首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Processes controlling metal ion attenuation in acid mine drainage streams   总被引:1,自引:0,他引:1  
Two acid mine drainage streams have been investigated by detailed analysis of their sediments and waters, to obtain an understanding of the dominant processes which control the transport and attenuation of heavy metals under conditions of chronic high-level pollutant input. One of the water-courses has a thick hydrous iron oxide crust on its bed, where biotically mediated oxidation of ferrous iron resulted in precipitation of amorphous ferric hydroxide, along with substantial quantities of adsorbed silica, sulphate and Al and lesser quantities of As. Small amounts of K and Pb (and possibly hydronium) jarosites were also present in the sediments. Changes in pH and in the concentrations of Cu, Zn, and Cd appear to be mainly the result of dilution by seeps and tributaries.Although no sediment was recovered during collection of water samples from the second stream, saturation index calculations imply that precipitation should have been occurring. The observed down-stream loss of a number of elements supported this conclusion. The solids predicted to be precipitating were A1(OH)3, Cu2(OH)2CO3, and Fe(OH)3. Observed decreases in the concentrations of Cd, Zn and Mn can be accounted for on the basis of dilution alone. However, the additional mechanism of neutralization by higher pH inflows is required to account for the decrease in hydrogen ion concentration downstream.The basis for a potentially useful new technique (congruent element analysis) which enables the identification of conservative components in streams is presented. Comparison of logarithmic concentration versus distance plots delineates the point where chemical removal mechanisms become important for each element.  相似文献   

2.
《Applied Geochemistry》2002,17(9):1183-1207
Watersheds in mineralized zones may contain many mines, each of which can contribute to acidity and the metal load of a stream. In this study the authors delineate hydrogeologic characteristics determining the transport of metals from the watershed to the stream in the watershed of Cement Creek, Colorado. Combining the injection of a chemical tracer, to determine a discharge, with synoptic sampling, to obtain chemistry of major ions and metals, spatially detailed load profiles are quantified. Using the discharge and load profiles, the authors (1) identified sampled inflow sources which emanate from undisturbed as well as previously mined areas; (2) demonstrate, based on simple hydrologic balance, that unsampled, likely dispersed subsurface, inflows are significant; and (3) estimate attenuation. For example, along the 12-km study reach, 108 kg per day of Zn were added to Cement Creek. Almost half of this load came from 10 well-defined areas that included both mined and non-mined parts of the watershed. However, the combined effect of many smaller inflows also contributed a substantial load that could limit the effectiveness of remediation. Of the total Zn load, 58.3 kg/day came from stream segments with no visible inflow, indicating the importance of contributions from dispersed subsurface inflow. The subsurface inflow mostly occurred in areas with substantial fracturing of the bedrock or in areas downstream from tributaries with large alluvial fans. Despite a pH generally less than 4.5, there was 58.4 kg/day of Zn attenuation that occurred in mixing zones downstream from inflows with high pH. Mixing zones can have local areas of pH that are high enough for sorption and precipitation reactions to have an effect. Principal component analysis classified inflows into 7 groups with distinct chemical signatures that represent water-rock interaction with different mineral-alteration suites in the watershed. The present approach provides a detailed snapshot of metal load for the watershed to support remediation decisions, and quantifies processes affecting metal transport.  相似文献   

3.
In order to assess the magnitude and impact at affected mine sites of acid rock drainage (ARD), fixed-frequency sampling is often employed. This often involves manual sampling, at regular time intervals, of water and solids. It is felt that such sampling does not adequately describe the system evolution. Continuous monitoring offers a viable alternative in that it can better follow the seasonal fluctuations and high-frequency variations that characterize ARD. This paper evaluates existing continuous monitoring technology.  相似文献   

4.
Adsorption onto Fe-containing minerals is a well-known remediation method for As-contaminated water and soil. In this study, the use of acid mine drainage sludge (AMDS) to adsorb As was investigated. AMDS is composed of amorphous particles and so has a large surface area (251.2 m2 g−1). Here, adsorption of both arsenite and arsenate was found to be almost 100%, under various initial AMDS dosages, with the arsenate adsorption rate being faster. The optimum pH for As adsorption onto AMDS was pH 7.0 and the maximum adsorption capacities for arsenite and arsenate were 58.5 mg g−1 and 19.7 mg g−1 AMDS, respectively. In addition, experiments revealed that AMDS dosages decreased As release from contaminated soil. Therefore, the AMDS used in this study was confirmed to be a suitable candidate for immobilizing both arsenite and arsenate in contaminated soils.  相似文献   

5.
Spent mushroom compost (SMC) is widely used as reactor matrix in passive bioreactor involving sulfate reducing bacteria (SRB) for acid mine drainage (AMD) treatment. Follow-up our previous report, recent work has been established the extent of activity, sustained organic carbon availability, and the biochemical events of successive alkalinity producing system-based chemo-bioreactor for continuous performance using SMC. Removal of iron and sulfate from influent was over 77 and 90%, respectively, for first 13 weeks, while sulfate removal efficiency suddenly dropped down to 31% thereafter. Ahead of 13th week, process failure was beginning to be noticed when available dissolved organic carbon (DOC) value dropped down to 50 mg/L. SRB population was mostly affected with DOC drought at this stage. Sulfur was one of the major elements found with other tested metals in blackish green effluent precipitate. Sulfide compounds of the tested metals were formed on both exhausted chemo-bioreactor bed and precipitate. FTIR analysis indicated that SMC was responsible for metal binding and available nutrients supply. The present study revealed the feasibility of SMC as a host for treating AMD by this chemo-bioreactor that will assist in designing the continuous treatment practice.  相似文献   

6.
Both sulfate and conductivity are useful indicators of acid mine drainage (AMD) contamination. Unlike pH, they are both extremely sensitive to AMD even where large dilutions have occurred. The advantage of using sulfate to trace AMD is that unlike other ions it is not removed to any great extent by sorption or precipitation processes, being unaffected by fluctuations in pH. These two parameters are also closely associated as would be expected, as conductivity is especially sensitive to sulfate ions. Therefore, as sulfate analysis is difficult in the field, conductivity can be used to predict sulfate concentration in both AMD and contaminated surface waters using regression analysis. Most accurate predictions are achieved by using equations given for specific conductivity ranges or AMD sources. There is also potential to use conductivity to predict approximate concentrations of key metals when the pH of the water is within their respective solubility ranges.  相似文献   

7.
《Applied Geochemistry》2003,18(3):409-421
This study provides a geochemical partitioning pattern of Fe, Mn and potentially toxic trace elements (As, Cd, Cr, Cu, Ni, Pb, Zn) in sediments historically contaminated with acid mine drainage, as determined by using a 4-step sequential extraction scheme. At the upperstream, the sediments occur as ochreous precipitates consisting of amorphous or poorly crystalline oxy-hydroxides of Fe, and locally jarosite, whereas the estuarine sediments are composed mainly of detrital quartz, illite, kaolinite, feldspars, carbonates and heavy minerals, with minor authigenic phases (gypsum, vivianite, halite, pyrite). The sediments are severely contaminated with As, Cd, Cu, Pb and Zn, especially in the vicinity of the mining pollution sources and some sites of the estuary, where the metal concentrations are several orders of magnitude above background levels. Although a significant proportion of Zn, Cd and Cu is present in a readily soluble form, the majority of heavy metals are bonded to reducible phases, suggesting that Fe oxy-hydroxides have a dominant role in the metal accumulation. In the estuary, the sediments are potentially less reactive than in the riverine environment, because relevant concentrations of heavy metals are immobilised in the crystalline structure of minerals.  相似文献   

8.
9.
《Applied Geochemistry》2001,16(9-10):1041-1053
The dilution factors (Di) and removal fractions (Ri) of pollutants from acid mine drainage (AMD) were quantitatively estimated using two different methods, the conservative component and mass balance method, along Imgok Creek in Korea. The conservative component method assumes that SO4 is a perfectly conservative component and calculates Di and Ri from the concentration ratios of SO4. The mass balance method solves the simultaneous equations relating the concentrations of dissolved components to their precipitation stoichiometries to obtain Di and Ri. The results from both methods are little different, indicating that SO4 concentration is a good indicator of dilution for Imgok creek. The calculated Di's of pollutants quickly decrease from the site of AMD input to the site a few km downstream, but then remain more or less constant over the reaches farther downstream. This is because Di loses its sensitivity in the reaches where difference in SO4 concentration between the main stream and combining tributaries significantly diminishes. The calculated Ri's show that approximately 90, 95, and 75% of the original Fe input were removed from the streamwater in October 1996, April 1997, and October 1997, respectively. Aluminum was almost completely removed in April 1997, but only 50% of the original Al was removed in October 1997. The removal of Fe was due to the precipitation of schwertmannite or ferrihydrite and Al due to amorphous Al4(OH)10SO4. The maximum removal fraction of dissolved SO4 was only 5%. The other metals from AMD were significantly removed from the stream water only in April 1997. These metals were removed not by precipitation but by adsorption on and/or coprecipitation with Fe/Al-compounds. The relatively abundant freshwater supply in April 1997 might raise stream pH higher than the adsorption edge and consequently, contribute to rapid metal attenuation by forcing not only more precipitation but also more adsorption of the dissolved metals.  相似文献   

10.
The acid mine drainage (AMD) discharged from the Hejiacun uranium mine in central Hunan (China) was sampled and analyzed using ICP-MS techniques. The analyzing results show that the AMD is characterized by the major ions FeTotal, Mn, Al and Si, and is concentrated with heavy metals and metalloids including Cd, Co, Ni, Zn, U, Cu, Pb, Tl, V, Cr, Se, As and Sb. During the AMD flowing downstream, the dissolved heavy metals were removed from the AMD waters through adsorption onto and co-precipitation with metal-oxhydroxides coated on the streambed. Among these metals, Cd, Co, Ni, Zn, U, Cu, Pb and Tl are negatively correlated to pH values, and positively correlated to major ions Fe, Al, Si, Mn, Mg, Ca and K. The metals/metalloids V, Cr, Se, As and Sb are conservative in the AMD solution, and negatively-correlated to major ions Na, Ca and Mg. Due to the above different behaviors of these chemical elements, the pH-negatively related metals (PM) and the conservative metals (CM) are identified; the PM metals include Cd, Co, Ni, Zn, U, Cu, Pb and Tl, and the CM metals V, Cr, Se, As and Sb. Based on understanding the geochemistry of PM and CM metals in the AMD waters, a new equation: EXT = (Acidity + PM)/pH + CM × pH, is proposed to estimate and evaluate extent of heavy-metal pollution (EXT) of AMD. The evaluation results show that the AMD and surface waters of the mine area have high EXT values, and they could be the potential source of heavy-metal contamination of the surrounding environment. Therefore, it is suggested that both the AMD and surface waters should be treated before they are drained out of the mine district, for which the traditional dilution and neutralization methods can be applied to remove the PM metals from the AMD waters, and new techniques through reducing the pH value of the downstream AMD waters should be developed for removal of the CM metals.  相似文献   

11.
Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures.  相似文献   

12.
Mine flooding is a serious problem in the Enugu Coal Mines and has led to the abandonment of two of the four mines. About 1800 m3 of water is pumped out daily from the mines into the nearby streams. The source of this enormous volume of water has been established based on the hydrodynamics and hydrology of the area. It is shown that although two prolific aquifers—an unconfined and a confined system—overlie the mines, the mine water is derived principally from the unconfined aquifer. The pathway of flow is, however, provided by the numerous fractures connecting the two aquifers and the mine tunnel.The major hydrochemical activity resulting in pollution of the mine water occurs within the sumps in the floor of the longwalls. These sumps act as oxidation chambers where groundwater from the fractures is mixed and subsequently reacted with sulfur-rich solutes released by coal mining.Contrary to general belief, the mine drainage has not seriously degraded the chemistry of receiving streams. The pH, electric conductivity and, thus, the dissolved ions were increased less than 10% of the values in the unaffected region.  相似文献   

13.
酸性矿井水在我国鲁西南、山西、内蒙、云南和贵州等煤矿区普遍存在,酸性矿井水其pH往往在2~5之间,高SO42−、HB、TDS、Fe、Mn。这些物质进入地下水、地表水或土壤后,会对其造成严重危害。文章选择山西阳泉市典型废弃煤矿区山底河流域为研究区,通过水文地质调查,水文地质钻探,水文地质剖面等方法阐述山底流域地层岩性,水文地质条件概况,得出受煤矿开采影响,与天然条件下相比山底河流域的地表水和地下水的补给、径流、排泄条件均发生了根本变化。补给通过破坏产生的导水裂隙带运移,以垂向运动为主;径流通过坑道,导水裂隙带运移,以横向运动为主;排泄以矿坑排水和泉水溢出方式为主。并简述山底河流域煤矿酸性矿井水试验站观测站分布情况与水化学特征。  相似文献   

14.
确定矿井水中重金属污染程度及主要来源,对矿井水的再利用及矿区生态环境保护具有重要的理论意义。以内蒙古某矿区为研究对象,采集地表水、第四系潜水、承压水及矿井水水样49组,检测水体中Zn、Pb、Fe、Mn、As、Cu、Cd、Cr、Hg、Se 10种重金属浓度,分析矿井水中重金属污染特征及超标情况,利用HPI模型定量评价重金属污染程度,并综合数理统计、不同类型水样重金属浓度箱形图及煤/顶板重金属浸出试验,分析矿井水重金属主要来源。结果表明:内蒙古某矿矿井水中Zn、Pb、Fe、Mn、As 5种重金属浓度值超标,其中Fe和Zn的超标率高达100%;7个矿井水样中6个矿井水的HPI值大于临界值100,矿井水重金属污染程度较高;矿井水中的Pb、As主要来源于采煤及运输机械油类物质泄漏,Mn主要来源于Ⅲ含地下水,Fe、Zn主要来源于Ⅲ含地下水及煤层中含Fe、Zn矿物的溶滤。该结论将为矿井水中重金属污染防治提供基础与依据。   相似文献   

15.
The wall rocks of Sidi Driss mineralization contain continental molassic deposits: lacustrine limestones, ferruginous fragments, Ed Diss unit and Numidian unit fragments, rhyodacitic fragments, pyroclasts, and gneissic fragments. The ore is composed of pyrite, marcasite, sphalerite, galena, barite, celestite, siderite, calcite, and iron oxide-hydroxides. The abandoned wastes in Sidi Driss-Tamra district contain marcasite, galena, goethite, jarosite, anglesite, anhydrite, bassanite, and gypsum. It is very important to assess the hazards and risks that this material type poses to public health and the environment. However, evaluation of a part of toxic elements always poses problems since the associated matrix, the close relationships between some minerals, the grain sizes and their forms (oolites, compact collomorphes aggregate), the oxidation degree of metals, the chemical composition, and trace elements make it difficult to extract mobile metals from complex Sidi Driss tailings and minerals found in these acidic wastes. Nevertheless, there is no universal method that can systematically evaluate metal bioavailability. And the use of proposed sequential extraction procedures for sediments with simple mineralogical composition did not yield any reproducible results for this type of acid mine drainage sediments. Consequently, the methods of controlling and mitigating the risks of hazardous materials should be considered. Many extraction procedures have been applied to better evaluate the mobility of hazardous materials (metals), the characterization of their degree of toxicity, and their chemical behavior in these complex mine tailings. Reproducible results were obtained with lab-scale washing of sediments using distilled water, CaCl2 and Na2-EDTA solutions, and BCR sequential extraction. The results showed that the BCR extraction approach was the most efficient procedure for these types of wastes. The extraction with distilled water is recommended for identification of the total quantity of mobile Cr and Fe.  相似文献   

16.
《Applied Geochemistry》2000,15(7):1003-1018
Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (<10%) of colloidal Al, Fe and Zn from the water column.  相似文献   

17.
Acid mine drainage (AMD) is one of the severe environmental problems that coal mines are facing. Generation of AMD in the northeastern part of India due to the coal mining activities has long been reported. However detailed geochemical characterization of AMD and its impact on water quality of various creeks, river and groundwater in the area has never been reported. Coal and coal measure rocks in the study area show finely disseminated pyrite crystals. Secondary solid phases, resulted due to oxidation of pyrite, occur on the surface of coal, and are mainly consisting of hydrated sulphate complexes of Fe and Mg (copiapite group of minerals). The direct mine discharges are highly acidic (up to pH 2.3) to alkaline (up to pH 7.6) in nature with high concentration of SO42−. Acidic discharges are highly enriched with Fe, Al, Mn, Ni, Pb and Cd, while Cr, Cu, Zn and Co are below their maximum permissible limit in most mine discharges. Creeks that carrying the direct mine discharges are highly contaminated; whereas major rivers are not much impacted by AMD. Ground water close to the collieries and AMD affected creeks are highly contaminated by Mn, Fe and Pb. Through geochemical modeling, it is inferred that jarosite is stable at pH less than 2.5, schwertmannite at pH less than 4.5, ferrihydrite above 5.8 and goethite is stable over wide range of pH, from highly acidic to alkaline condition.  相似文献   

18.
 A few simple mass balance equations were developed to simultaneously estimate how much the pollutants from acid mine drainage (AMD) in stream water are diluted and removed during their migration. The application of the equations requires knowledge of the variations in the concentrations of the dissolved pollutants and the stoichiometry of the precipitation reaction of the pollutants when none of the pollutant shows a conservative behavior along the stream path. The calculation should be restricted to the pollutants showing much higher concentrations in the polluted main stream water than in the combining or diluting water of the same target area. The mass balance equations were applied to estimate the dilution factor and precipitation fractions of pollutants in Imgok Creek such as Fe, SO4 and Al from the AMD of Yeongdong mine. The results show that the estimation, especially for SO4 and Al, significantly depends on the kinds of the precipitates. When FeOHSO4 and AlOHSO4 are assumed to precipitate, the maximum removal fractions of SO4 and Al by precipitation are respectively 34% and 46% of the original input, which is much higher than the values estimated when SO4 is considered to be perfectly conservative. It indicates that the stoichiometry of precipitation reaction is very important in the interpretation of the pollutant dilution and migration and assessment of environmental impacts of AMD. The applicability of the mass balance equations may still need to be verified. However, examining the calculated dilution factor and precipitation fractions with the equations can provide invaluable information on not only the behavior but also unexpected input of the pollutants in the stream water polluted by AMD and other point sources. Received: 12 November 1997 · Accepted: 30 March 1998  相似文献   

19.
The behavior of heavy metals in acid mine drainage (AMD) is mainly controlled by pH values. Therefore, a quantitative estimation of factors affecting pH values in AMD is very important in predicting the behavior of those metals. Many different factors cause pH changes in streams affected by AMD and we quantitatively estimated those factors by making simple equations from geochemical data collected from the Dalsung mine. In a stream from that mine, the pH values decrease as the stream flows downstream from the AMD source, which is different from normal streams affected by AMD. The stream shows low pH ranges (4.04–5.96), high electrical conductivity (1,407–1,664 μS/cm), and sulfate concentration (680–854 ppm). Most ion concentrations decrease or do not show noticeable changes mainly due to dilution. The change of the iron content is most significant, even though the concentration of iron is relatively low compared with other ions. The iron concentration (13.4 ppm) becomes almost 0 ppm due to precipitation. Schwertmannite is the dominant precipitated phase downstream and whitish basaluminite is observed in the upstream. From our pH estimation, precipitation is the most important process lowering pH values from 5.96 to 4.04. The dilution factor was calculated by the concentration changes in sulfate ions. Dilution increases pH values, but compared with the precipitation factor, the contribution of the dilution factor to pH is relatively small. Alkalinity is the main factor that buffers hydrogen, which is released by precipitation. The redox changes, which were calculated from the pH and Eh values, also affect pH at each sampling site. The trend of estimated pH changes is almost identical to the observed ones, but the values are slightly different. Some errors are expected mainly due to the uncertainty in the observed Eh values and the chemistry of the added water for dilution.  相似文献   

20.
《Applied Geochemistry》2001,16(11-12):1387-1396
The purposes of this study are to (i) determine the geochemical characteristics of Imgok creek impacted by acid mine drainage (AMD) generated from abandoned coal mines, (ii) to assess the pollution of heavy metals in the stream sediments and soils, and (iii) to identify the chemical form of Fe precipitates collected in the study area where there are 4 abandoned coal mines, which belong to the Grangreung coal field at the eastern part of Korea. AMD generated from mine adits and coal refuse piles shows low pH, and high concentrations of Fe, Al and SO4, especially in the Youngdong coal mine. In Imgok creek, pH values increased, and total dissolved solids (TDS) values decreased with distance. The concentrations of toxic heavy metals and major cations except Fe decreased by dilution, but the concentration of Fe decreased rapidly due to the formation of precipitates. The quality of groundwater samples did not exceed the Korean drinking-water standard. In the stream sediments, the concentrations of Fe are relatively high in the Youngdong tributary and Imgok creek, but the concentrations of heavy metals are similar to those of unpolluted sediments. Pollution indices of agricultural soils range from 0.28 to 0.47. Yellowish red Fe precipitates collected in the study area turned out to be amorphous or poorly crystallized minerals (determined by X-ray diffraction patterns and Feox/Fetot ratios) and to contain chemically bonded SO4 and OH [determined by infra-red (IR) spectral analysis]. With these, the mol ratios of Fe/S ranging from 4.6 to 6.1 determined by electron probe micro-analysis (EPMA) in precipitates strongly support the existence of schwertmannite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号