首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
About 1.02 × 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94–137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 × 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with free-chlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction phase. Haloacetic acids (HAAs) were completely sorbed or degraded within 10 months of injection.  相似文献   

2.
The injection and recovery of oxic water into deep anoxic aquifers may help to alleviate short- and long-term imbalance between freshwater supply and demand. The extent and structure of physical and geochemical heterogeneity of the aquifer will impact the water quality evolution during injection, storage and recovery. Water–sediment interactions within the most permeable parts of the aquifer, where the bulk of the injectant will penetrate, may dominate, however, water quality may also be impacted by interactions within the finer-grained, less permeable but potentially highly reactive media. In this study, the heterogeneity of the reductive capacity of an aquifer selected for water reuse projects was characterised, the amount, type and reactivity of the sedimentary reductants present determined, and the relationship between reductive capacity and sedimentary lithologies quantified. The average potential reductive capacities (PRCTOT), based on total organic C and pyrite concentrations of the sediment, were quantified for sands (382 μmol O2 g−1), clays (1522 μmol O2 g−1), and silts (1957 μmol O2 g−1). Twenty-seven samples, spanning the three different lithologies, were then incubated for 50 days and the measured reductive capacities (MRC) determined for the sands (29.2 μmol O2 g−1), silts (136 μmol O2 g−1), and clays (143 μmol O2 g−1). On average, the MRC were 10% of the PRCTOT. The main consumers of O2 were pyrite (20–100%), sedimentary organic matter (SOM; 3–56%), siderite (3–28%) and Fe(II)-aluminosilicates (8–55%). The incubation data plus hydrogeochemical modelling, indicated that pH-buffering was controlled firstly by dissolution of trace level carbonates, followed by dissolution of feldspars. Zinc, Co, Ni, Cd and Pb were readily mobilized during incubation.  相似文献   

3.
The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.  相似文献   

4.
The Northern Basque Country (Southwestern France) is subject to a constant need of increasing water due to a rising population. The fissured aquifer of the Ursuya Mount is one of the main water supplies able to meet these needs. Unfortunately, there is a lack of knowledge on the residence time of groundwater and flow pattern in this strategic resource. Geochemical monitoring of groundwater was carried out from 2009 to 2011 in conjunction with CFC–SF6 measurement and with a detailed geological field characterization. It appears that groundwater flows and water geochemistry are conditioned by the development of a weathered layer overlying the fissured aquifer. When the weathered layer is absent, groundwater flows take place in unconfined conditions along fractures and fissures. The rapid circulation (mean residence time between 11 and 15 a) and the low solubility of the matrix generates low mineralization (mean about 61 μS cm−1). When a weathered layer is present, the flow depends on the degree of weathering, with groundwater circulating in the deep fissured zone in the case of a high degree of weathering. The apparent age is then between 10 and 42 a and the mineralization tends to increase concomitantly with the residence time, and particularly terrigenic element concentrations. In the case of a lesser degree of weathering, mixing between recent water from the shallow weathered layer and the oldest water (25 to >50 a) from the underlying fissured aquifer is observed. These results allow the definition of a conceptual model of flow characteristics in the study area which is also applicable to other weathered–fractured systems worldwide.  相似文献   

5.
There are increasing concerns with elevated levels of Cr(VI) in the environment because it is a strong oxidant, corrosive, and carcinogenic. The concerns extend to the presence of Cr(VI) in many aquifers in California and elsewhere, where relatively high levels have been attributed to both industrial pollution and natural processes. The authors have, therefore, determined if natural redox processes contribute to the presence of high Cr(VI) concentrations (6–36 μg L−1) in an aquifer in central California relative to non-detectable concentrations (<0.1 μg L−1) in an adjacent aquifer. Specifically, the distribution and the redox speciation of dissolved (<0.45 μm) Cr have been compared with those of particulate Mn and Fe oxy-hydroxides in sediments, using X-ray absorption spectroscopy at the Mn and Fe L-edges. The analyses show a correlation between the presence of dissolved Cr(VI) and Mn (hydr)oxide minerals, which are the only common, naturally occurring minerals known to oxidize Cr(III) in laboratory experiments. This covariance substantiates the results of those experiments and previous field studies that indicate natural oxidation mechanisms might account for the relatively high levels of Cr(VI) in the study site, as well as for elevated concentrations in other aquifers with similar biogeochemical conditions.  相似文献   

6.
Arsenic release from aquifers can be a major issue for aquifer storage and recovery (ASR) schemes and understanding the processes that release and attenuate As during ASR is the first step towards managing this issue. This study utilised the first and fourth cycles of a full scale field trial to examine the fate of As within the injectant plume during all stages of the ASR cycle, and the resultant water quality. The average recovered As concentration was greater than the source concentration; by 0.19 μmol/L (14 μg As/L) in cycle 1 and by 0.34 μmol/L (25 μg As/L) in cycle 4, indicating that As was being released from the aquifer sediments during ASR and the extent of As mobilisation did not decline with subsequent cycles. In the injection phase, As mobilisation due to oxidation of reduced minerals was limited to an oxic zone in close proximity to the ASR well, while desorption from Fe oxyhydroxide or oxide surfaces by injected P occurred further in the near well zone (0–4 m from the ASR well). With further aquifer passage during injection and greater availability of sorption sites there was evidence of attenuation via adsorption to Fe oxyhydroxides which reduced concentrations on the outer fringes of the injectant plume. During the period of aquifer storage, microbial activity resulting from the injection of organic matter resulted in increased As mobility due to reductive Fe oxyhydroxide dissolution and the subsequent loss of sorption sites and partial reduction of As(V) to the more mobile As(III). A reduced zone directly around the ASR well produced the greatest As concentration and illustrated the importance of Fe oxyhydroxides for controlling As concentrations. Given the small spatial extent of this zone, this process had little effect on the overall recovered water quality.  相似文献   

7.
To advance understanding of hydrological influences on As concentrations within groundwaters of Southeast Asia, the flow system of an As-rich aquifer on the Mekong Delta in Cambodia where flow patterns have not been disturbed by irrigation well pumping was examined. Monitoring of water levels in a network of installed wells, extending over a 50 km2 area, indicates that groundwater flow is dominated by seasonally-variable gradients developed between the river and the inland wetland basins. While the gradient inverts annually, net groundwater flow is from the wetlands to the river. Hydraulic parameters of the aquifer (K ≈ 10−4 ms−1) and overlying clay aquitard (K ≈ 10−8 ms−1) were determined using grain size, permeameter and slug test analyses; when coupled with observed gradients, they indicate a net groundwater flow velocity of 0.04–0.4 ma−1 downward through the clay and 1–13 ma−1 horizontally within the sand aquifer, producing aquifer residence times on the order 100–1000 a. The results of numerical modeling support this conceptual model of the flow system and, when integrated with observed spatial trends in dissolved As concentrations, reveal that the shallow sediments (upper 2–10 m of fine-grained material) are an important source of As to the underlying aquifer.  相似文献   

8.
Twenty-eight tube well water samples were collected in February, 2006, from households in the Cambodian provinces of Prey Veng and Kandal. Concentrations of total As in both provinces ranged from not detectable (ND) up to about 900 μg/L, with about 54% of all the samples collected exceeding the WHO drinking water guide value of 10 μg/L. In addition, about 32% of all samples contained concentrations of Mn exceeding the WHO drinking water guide value of 400 μg/L. It is interesting to note that more than half (about 56%) of tube wells with Mn over 400 μg/L had the non-detectable As. Barium, Sr and Fe were also detected in most of tube well samples, which were typically circum-neutral and reducing. Arsenic speciation was dominated (80%) by dissolved inorganic As(III). The occurrence and composition of the well waters is consistent with the As being mobilized from aquifer sediments by natural processes in a highly reducing environment. The highest estimated cumulative As intake for individuals using the sampled well waters as drinking water is estimated to be around 400 mg As/a – this is comparable to intakes that have resulted elsewhere in the world in serious As-related illnesses and highlights the possibility that such adverse health impacts may arise in Cambodia unless appropriate remedial measures are taken.  相似文献   

9.
One of the reasons the processes resulting in As release to groundwater in southern Asia remain poorly understood is the high degree of spatial variability of physical and chemical properties in shallow aquifers. In an attempt to overcome this difficulty, a simple device that collects groundwater and sediment as a slurry from precisely the same interval was developed in Bangladesh. Recently published results from Bangladesh and India relying on the needle-sampler are augmented here with new data from 37 intervals of grey aquifer material of likely Holocene age in Vietnam and Nepal. A total of 145 samples of filtered groundwater ranging in depth from 3 to 36 m that were analyzed for As (1–1000 μg/L), Fe (0.01–40 mg/L), Mn (0.2–4 mg/L) and S (0.04–14 mg/L) are compared. The P-extractable (0.01–36 mg/kg) and HCl-extractable As (0.04–36 mg/kg) content of the particulate phase was determined in the same suite of samples, in addition to Fe(II)/Fe ratios (0.2–1.0) in the acid-leachable fraction of the particulate phase. Needle-sampler data from Bangladesh indicated a relationship between dissolved As in groundwater and P-extractable As in the particulate phase that was interpreted as an indication of adsorptive equilibrium, under sufficiently reducing conditions, across 3 orders of magnitude in concentrations according to a distribution coefficient of 4 mL/g. The more recent observations from India, Vietnam and Nepal show groundwater As concentrations that are often an order of magnitude lower at a given level of P-extractable As compared to Bangladesh, even if only the subset of particularly reducing intervals characterized by leachable Fe(II)/Fe >0.5 and dissolved Fe >0.2 mg/L are considered. Without attempting to explain why As appears to be particularly mobile in reducing aquifers of Bangladesh compared to the other regions, the consequences of increasing the distribution coefficient for As between the particulate and dissolved phase to 40 mL/g for the flushing of shallow aquifers of their initial As content are explored.  相似文献   

10.
In this paper we provide a geochemical investigation on 34 groundwater samples in the Mt. Vulture volcanic aquifer representing one of the most important groundwater resources of the southern Italy pumped for drinking and irrigation supply. The present study includes the first data on the abundance and mobility of minor and trace elements and the thermodynamic considerations on water–rock interaction processes in order to evaluate the conditions of alkali basalt weathering by waters enriched in magma-derived CO2. The results highlight the occurrence of two hydrofacies: bicarbonate alkaline-earth and alkaline waters deriving from low-temperature leaching of volcanic rocks of Mt. Vulture, and bicarbonate-sulfate-alkaline waters (high-salinity waters) related to prolonged water circulation in alkali and feldspathoids-rich pyroclastic layers interbedded with clay deposits. The Al-normalized relative mobility (RM) of metals in Vulture's aquifer varies over a wide range (10− 1 < RM < 104), confirming that the basalt weathering is not a congruent and isochemical process. Chemical equilibrium studies show that the bicarbonate alkaline-earth and alkaline waters, having a short interaction with silicate minerals, plot very close to the kaolinite–smectite stability boundary, whereas the high-salinity waters fall in the stability field of smectite and muscovite because of prolonged interaction with alkali and feldspathoids-rich pyroclastic layers. Overall, for the bicarbonate alkaline-earth and alkaline waters, the release of toxic metals in solutions is related to the spatial variation of host-rock geochemistry, the high-salinity waters, collected near urban areas, show values higher than legal limits for Ni and As, likely as a consequence of anthropogenic contribution.  相似文献   

11.
In situ arsenic removal in an alkaline clastic aquifer   总被引:1,自引:1,他引:0  
In situ removal of As from ground water used for water supply has been accomplished elsewhere in circum-neutral ground water containing high dissolved Fe(II) concentrations. The objective of this study was to evaluate in situ As ground-water treatment approaches in alkaline ground-water (pH > 8) that contains low dissolved Fe (<a few tens of μg/L). The low dissolved Fe content limits development of significant Fe-oxide and the high-pH limits As adsorption onto Fe-oxide. The chemistries of ground water in the two aquifers studied are similar except for the inorganic As species. Although total inorganic As concentrations were similar, one aquifer has dominantly aqueous As(III) and the other has mostly As(V). Dissolved O2, Fe(II), and HCl were added to water and injected into the two aquifers to form Fe-oxide and lower the pH to remove As. Cycles of injection and withdrawal involved varying Fe(II) concentrations in the injectate. The As concentrations in water withdrawn from the two aquifers were as low as 1 and 6 μg/L, with greater As removal from the aquifer containing As(V). However, Fe and Mn concentrations increased to levels greater than US drinking water standards during some of the withdrawal periods. A balance between As removal and maintenance of low Fe and Mn concentrations may be a design consideration if this approach is used for public-supply systems. The ability to lower As concentrations in situ in high-pH ground water should have broad applicability because similar high-As ground water is present in many parts of the world.  相似文献   

12.
Arsenic is a prevalent contaminant at US Superfund sites where remediation by pump and treat systems is often complicated by slow desorption of As from Fe and Al (hydr)oxides in aquifer solids. Chemical amendments that either compete with As for sorption sites or dissolve Fe and Al (hydr)oxides can increase As mobility and improve pump and treat remediation efficiency. The goal of this work was to determine optimal amendments for improving pump and treat at As contaminated sites such as the Vineland Chemical Co. Superfund site in southern New Jersey. Extraction and column experiments were performed using As contaminated aquifer solids (81 ± 1 mg/kg), site groundwater, and either phosphate (NaH2PO4·H2O) or oxalic acid (C2H2O4·2H2O). In extraction experiments, phosphate mobilized between 11% and 94% of As from the aquifer solids depending on phosphate concentration and extraction time (1 mM–1 M; 1–24 h) and oxalic acid mobilized between 38% and 102% depending on oxalic acid concentration and extraction time (1–400 mM; 1–24 h). In column experiments, phosphate additions induced more As mobilization in the first few pore volumes but oxalic acid was more effective at mobilizing As overall and at lower amendment concentrations. At the end of the laboratory column experiments, 48% of As had been mobilized from the aquifer sediments with 100 mM phosphate and 88% had been mobilized with 10 mM oxalic acid compared with 5% with ambient groundwater alone. Furthermore, simple extrapolations based on pore volumes suggest that chemical treatments could lower the time necessary for clean up at the Vineland site from 600 a with ambient groundwater alone to potentially as little as 4 a with 10 mM oxalic acid.  相似文献   

13.
A total of 1270 raw-water samples (before treatment) were collected from 15 principal and other major aquifer systems (PAs) used for drinking water in 45 states in all major physiographic provinces of the USA and analyzed for concentrations of the Ra isotopes 224Ra, 226Ra and 228Ra establishing the framework for evaluating Ra occurrence. The US Environmental Protection Agency Maximum Contaminant Level (MCL) of 0.185 Bq/L (5 pCi/L) for combined Ra (226Ra plus 228Ra) for drinking water was exceeded in 4.02% (39 of 971) of samples for which both 226Ra and 228Ra were determined, or in 3.15% (40 of 1266) of the samples in which at least one isotope concentration (226Ra or 228Ra) was determined. The maximum concentration of combined Ra was 0.755 Bq/L (20.4 pCi/L) in water from the North Atlantic Coastal Plain quartzose sand aquifer system. All the exceedences of the MCL for combined Ra occurred in water samples from the following 7 PAs (in order of decreasing relative frequency of occurrence): the Midcontinent and Ozark Plateau Cambro-Ordovician dolomites and sandstones, the North Atlantic Coastal Plain, the Floridan, the crystalline rocks (granitic, metamorphic) of New England, the Mesozoic basins of the Appalachian Piedmont, the Gulf Coastal Plain, and the glacial sands and gravels (highest concentrations in New England).  相似文献   

14.
《Applied Geochemistry》2006,21(7):1204-1215
Understanding the fate of injected organic matter and the consequences of subsequent redox processes is essential to assess the viability of using reclaimed water in aquifer storage and recovery (ASR). A full-scale field trial was undertaken at Bolivar, South Australia where two ASR cycles injected approximately 3.6 × 105 m3 of reclaimed water into a carbonate aquifer over a 3-a period. Organic C within reclaimed water was predominantly in the dissolved fraction, ranging from 1 to 2 mmol L−1 (10–20 mg L−1), markedly higher than potable supply and stormwater previously reported as source waters for ASR. Between 20% and 24% of the injected dissolved organic C (DOC) was mineralised through reaction with injected O2 and NO3. Furthermore, this was achieved mainly within the first 4 m of aquifer passage. Despite the presence of residual DOC, SO4 reduction was not induced within the bulk of the injected plume. It was only near the ASR well during an extended storage phase where deeply reduced (methanogenic) conditions developed, indicating variable redox zones within the injectant plume. The quality of water recovered from the ASR well indicated that the organic C content of reclaimed water does not restrict its application as a recharge source for ASR.  相似文献   

15.
Managed aquifer recharge (MAR) is increasingly being considered as a means of reusing urban stormwater and wastewater to supplement the available water resources. Subsurface storage is advantageous as it does not impact on the area available for urban development, while the aquifer also provides natural treatment. However, subsurface storage can also have deleterious effects on the recovered water quality through water–rock interactions which can also impact on the integrity of the aquifer matrix. A recent investigation into the potential for stormwater recycling via Aquifer Storage Transfer and Recovery (ASTR) in a carbonate aquifer is used to determine the important hydrogeochemical processes that impact on the recovered water quality. An extensive period of aquifer flushing allows observation of water quality changes under two operating scenarios: (1) separate wells for injection and recovery, representing ASTR; and (2) a single well for injection and recovery, representing Aquifer Storage and Recovery (ASR).  相似文献   

16.
Acid mine drainage (AMD) from the Zn–Pb(–Ag–Bi–Cu) deposit of Cerro de Pasco (Central Peru) and waste water from a Cu-extraction plant has been discharged since 1981 into Lake Yanamate, a natural lake with carbonate bedrock. The lake has developed a highly acidic pH of ∼1. Mean lake water chemistry was characterized by 16,775 mg/L acidity as CaCO3, 4330 mg/L Fe and 29,250 mg/L SO4. Mean trace element concentrations were 86.8 mg/L Cu, 493 mg/L Zn, 2.9 mg/L Pb and 48 mg/L As, which did not differ greatly from the discharged AMD. Most elements showed increasing concentrations from the surface to the lake bottom at a maximal depth of 41 m (e.g. from 3581 to 5433 mg/L Fe and 25,609 to 35,959 mg/L SO4). The variations in the H and O isotope compositions and the element concentrations within the upper 10 m of the water column suggest mixing with recently discharged AMD, shallow groundwater and precipitation waters. Below 15 m a stagnant zone had developed. Gypsum (saturation index, SI ∼ 0.25) and anglesite (SI ∼ 0.1) were in equilibrium with lake water. Jarosite was oversaturated (SI ∼ 1.7) in the upper part of the water column, resulting in downward settling and re-dissolution in the lower part of the water column (SI ∼ −0.7). Accordingly, jarosite was only found in sediments from less than 7 m water depth. At the lake bottom, a layer of gel-like material (∼90 wt.% water) of pH ∼1 with a total organic C content of up to 4.40 wet wt.% originated from the kerosene discharge of the Cu-extraction plant and had contaminant element concentrations similar to the lake water. Below the organic layer followed a layer of gypsum with pH 1.5, which overlaid the dissolving carbonate sediments of pH 5.3–7. In these two layers the contaminant elements were enriched compared to lake water in the sequence As < Pb ≈ Cu < Cd < Zn = Mn with increasing depth. This sequence of enrichment was explained by the following processes: (i) adsorption of As on Fe-hydroxides coating plant roots at low pH (up to 3326 mg/kg As), (ii) adsorption at increasing pH near the gypsum/calcite boundary (up to 1812 mg/kg Pb, 2531 mg/kg Cu, and 36 mg/kg Cd), and (iii) precipitation of carbonates (up to 5177 mg/kg Zn and 810 mg/kg Mn; all data corrected to a wet base). The infiltration rate was approximately equal to the discharge rate, thus gypsum and hydroxide precipitation had not resulted in complete clogging of the lake bedrocks.  相似文献   

17.
Elevated As concentrations have been measured in wells in the St. Peter Sandstone aquifer of eastern Wisconsin, USA. The primary source is As-bearing sulfide minerals (pyrite and marcasite) within the aquifer. There is concern that well disinfection by chlorination may facilitate As release to groundwater by increasing the rate and extent of sulfide oxidation. The objective of this study was to examine the abiotic processes that mobilize As from the aquifer solids during controlled exposure to chlorinated solutions. Thin sections made from sulfidic aquifer material were characterized by quantitative electron probe micro-analysis before and after 24 h exposure to solutions of different Cl2 concentrations. Batch experiments using crushed aquifer solids were also conducted to examine changes in solution chemistry over 24 h. Results of the combined experiments indicate that Cl2 addition affects As release and uptake in two ways. First, Cl2 increases oxidation of sulfide minerals, releasing more As from the mineral structure. Chlorine addition also increases the rate of Fe(II) oxidation and subsequent hydrous ferric oxide (HFO) precipitation, allowing for increased uptake of As onto the mineral surface. Although HFOs can act as sinks for As, they can release As if biogeochemical conditions (e.g. redox, pH) change. These results have implications not only for disinfection of drinking water wells in the study area, but also suggest that introduction of oxidants may adversely affect water quality during aquifer storage and recovery programs in aquifers containing As-bearing minerals.  相似文献   

18.
The Neogene Guantao formation in the Beitang sag in the Bohai Bay Basin (BBB) of North China, a Mesozoic–Cenozoic sedimentary basin of continental origin, has been chosen as a candidate for a pilot field test of CO2 sequestration. Hydrogeological and geochemical investigations have been carried out to assess its suitability, taking advantage of many existing geothermal wells drilled to 2000 m or greater depths. Water samples from 25 wells and drill cores of three sections of the Guantao formation were collected for measurements of mineralogy, water chemistry and isotopes (δ18O, δD, δ13C, 14C). Formation temperature estimated by chemical geothermometry is in the range of 60–80 °C. Geochemical modeling of water–rock–CO2 interaction predicts a strong geochemical response to CO2 injection. Besides the elevated porosity (33.6–38.7%) and high permeability (1150–1980 mD) of the Ng-III formation and a favorable reservoir–caprock combination, it is also found that the formation contains carbonates that will react with CO2 after injection. The low salinity (TDS < 1.6 g/L) offers high CO2 solubility. The 14C age of the formation water indicates a quasi-closed saline aquifer system over large time scales, the lateral sealing mechanism for CO2 sequestration requires further investigation. The CO2 storage capacity of the Guantao formation within the Beitang sag is estimated to be 17.03 Mt, assuming pure solubility trapping.  相似文献   

19.
To study the geological control on groundwater As concentrations in Red River delta, depth-specific groundwater sampling and geophysical logging in 11 monitoring wells was conducted along a 45 km transect across the southern and central part of the delta, and the literature on the Red River delta’s Quaternary geological development was reviewed. The water samples (n = 30) were analyzed for As, major ions, Fe2+, H2S, NH4, CH4, δ18O and δD, and the geophysical log suite included natural gamma-ray, formation and fluid electrical conductivity. The SW part of the transect intersects deposits of grey estuarine clays and deltaic sands in a 15–20 km wide and 50–60 m deep Holocene incised valley. The NE part of the transect consists of 60–120 m of Pleistocene yellowish alluvial deposits underneath 10–30 m of estuarine clay overlain by a 10–20 m veneer of Holocene sediments. The distribution of δ18O-values (range −12.2‰ to −6.3‰) and hydraulic head in the sample wells indicate that the estuarine clay units divide the flow system into an upper Holocene aquifer and a lower Pleistocene aquifer. The groundwater samples were all anoxic, and contained Fe2+ (0.03–2.0 mM), Mn (0.7–320 μM), SO4 (<2.1 μM–0.75 mM), H2S (<0.1–7.0 μM), NH4 (0.03–4.4 mM), and CH4 (0.08–14.5 mM). Generally, higher concentrations of NH4 and CH4 and low concentrations of SO4 were found in the SW part of the transect, dominated by Holocene deposits, while the opposite was the case for the NE part of the transect. The distribution of the groundwater As concentration (<0.013–11.7 μM; median 0.12 μM (9 μg/L)) is related to the distribution of NH4, CH4 and SO4. Low concentrations of As (?0.32 μM) were found in the Pleistocene aquifer, while the highest As concentrations were found in the Holocene aquifer. PHREEQC-2 speciation calculations indicated that Fe2+ and H2S concentrations are controlled by equilibrium for disordered mackinawite and precipitation of siderite. An elevated groundwater salinity (Cl range 0.19–65.1 mM) was observed in both aquifers, and dominated in the deep aquifer. A negative correlation between aqueous As and an estimate of reduced SO4 was observed, indicating that Fe sulphide precipitation poses a secondary control on the groundwater As concentration.  相似文献   

20.
Currently, the most widely accepted hypothesis to explain high As concentrations in Bangladesh groundwaters is that dissolved organic C (DOC) reduces solid Fe (hydr)oxides and mobilizes sorbed arsenate. The nature of the DOC and its release mechanism are still controversial. Based on weekly to biweekly sampling over the course of one monsoon cycle at six monitoring wells of different depths, it is proposed that storativity changes drive natural DOC release from clay–peat layers to the adjacent aquifers. With a decrease in hydraulic heads during the dry season, total mineralization and DOC concentrations increased. With the onset of the rainy season and an increase in hydraulic heads, release of clay–peat derived components stopped and vertical water displacement due to groundwater recharge from rainwater occurred, causing aquifer flushing and a decrease in total mineralization and DOC concentrations. Total As and DOC concentrations correlated over depth. However, at the depth of maximum concentrations, the As peak was observed during the rainy season. At present, the reason for this inverse seasonal trend between As and DOC is unclear. Higher mineralization or DOC concentrations could lead to increased As sorption or the increased arsenite release is a time-lag abiotic or microbial response to the DOC peak. The vulnerability of the Pleistocene aquifer towards increased As concentrations was found to be much higher than previously assumed. Though sorption capacities were determined to be higher than in the Holocene aquifer, probably due to intact Fe (hydr)oxides, long-term continuous As input from overlying clay and peat layers by the proposed seasonal storativity changes has led to increased aqueous As concentrations of 85 μg/L, considerably higher than drinking water standards. Until now, aquifer and especially aquitard and aquiclude hydraulics have not been considered sufficiently when attempting to explain As mobilization in Bangladesh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号