” pyrite–uranium mine in the Holy Cross Mountains, south-central Poland. Soil samples were taken from 58 sites using a systematic random sampling design. Selected samples were subjected to an X-ray diffractometry analysis on bulk soils and separated clay fractions. Hematite, goethite and gypsum are common mineral phases in soil samples. Technogenic soils developed on reclaimed mine spoils show uniform spatial element distribution patterns and additionally a distinct enrichment in As, Pb, Mn, U and Zn. Mineral and chemical composition of soils vs. rocks points to the lithogenic source of the determined elements. The results of chemical analysis have been used for evaluation of geochemical background of trace elements in the study area with the iterative 2σ-technique. This investigation shows that using mean crustal element concentrations (Clarke values) as proxies of threshold values in soils are not useful for determination of strongly positive geochemical anomalies. A modified enrichment factor, i.e. a local enrichment factor, is proposed for identification of sites where soils are contaminated.  相似文献   

7.
The Vinto Sb–Sn smelter (Oruro, Bolivia) has been linked to arsenic and heavy metal pollution in air, soils, residual waters of the smelter, and hair and urine of workers, but crop concentrations had not been assessed previously. In this article, alfalfa, onions, and carrots, separated into roots and shoots, were analyzed for As and Pb, together with corresponding soil samples. The aim was to assess the environmental distribution and potential health impacts of these toxic elements and to compare them to levels observed at other sites around the world. As and Pb concentrations in all analyzed crop samples exceed the FAO/WHO, UK or Chilean limits by 1.5–2 orders of magnitude and As health risk indices were 286 (carrot) and 651 (onion), showing that the potential health risk due to consumption of these products is extremely high. As and Pb soil–plant transfer factors are similar to other contaminated sites around the world, but daily intake and health risk index for As are much higher in Vinto area due to very high concentrations in soils. Arsenic and lead soil and crop concentrations suggest increasing trends toward VMC. Correlations are significant for Pb in some crop fractions, but not for As, possibly due to considerable geogenic contributions to soil As in the area. In future surveys, larger numbers of soil and crop samples should be analyzed, and additional analyses should be carried out to distinguish anthropogenic and geogenic sources of As and Pb in soils and crops in the area.  相似文献   

8.
An industrial area contaminated by As was studied to determine the source of this element and its speciation in As-bearing solids and in run-off waters. Mineral precipitates and water samples were collected and analyzed to assess processes controlling As mobility at this site. The integrated study of a contaminated industrial area allowed identification of the source of the As and of the nature of secondary As-bearing phases. The results obtained both on solid and water samples were used to model As behavior during waste leaching on carbonate rocks. At the upper end of a topographic transect across the site, run-off waters (pH=7.9) interact with surficial waste piles (containing arsenolite, arsenopyrite and pyrite), becoming acidic (pH=2.2) and concentrated in dissolved arsenate species (As5+) (ΣAs ranging from 0.961 to 3.149·10−3 mol/l). Those acidic waters interact with the limestone substratum, providing dissolved Ca which reacts with As to precipitate 1:1 Ca arsenates (weilite CaHAsO4, haidingerite CaHAsO4.H2O and pharmacolite CaHAsO4.2H2O) and, in minor amounts, Ca–Mg arsenates (picropharmacolite (Ca,Mg)3(AsO4)2 6H2O). The 1:1 Ca arsenates identified are known to precipitate at low pH (3–6) and seem to be stable in media with high dissolved CO2, in comparison with other types of Ca arsenates. However, due to their high solubilities, they are not strictly relevant candidates to immobilize As in contaminated surficial environments. Although reported solubilities decrease to values close to the French and US drinking standards in Ca-rich solutions, a thorough examination of the precipitation/dissolution kinetics of Ca arsenates should be undertaken to assess their long-term stability and their efficiency in rapidly immobilizing As in contaminated surficial environments.  相似文献   

9.
《Applied Geochemistry》2001,16(9-10):1165-1177
Lead and zinc contaminated soils from a smelter area in the northern part of France have been studied by transmission electron microscopy (TEM). This study was carried out with 4 different soils contaminated by Pb and Zn but with different chemical and physical characteristics. Two soils are tilled and have a neutral or slightly basic pH, one is a wooded soil and the last one is a meadow soil with acidic pH and high total organic content . TEM images of the soil samples have been coupled with focused energy dispersive X-ray (EDX) analyses and chemical mapping on a few micron-sized windows. This study demonstrates that TEM is a particularly efficient method to investigate metal speciation in the fine fractions of the contaminated soils. Zinc could be detected locally in sulphide minerals probably coming from the smelter emissions, but the major phases retaining Zn are Fe-oxyhydroxides and smectites. Lead could be detected in small aggregates which were characterized by EDX and selected area electron diffraction. Their structural formulae correspond to a pyromorphite-like mineral in which Pb is partly substituted by Ca and Na. Pyromorphite is present only in the wooded and meadow soils where it forms partly from amorphous Si-rich phases (slags) coming from the smelter. These results are compared with data previously obtained by spectroscopic methods on the same samples.  相似文献   

10.
The reuse of waste materials as soil additives could be a welcome development in soil remediation. The mobility of Cd, Pb and As in a contaminated soil was investigated using natural and calcined poultry wastes (eggshell and chicken bone), CaCO3 and CaO at different application rates (0, 1, 3 and 5 %). The chemical composition accompanied with mineralogical composition indicated that CaCO3 and CaO were the major components in natural and calcined eggshells, respectively, while hydroxyapatite (HAP) dominated the natural and calcined chicken bones. The results showed that soil pH tended to increase in response to increasing application rates of all soil additives. The effectiveness of the additives in reducing Cd, Pb and As mobility was assessed by means of chemical extractions with 0.1 N HCl for Cd and Pb or 1 N HCl for As, according to Korean Standard Test (KST) method. Both calcined eggshell and chicken bone were equally effective with CaO or CaCO3 in reducing the concentration of 0.1 N HCl-extractable Cd from 6.17 mg kg?1 to below warning level of 1.5 mg kg?1, especially at the highest application rate. The application of calcined eggshell, CaO and CaCO3 also decreased the concentration of 0.1 N HCl-extractable Pb from 1,012 mg kg?1 to below warning level of 100 mg kg?1. The Pb concentration decreased significantly with an increasing application rate of chicken bone, but remained above warning level even at the highest application rate. On the contrary, natural and calcined chicken bones led to a significant increase in the mobility of As when compared with the control soil. These findings illustrate that calcined eggshell in particular is equally effective as pure chemical additives in stabilizing Cd and Pb in a contaminated agricultural soil. The presence of As in metal-contaminated soils should be taken into consideration when applying phosphate-containing materials as soil additives, because phosphate can compete with arsenate on adsorption sites and result in As mobilization.  相似文献   

11.
Nearly half a century after mine closure, release of As from the Ylöjärvi Cu–W–As mine tailings in groundwater and surface water run-off was observed. Investigations by scanning electron microscopy (SEM), electron microprobe analysis (EMPA), synchrotron-based micro-X-ray diffraction (μ-XRD), micro-X-ray absorption near edge structure (μ-XANES) and micro-extended X-ray absorption fine structure (μ-EXAFS) spectroscopy, and a sequential extraction procedure were performed to assess As attenuation mechanisms in the vadose zone of this tailings deposit. Results of SEM, EMPA, and sequential extractions indicated that the precipitation of As bearing Fe(III) (oxy)hydroxides (up to 18.4 wt.% As2O5) and Fe(III) arsenates were important secondary controls on As mobility. The μ-XRD, μ-XANES and μ-EXAFS analyses suggested that these phases correspond to poorly crystalline and disordered As-bearing precipitates, including arsenical ferrihydrite, scorodite, kaňkite, and hydrous ferric arsenate (HFA). The pH within 200 cm of the tailings surface averaged 5.7, conditions which favor the precipitation of ferrihydrite. Poorly crystalline Fe(III) arsenates are potentially unstable over time, and their transformation to ferrihydrite, which contributes to As uptake, has potential to increase the As adsorption capacity of the tailings. Arsenic mobility in tailings pore water at the Ylöjärvi mine will depend on continued arsenopyrite oxidation, dissolution or transformation of secondary Fe(III) arsenates, and the As adsorption capacity of Fe(III) (oxy)hydroxides within this tailings deposit.  相似文献   

12.
Total concentrations of chemical elements in soils may not be enough to understand the mobility and bioavailability of the elements. It is important to characterise the degree of association of chemical elements in different physical and chemical phases of soil. Another geochemical characterisation methodology is to apply sequential selective chemical extraction techniques. A seven-step sequential extraction procedure was used to investigate the mobility and retention behaviour of Al, Fe, Mn, Cu, Zn, Pb, Cr, Co, Ni, Mo, Cd, Bi, Sn, W, Ag, As and U in specific physical–chemical and mineral phases in mine tailings and soils in the surroundings of the abandoned Ervedosa mine. The soil geochemical data show anomalies associated with mineralised veins or influenced by mining. Beyond the tailings, the highest recorded concentrations for most elements are in soils situated in mineralised areas or under the influence of tailings. The application of principal components analysis allowed recognition of (a) element associations according to their geochemical behaviour and (b) distinction between samples representing local geochemical background and samples representing contamination. Some metal cations (Mn, Cd, Cu, Zn, Co, Cr, Ni) showed important enrichment in the most mobilisable and bioavailable (i.e., water-soluble and exchangeable) fractions due likely to the acidic conditions in the area. In contrast, oxy-anions such as Mo and As showed lower mobility because of adsorption to Fe oxy-hydroxides. The residual fraction comprised largest proportions of Sn and Al and to a lesser extent Zn, Pb, Ni, Cr, Bi, W, and Ag, which are also present at low concentrations in the bioavailable fractions. The elements in secondary mineral phases (mainly Fe, Mn, Cu, Zn, Cd, Pb, W, Bi, Mo, Cr, Ni, Co, As and U) as well as in organic matter and sulphides are temporarily withheld, suggesting that they may be released to the environment by changes in physico-chemical conditions.  相似文献   

13.
Formation and dissolution of secondary arsenic minerals often play significant roles in controlling arsenic mobility in contaminated environments, especially in sulfide mines. Weathering of the orpiment and realgar-bearing tailings from the Shimen realgar deposit, the largest realgar deposit in Asia, were studied. An integrated mineralogical analysis by using X-ray powder diffraction (XRD), Raman spectrum, scanning electron microscope (SEM) and transmission electron microscope (TEM) reveals four kinds of As-bearing secondary minerals including arsenic oxides, arsenates, As-gypsum, and As-Fe minerals. The precipitation of arsenates is due to interaction of As-bearing run-off waters and the underlying carbonate rocks, or the transformation of gypsum into arsenates or As-bearing gypsum through SO42-/HAsO42- substitution. Ca-arsenates are mainly weilite and pharmacolite with Ca/As atomic ratio of 1. Scanning transmission X-ray microscope (STXM) and X-ray absorption fine structure (XAFS) reveal that the valence of arsenic is mainly +3 and +5.  相似文献   

14.
Three types of smelting slags originating from historically different smelting technologies in the Tsumeb area (Namibia) were studied: (i) slags from processing of carbonate/oxide ore in a Cu–Pb smelter (1907–1948), (ii) slags from Cu and Pb smelting of sulphide ores (1963–1970) and (iii) granulated Cu smelting slags (1980–2000). Bulk chemical analyses of slags were combined with detailed mineralogical investigation using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS) and electron microprobe (EPMA). The slags are significantly enriched in metals and metalloids: Pb (0.97–18.4 wt.%), Cu (0.49–12.2 wt.%), Zn (2.82–12.09 wt.%), Cd (12–6940 mg/kg), As (930–75,870 mg/kg) and Sb (67–2175 mg/kg). Slags from the oldest technology are composed of primary Ca- and Pb-bearing feldspars, spinels, complex Cu–Fe and Cu–Cr oxides, delafossite–mcconnellite phases and Ca–Pb arsenates. The presence of arsenates indicates that these slags underwent long-term alteration. More recent slags are composed of high-temperature phases: Ca–Fe alumosilicates (olivine, melilite), Pb- and Zn-rich glass, spinel oxides and small sulphide/metallic inclusions embedded in glass. XRD and SEM/EDS were used to study secondary alteration products developed on the surface of slags exposed for decades to weathering on the dumps. Highly soluble complex Cu–Pb–(Ca) arsenates (bayldonite, lammerite, olivenite, lavendulan) associated with litharge and hydrocerussite were detected. To determine the mineralogical and geochemical parameters governing the release of inorganic contaminants from slags, two standardized short-term batch leaching tests (European norm EN 12457 and USEPA TCLP), coupled with speciation-solubility modelling using PHREEQC-2 were performed. Arsenic in the leachate exceeded the EU regulatory limit for hazardous waste materials (2.5 mg/L). The toxicity limits defined by USEPA for the TCLP test were exceeded for Cd, Pb and As. The PHREEQC-2 calculation predicted that complex arsenates are the most important solubility controls for metals and metalloids. Furthermore, these phases can readily dissolve during the rainy season (October to March) and flush significant amounts of As, Pb and Cu into the environment in the vicinity of slag dumps.  相似文献   

15.
Arsenic is a non-essential element that poses risks in many environments, including soil, groundwater, and surface water. Insights into the environmental biogeochemistry of As can be gained by comparing As and P reaction processes. Arsenic and P are chemical analogues, and it is proposed that they have similar chemical behaviors in environmental systems. However some chemical properties of As and P are distinct, such as redox reactions, causing the biogeochemical behavior of the two elements to differ. In the environment, As occurs as either As(V) or As(III) oxyanions (e.g., AsO43? or AsO33?). In contrast, P occurs predominantly as oxidation state five plus; most commonly as the orthophosphate ion (PO43?). In this paper, data from four published case studies are presented with a focus on P and As distribution and speciation in soil. The goal is show how analyzing P chemistry in soils can provide greater insights into As reaction processes in soils. The case studies discussed include: (1) soil developed from shale parent material, (2) mine-waste impacted wetland soils, (3) phosphate-amended contaminated soil, and (4) plants grown in biochar-amended, mine-contaminated soil. Data show that while P and As have competitive reactions in soils, in most natural systems they have distinct biogeochemical processes that create differing mobility and bioavailability. These processes include redox reactions and rhizosphere processes that affect As bioavailability. Results from these case studies are used as examples to illustrate how studying P and As together allows for enhanced interpretation of As biogeochemical processes in soils.  相似文献   

16.
This study was to investigate the source, mobility and attenuation of As at the New Britannia Mine, Snow Lake, Manitoba. One major source of As contamination was determined to be an arsenopyrite residue stockpile (ARS) containing refractory Au in a waste rock impoundment. It appears that As is still moving through glacial clay at the base of the ARS into a confined aquifer even though the pile was capped in the year 2000. Arsenic is also being mobilized from a deposit of tailings, which formed following spills by previous owners, Nor Acme. Arsenic from the tailings is being mobilized by oxidation of arsenopyrite and reduction of arsenate to the more mobile arsenite by arsenate-reducing bacteria. This contamination is affecting a shallow unconfined aquifer and surface water flowing from the tailings through wetlands towards Snow Lake. Arsenic is being attenuated by adsorption to hydrated ferric oxides (HFO) in the tailings, wetland soils and aquatic plants. Although As in surface water, soils and plants along the flow path from the mine to Snow Lake are above Canadian drinking water guidelines, efficient natural attenuation by HFO in soils and plants of the wetlands have limited the concentration in Snow Lake to below drinking water standards.  相似文献   

17.
Environmental contamination with As and Sb caused by past mining activities at Sb mines is a significant problem in Slovakia. This study is focused on the environmental effects of the 5 abandoned Sb mines on water, stream sediment and soil since the mines are situated in the close vicinity of residential areas. Samples of mine wastes, various types of waters, stream sediments, soils, and leachates of the mine wastes, stream sediments and selected soils were analyzed for As and Sb to evaluate their geochemical dispersion from the mines. Mine wastes collected at the mine sites contained up to 5166 mg/kg As and 9861 mg/kg Sb. Arsenic in mine wastes was associated mostly with Fe oxides, whereas Sb was present frequently in the form of individual Sb, Sb(Fe) and Fe(Sb) oxides. Waters of different types such as groundwater, surface waters and mine waters, all contained elevated concentrations of As and Sb, reaching up to 2150 μg/L As and 9300 μg/L Sb, and had circum-neutral pH values because of the buffering capacity of abundant Ca- and Mg-carbonates. The concentrations of Sb in several household wells are a cause for concern, exceeding the Sb drinking water limit of 5 μg/L by as much as 25 times. Some attenuation of the As and Sb concentrations in mine and impoundment waters was expected because of the deposition of metalloids onto hydrous ferric oxides built up below adit entrances and impoundment discharges. These HFOs contained >20 wt.% As and 1.5 wt.% Sb. Stream sediments and soils have also been contaminated by As and Sb with the peak concentrations generally found near open adits and mine wastes. In addition to the discharged waters from open adits, the significant source of As and Sb contamination are waste-rock dumps and tailings impoundments. Leachates from mine wastes contained as much as 8400 μg/L As and 4060 μg/L Sb, suggesting that the mine wastes would have a great potential to contaminate the downstream environment. Moreover, the results of water leaching tests showed that Sb was released from the solids more efficiently than As under oxidizing conditions. This might partly explain the predominance of Sb over As in most water samples.  相似文献   

18.
高钙粉煤灰是燃煤电厂排出的固体废物,其堆放不仅需占用大量土地,而且对周围环境存在严重威胁。通过系统的室内试验,着重研究了高钙粉煤灰固化铅与锌污染土的工程性质,揭示了其作用机制,探讨了利用高钙粉煤灰固化重金属污染土的可行性。试验结果表明,土体受到重金属离子污染后其无侧限抗压强度降低,掺入高钙粉煤灰可提高土体强度,并能抑制重金属离子的滤出;污染物浓度较低时,固化污染土中的Pb2+和Zn2+均能得到有效固化,污染物浓度较高时,Zn2+的固化效果优于Pb2+。干湿循环试验结果表明,高钙粉煤灰固化污染土的强度随干湿循环次数的增加,先增大后减小;固化土体中重金属离子浓度较低时,滤出液中金属离子浓度随干湿循环次数增加而增大;重金属离子浓度较高时,滤出液中金属离子浓度基本保持不变。  相似文献   

19.
Hg mobilization from contaminated soils and mine wastes was the source of environmental contamination in the Valle del Azogue mining area. We researched solid-phase speciation and aqueous mobility of Hg through Scanning electron microscopy-energy dispersive X-ray spectroscopy and electron probe microanalysis analysis, solid-phase-Hg-thermo-desorption (SPTD) and laboratory column experiments. We found that in contaminated soils and mine wastes, the predominant Hg species was cinnabar (HgS), mainly formed from the weathering of Hg-rich pyrite, and metallic Hg (0) in the matrix, whereas in calcines and tailings the dominant species was metallic Hg (0). The mobilization of Hg in the aqueous phase seems to have originated from the dissolution of elemental Hg (0) present in soils and wastes, reaching concentrations of up to 67 μg l−1, and showing a higher long-term environmental potential risk, in addition to atmospheric emissions.  相似文献   

20.
Pozzolanic-based stabilization/solidification (S/S) is an effective, yet economic remediation technology to immobilize heavy metals in contaminated soils and sludges. In the present study, fly ash waste materials were used along with quicklime (CaO) to immobilize lead, trivalent and hexavalent chromium present in artificially contaminated clayey sand soils. The degree of heavy metal immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as controlled extraction experiments. These leaching test results along with X-ray diffraction (XRD), scanning electron microscope and energy dispersive X-ray (SEM–EDX) analyses were also implemented to elucidate the mechanisms responsible for immobilization of the heavy metals under study. Finally, the reusability of the stabilized waste forms in construction applications was also investigated by performing unconfined compressive strength and swell tests. The experimental results suggest that the controlling mechanism for both lead and hexavalent chromium immobilization is surface adsorption, whereas for trivalent chromium it is hydroxide precipitation. Addition of quicklime and fly ash to the contaminated soils effectively reduced heavy metal leachability well below the nonhazardous regulatory limits. Overall, fly ash addition increases the immobilization pH region for all heavy metals tested, and significantly improves the stress-strain properties of the treated solids, thus allowing their reuse as readily available construction materials. The only potential problem associated with this quicklime–fly ash treatment is the excessive formation of the pozzolanic product ettringite in the presence of sulfates. Ettringite, when brought in contact with water, may cause significant swelling and subsequent deterioration of the stabilized matrix. Addition of minimum amounts of barium hydroxide was shown to effectively eliminate ettringite formation. Overall, due to the presence of very high levels of heavy metal contamination along with sulfates in the solid matrices under study, the results presented herein can be applied to the management of incinerator and coal fly ash, boiler slag and flue gas desulfurization wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号