首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Geochemistry》2006,21(11):1940-1954
Speciation and microbial transformation of Hg was studied in mine waste from abandoned Hg mines in SW Texas to evaluate the potential for methyl-Hg production and degradation in mine wastes. In mine waste samples, total Hg, ionic Hg2+, Hg0, methyl-Hg, organic C, and total S concentrations were measured, various Hg compounds were identified using thermal desorption pyrolysis, and potential rates of Hg methylation and methyl-Hg demethylation were determined using isotopic-tracer methods. These data are the first reported for Hg mines in this region. Total Hg and methyl-Hg concentrations were also determined in stream sediment collected downstream from two of the mines to evaluate transport of Hg and methylation in surrounding ecosystems. Mine waste contains total Hg and methyl-Hg concentrations as high as 19,000 μg/g and 1500 ng/g, respectively, which are among the highest concentrations reported at Hg mines worldwide. Pyrolysis analyses show that mine waste contains variable amounts of cinnabar, metacinnabar, Hg0, and Hg sorbed onto particles. Methyl-Hg concentrations in mine waste correlate positively with ionic Hg2+, organic C, and total S, which are geochemical parameters that influence processes of Hg cycling and methylation. Net methylation rates were as high as 11,000 ng/g/day, indicating significant microbial Hg methylation at some sites, especially in samples collected inside retorts. Microbially-mediated methyl-Hg demethylation was also observed in many samples, but where both methylation and demethylation were found, the potential rate of methylation was faster. Total Hg concentrations in stream sediment samples were generally below the probable effect concentration of 1.06 μg/g, the Hg concentration above which harmful effects are likely to be observed in sediment dwelling organisms; whereas total Hg concentrations in mine waste samples were found to exceed this concentration, although this is a sediment quality guideline and is not directly applicable to mine waste. Although total Hg and methyl-Hg concentrations are locally high in some mine waste samples, little Hg appears to be exported from these Hg mines in stream sediment primarily due to the arid climate and lack of precipitation and mine runoff in this region.  相似文献   

2.
The distribution of Cu, Co, As and Fe was studied downstream from mines and deposits in the Idaho Cobalt Belt (ICB), the largest Co resource in the USA. To evaluate potential contamination in ecosystems in the ICB, mine waste, stream sediment, soil, and water were collected and analyzed for Cu, Co, As and Fe in this area. Concentrations of Cu in mine waste and stream sediment collected proximal to mines in the ICB ranged from 390 to 19,000 μg/g, exceeding the USEPA target clean-up level and the probable effect concentration (PEC) for Cu of 149 μg/g in sediment; PEC is the concentration above which harmful effects are likely in sediment dwelling organisms. In addition concentrations of Cu in mine runoff and stream water collected proximal to mines were highly elevated in the ICB and exceeded the USEPA chronic criterion for aquatic organisms of 6.3 μg/L (at a water hardness of 50 mg/L) and an LC50 concentration for rainbow trout of 14 μg/L for Cu in water. Concentrations of Co in mine waste and stream sediment collected proximal to mines varied from 14 to 7400 μg/g and were highly elevated above regional background concentrations, and generally exceeded the USEPA target clean-up level of 80 μg/g for Co in sediment. Concentrations of Co in water were as high as in 75,000 μg/L in the ICB, exceeding an LC50 of 346 μg/L for rainbow trout for Co in water by as much as two orders of magnitude, likely indicating an adverse effect on trout. Mine waste and stream sediment collected in the ICB also contained highly elevated As concentrations that varied from 26 to 17,000 μg/g, most of which exceeded the PEC of 33 μg/g and the USEPA target clean-up level of 35 μg/g for As in sediment. Conversely, most water samples had As concentrations that were below the 150 μg/L chronic criterion for protection of aquatic organisms and the USEPA target clean-up level of 14 μg/L. There is abundant Fe oxide in streams in the ICB and several samples of mine runoff and stream water exceeded the chronic criterion for protection of aquatic organisms of 1000 μg/L for Fe. There has been extensive remediation of mined areas in the ICB, but because some mine waste remaining in the area contains highly elevated Cu, Co, As and Fe, inhalation or ingestion of mine waste particulates may lead to human exposure to these elements.  相似文献   

3.
4.
The Xunyang Hg mine (XMM) situated in Shaanxi Province is an active Hg mine in China. Gaseous elemental Hg (GEM) concentrations in ambient air were determined to evaluate its distribution pattern as a consequence of the active mining and retorting in the region. Total Hg (HgT) and methylmercury (MeHg) concentrations in riparian soil, sediment and rice grain samples (polished) as well as Hg speciation in surface water samples were measured to show local dispersion of Hg contamination. As expected, elevated concentrations of GEM were found, ranging from 7.4 to 410 ng m−3. High concentrations of HgT and MeHg were also obtained in riparian soils, ranged from 5.4 to 120 mg kg−1 and 1.2 to 11 μg kg−1, respectively. Concentrations of HgT and MeHg in sediment samples varied widely from 0.048 to 1600 mg kg−1 and 1.0 to 39 μg kg−1, respectively. Surface water samples showed elevated HgT concentrations, ranging from 6.2 to 23,500 ng L−1, but low MeHg concentrations, ranging from 0.022 to 3.7 ng L−1. Rice samples exhibited high concentrations of 50–200 μg kg−1 in HgT and of 8.2–80 μg kg−1 in MeHg. The spatial distribution patterns of Hg speciation in the local environmental compartments suggest that the XMM is the source of Hg contaminations in the study area.  相似文献   

5.
《Applied Geochemistry》2004,19(11):1735-1744
Mercury and other geochemical parameters were measured in mine-waste calcines, stream sediments and surface waters from the Wanshan Hg district in the Guizhou Province of China to evaluate adverse effects of Hg to the surrounding environment. Wanshan ore is dominantly cinnabar, and lacks other sulfide minerals and as a result, heavy metals other than Hg are rare in the calcines and mine-water runoff. Host rocks in the Wanshan area are dominantly carbonates, which upon weathering, produces alkaline-water runoff. Surface waters emanating from calcine piles have water pH varying from 10.6 to 11.8, contain high EC values, and variable major element geochemistries. Dissolved Hg concentration decreases from 300 to 1900 ng/l in mine water to 72 ng/l in stream water collected significantly downstream from the mine. High concentrations of Hg in mine-waste calcines and alkaline surface water are the major threats to the surrounding environment. Alkalinity is also naturally attenuated downstream from the Wanshan mine. However, erosion and transport of Hg in sediment and water and highly alkaline mine-water runoff, may adversely affect sediment, aquatic and biological columns downstream from the Wanshan mine area.  相似文献   

6.
Concentrations of total Hg (T-Hg) were measured in mine waste, stream water, soil and moss samples collected from the Tongren area, Guizhou, China to identify potential Hg contamination to local environments, which has resulted from artisanal Hg mining. Mine waste contained high T-Hg concentrations, ranging from 1.8 to 900 mg/kg. High concentrations of Hg were also found in the leachates of mine waste, confirming that mine waste contains significant water-soluble Hg compounds. Total Hg distribution patterns in soil profiles showed that top soil is contaminated with Hg, which has been derived from atmospheric deposition. Data suggest that organic matter plays an important role in the binding and transport of Hg in soil. Elevated T-Hg concentrations (5.9–44 mg/kg) in moss samples suggest that atmospheric deposition is the dominant source of Hg to local terrestrial ecosystems. Concentrations of T-Hg were highly elevated in stream water samples, varying from 92 to 2300 ng/L. Particulate Hg in water constituted a large proportion of the T-Hg and played a major role in Hg transport. Methyl–Hg (Me–Hg) concentrations in the water samples was as high as 7.9 ng/L. Data indicate that Hg contamination is dominantly from artisanal Hg mining in the study area, but the extent of Hg contamination is dependent on the mining history and the scale of artisanal Hg mining.  相似文献   

7.
Concentrations of Fe, Mn, Cu, Zn, U and Pb, and stable Pb isotopes 206Pb, 207Pb and 208Pb were measured via inductively coupled plasma mass spectrometry in sediments, water and freshwater mussels (Velesunio angasi) from two catchments in the Alligator Rivers Region, Australia. Sediment U and Pb concentrations were higher in Magela Creek downstream than upstream of the Ranger U mine due to the mineralised nature of the catchment and potential local input of sediment from the mine site. Water metal concentrations were highest in Georgetown Creek, which is a tributary of Magela Creek and part drains the Ranger mine site, but there was little difference in concentrations between the Magela Creek upstream and downstream sites. Metal concentrations in mussels collected immediately upstream and downstream of the mine site also showed little difference, whereas Pb isotope ratios displayed a very distinct pattern. The 206Pb/207Pb and 208Pb/207Pb isotope ratios were more uranogenic downstream than upstream of the site and also more uranogenic than ratios measured in Sandy Billabong, a reference billabong in a catchment not influenced by U mineralisation. Isotope ratios were also more uranogenic in younger mussels, potentially due to the increasing footprint of the mine site over the past decade. The most uranogenic ratios were found in mussels from Georgetown Creek and at a site approximately 2 km downstream. At Mudginberri Billabong, approximately 12 km downstream of the Ranger mine, the relative contribution of uranogenic Pb to the total Pb concentration in mussels was small and overwhelmed by the input of industrial Pb with a Broken Hill type Pb signature. Whereas metal uptake by and thus concentrations in mussel flesh are influenced by water chemistry, mussel condition and metabolic rates, Pb isotope ratios are independent of these factors and provide a powerful means of source apportionment of contaminants in mussels and waterways, in particular in an U mining environment.  相似文献   

8.
Narraguinnep Reservoir in southwestern Colorado is one of several water bodies in Colorado with a mercury (Hg) advisory as Hg in fish tissue exceed the 0.3 μg/g guideline to protect human health recommended by the State of Colorado. Concentrations of Hg and methyl-Hg were measured in reservoir bottom sediment and pore water extracted from this sediment. Rates of Hg methylation and methyl-Hg demethylation were also measured in reservoir bottom sediment. The objective of this study was to evaluate potential sources of Hg in the region and evaluate the potential of reservoir sediment to generate methyl-Hg, a human neurotoxin and the dominant form of Hg in fish. Concentrations of Hg (ranged from 1.1 to 5.8 ng/L, n = 15) and methyl-Hg (ranged from 0.05 to 0.14 ng/L, n = 15) in pore water generally were highest at the sediment/water interface, and overall, Hg correlated with methyl-Hg in pore water (R2 = 0.60, p = 0007, n = 15). Net Hg methylation flux in the top 3 cm of reservoir bottom sediment varied from 0.08 to 0.56 ng/m2/day (mean = 0.28 ng/m2/day, n = 5), which corresponded to an overall methyl-Hg production for the entire reservoir of 0.53 g/year. No significant point sources of Hg contamination are known to this reservoir or its supply waters, although several coal-fired power plants in the region emit Hg-bearing particulates. Narraguinnep Reservoir is located about 80 km downwind from two of the largest power plants, which together emit about 950 kg-Hg/year. Magnetic minerals separated from reservoir sediment contained spherical magnetite-bearing particles characteristic of coal-fired electric power plant fly ash. The presence of fly-ash magnetite in post-1970 sediment from Narraguinnep Reservoir indicates that the likely source of Hg to the catchment basin for this reservoir has been from airborne emissions from power plants, most of which began operation in the late-1960s and early 1970s in this region.  相似文献   

9.
The Wanshan Hg mining area in Guizhou, China, was one of the world’s largest Hg producing regions. Numerous mine-waste and calcines still remain, leaching Hg to local rivers and streams and potentially impacting the local population. Several studies have been published on local environmental impacts of these mining and retorting residues, but a comprehensive, regional survey on the distribution of Hg in the rivers in the region, as presented in this paper, has not previously been conducted. This study focuses on the regional distribution and temporal variation of aqueous Hg fractions in the five main watercourses draining the Wanshan Hg mining and retorting area, covering more than 700 km2. Three sampling campaigns were carried out in 2007 and 2008, covering high flow, normal flow and low flow periods. Total (THg), particulate (PHg), dissolved (DHg) and reactive (RHg) Hg fractions were determined. All rivers had the highest Hg concentrations at sample sites about 100–500 m downstream of the mine wastes. Total Hg concentrations ranged from extremely high (up to 12,000 ng L−1) at the sample site just 100 m below mine wastes, to quite low in tributary streams (1.9 ng L−1, about 14 km downstream of the mine wastes). Total Hg and PHg concentrations were usually highest during high flow periods in the Hg-contaminated areas (i.e. THg ? 50 ng L−1), while in the less-impacted downstream areas (with THg < 50 ng L−1) the Hg concentrations were usually lowest during high flow periods. Although highly elevated concentrations of Hg in water samples were found just downstream of the mine wastes, the concentrations decreased sharply to well below 50 ng L−1 (US EPA Hg concentration standard for protection of fresh water), within only 6–8 km downstream. Concentrations of THg were highly dominated by and correlated with PHg (R2 = 0.996–0.999, P < 0.001); PHg constituted more than 80% of THg in Hg-contaminated areas, and could account for 99.6% of the THg close to the mine wastes.  相似文献   

10.
Mercury (Hg) and methylmercury (CH3Hg+) concentrations in streambed sediment and water were determined at 27 locations throughout the Sacramento River Basin, CA. Mercury in sediment was elevated at locations downstream of either Hg mining or Au mining activities where Hg was used in the recovery of Au. Methylmercury in sediment was highest (2.84 ng/g) at a location with the greatest wetland land cover, in spite of lower total Hg at that site relative to other river sites. Mercury in unfiltered water was measured at 4 locations on the Sacramento River and at tributaries draining the mining regions, as well as agricultural regions. The highest levels of Hg in unfiltered water (2248 ng/l) were measured at a site downstream of a historic Hg mining area, and the highest levels at all sites were measured in samples collected during high streamflow when the levels of suspended sediment were also elevated. Mercury in unfiltered water exceeded the current federal and state recommended criterion for protection of aquatic life (50 ng/l as total Hg in unfiltered water) only during high streamflow conditions. The highest loading of Hg to the San Francisco Bay system was attributed to sources within the Cache Creek watershed, which are downstream of historic Hg mines, and to an unknown source or sources to the mainstem of the Sacramento River upstream of historic Au mining regions. That unknown source is possibly associated with a volcanic deposit. Methylmercury concentrations also were dependent on season and hydrologic conditions. The highest levels (1.98 ng/l) in the Sacramento River, during the period of study, were measured during a major flood event. The reactivity of Hg in unfiltered water was assessed by measuring the amount available for reaction by a strong reducing agent. Although most Hg was found to be nonreactive, the highest reactivity (7.8% of the total Hg in water) was measured in the sample collected from the same site with high CH3Hg+ in sediment, and during the time of year when that site was under continual flooded conditions. Although Hg concentrations in water downstream of the Hg mining operations were measured as high as 2248 ng/l during stormwater runoff events, the transported Hg was found to have a low potential for geochemical transformations, as indicated by the low reactivity to the reducing agent (0.0001% of the total), probably because most of the Hg in the unfiltered water sample was in the mercury sulfide form.  相似文献   

11.
Environmental contamination with As and Sb caused by past mining activities at Sb mines is a significant problem in Slovakia. This study is focused on the environmental effects of the 5 abandoned Sb mines on water, stream sediment and soil since the mines are situated in the close vicinity of residential areas. Samples of mine wastes, various types of waters, stream sediments, soils, and leachates of the mine wastes, stream sediments and selected soils were analyzed for As and Sb to evaluate their geochemical dispersion from the mines. Mine wastes collected at the mine sites contained up to 5166 mg/kg As and 9861 mg/kg Sb. Arsenic in mine wastes was associated mostly with Fe oxides, whereas Sb was present frequently in the form of individual Sb, Sb(Fe) and Fe(Sb) oxides. Waters of different types such as groundwater, surface waters and mine waters, all contained elevated concentrations of As and Sb, reaching up to 2150 μg/L As and 9300 μg/L Sb, and had circum-neutral pH values because of the buffering capacity of abundant Ca- and Mg-carbonates. The concentrations of Sb in several household wells are a cause for concern, exceeding the Sb drinking water limit of 5 μg/L by as much as 25 times. Some attenuation of the As and Sb concentrations in mine and impoundment waters was expected because of the deposition of metalloids onto hydrous ferric oxides built up below adit entrances and impoundment discharges. These HFOs contained >20 wt.% As and 1.5 wt.% Sb. Stream sediments and soils have also been contaminated by As and Sb with the peak concentrations generally found near open adits and mine wastes. In addition to the discharged waters from open adits, the significant source of As and Sb contamination are waste-rock dumps and tailings impoundments. Leachates from mine wastes contained as much as 8400 μg/L As and 4060 μg/L Sb, suggesting that the mine wastes would have a great potential to contaminate the downstream environment. Moreover, the results of water leaching tests showed that Sb was released from the solids more efficiently than As under oxidizing conditions. This might partly explain the predominance of Sb over As in most water samples.  相似文献   

12.
《Applied Geochemistry》2006,21(11):1955-1968
Elemental Hg–Au amalgamation mining practices are used widely in many developing countries resulting in significant Hg contamination of surrounding ecosystems. The authors examined for the first time Hg contamination in air, water, sediment, soil and crops in the Tongguan Au mining area, China, where elemental Hg has been used to extract Au for many years. Total gaseous Hg (TGM) concentrations in ambient air in the Tongguan area were significantly elevated compared to regional background concentrations. The average TGM concentrations in ambient air in a Au mill reached 18,000 ng m−3, which exceeds the maximum allowable occupational standard for TGM of 10,000 ng m−3 in China. Both total and methyl-Hg concentrations in stream water, stream sediment, and soil samples collected in the Tongguan area were elevated compared to methyl-Hg reported in artisanal Au mining areas in Suriname and the Amazon River basin. Total Hg concentrations in vegetable and wheat samples ranged from 42 to 640 μg kg−1, all of which significantly exceed the Chinese guidance limit for vegetables (10 μg kg−1) and foodstuffs other than fish (20 μg kg−1). Fortunately, methyl-Hg was not significantly accumulated in the crops sampled in this study, where concentrations varied from 0.2 to 7.7 μg kg−1.  相似文献   

13.
Concentrations of Hg remain elevated in physical and biological media of the South River (Virginia, USA), despite the cessation of the industrial use of Hg in its watershed nearly six decades ago, and physical characteristics that would not seem to favor Hg(II)-methylation. A 3-a study of inorganic Hg (IHg) and methylmercury (MeHg) was conducted in physical media (soil, sediment, surface water, porewater and soil/sediment extracts) to identify non-point sources, transport mechanisms, and potential controls on Hg(II)-methylation. Data collected from surface water and sediment indicate that the majority of the non-point sources of IHg to the South River are within the first 14 km downstream from the historic point source. Partitioning data indicate that particle bound IHg is introduced in this reach, releasing dissolved and colloidal bound IHg, which is transported downstream. Extraction experiments revealed that floodplain soils released a higher fraction of their IHg content in aqueous extractions than fine-grained sediment (FGS). Based on ultrafiltration [<5000 nominal molecular weight cutoff (NMWC)] the majority of soil IHg released was colloidal in nature, providing evidence for the continued evolution of IHg for Hg(II)-methylation from soil. Strong seasonal patterns in MeHg concentrations were observed in surface water and sediment. The highest concentrations of MeHg in surface water were observed at moderate temperatures, suggesting that other factors limit net Hg(II)-methylation. Seasonal changes in sediment organic content and the fraction of 1 N KOH-extractable THg were also observed and may be important factors in controlling net Hg(II)-methylation rates. Sulfate concentrations in surface water are low and the evidence suggests that Fe reduction may be an important Hg(II)-methylation process. The highest sediment MeHg concentrations were observed in habitats with large amounts of FGS, which are more prevalent in the upper half of the study area due to the lower hydrologic gradient and agricultural impacts. Past and present land use practices and other geomorphologic controls contribute to the erosion of banks and accumulation of fine-grained sediment in this section of the river, acting as sources of IHg.  相似文献   

14.
Recent Lake Tanganyika Hg deposition records were derived using 14C and excess 210Pb geochronometers in sediment cores collected from two contrasting depositional environments: the Kalya Platform, located mid-lake and more removed from watershed impacts, and the Nyasanga/Kahama River delta region, located close to the lake’s shoreline north of Kigoma. At the Kalya Platform area, pre-industrial Hg concentrations are 23 ± 0.2 ng/g, increasing to 74 ng/g in modern surface sediment, and the Hg accumulation rate has increased from 1.0 to 7.2 μg/m2/a from pre-industrial to present, which overall represents a 6-fold increase in Hg concentration and accumulation. At the Nyasanga/Kahama delta region, pre-industrial Hg concentrations are 20 ± 3 ng/g, increasing to 46 ng/g in surface sediment. Mercury accumulation rate has increased from 30 to 70 μg/m2/a at this site, representing a 2–3-fold increase in Hg concentration and accumulation. There is a lack of correlation between charcoal abundance and Hg accumulation rate in the sediment cores, demonstrating that local biomass burning has little relationship with the observed Hg concentration or Hg accumulation rates. Examined using a sediment focusing-corrected mass accumulation rate approach, the cores have similar anthropogenic atmospheric Hg deposition profiles, suggesting that after accounting for background sediment concentrations the source of accumulating Hg is predominantly atmospheric in origin. In summary, the data document an increase of Hg flux to the Lake Tanganyika ecosystem that is consistent with increasing watershed sediment delivery with background-level Hg contamination, and regional as well as global increases in atmospheric Hg deposition.  相似文献   

15.
The aim of this study was to evaluate Hg distribution in mangrove plants and changes of Hg content during leaf aging; the contribution of litterfall to Hg enrichment in mangrove ecosystems is also discussed. Contents of total Hg (THg) and methylmercury (MeHg) in mangrove plants and sediments were determined. Contents of THg and MeHg in the sediments were 225 ± 157 ng/g and 0.800 ± 0.600 ng/g. Concentrations of THg and MeHg in the mangrove plants were 1760 ± 1885 ng/g and 0.721 ± 0.470 ng/g (dry weight), respectively, which were much higher than those in terrestrial plants. Enrichment of THg in mangrove plants was different, following the order Rhizophra apiculata > Rhizophora stylosa > Kandelia candel > Aegiceras corniculatum Avicennia marina; while MeHg contents in mangrove plants decreased in the order of R. stylosa > K. candel > A. corniculatum > R. apiculata > A. marina. There were obvious interspecies differences, regional differences, individual differences and tissue differences between THg and MeHg contents of mangrove plants, all of which were closely related to the environmental and the physiological characteristics of mangrove plants. In juvenile leaves, mature leaves and leaf litter, THg contents ranged 55.3-1760 ng/g, 204-1800 ng/g, and 385-2130 ng/g (dry weight), respectively; MeHg contents ranged 0.17-2.39 ng/g, 0.01-1.28 ng/g, and 0.13-1.47 ng/g (dry weight), respectively. Except for A. corniculatum and Bruguier gymnorrhiza, THg content of mature leaves was always higher than that in juvenile leaves, but MeHg showed a contrasting trend. THg content of litter leaves was between that of juvenile leaves and mature leaves, while MeHg content was generally lower than that of juvenile leaves and mature leaves. In the mangrove ecosystem, Hg enrichment contributed by the litterfall decreased in the order of K. candel > A. corniculatum > A. marina.  相似文献   

16.
Elevated concentrations of Mo are present in both the waters and sediments of Tenmile Creek, downstream from the large Mo deposit at Climax. Colorado. Concentrations of Mo reach a maximum of 10mg/1 in the water and 384μ/g in the (?) 80 mesh fraction of the sediment. The Mo anomaly extends for more than 80 km downstream from Climax, and results from the mining and milling at Climax. Background Mo concentrations in the nearby mountainous area are < 10μg/l (water) and < 5μg/g (sediment). Immediately below three small unmined Mo-rich orebodies elsewhere in Colorado < 3μg/l Mo are present in the waters and 20–30μg/g Mo in the fine fraction of the sediments.The Mo in the sediment of Tenmile Creek is chiefly adsorbed on coatings of amorphous Fe oxyhydroxide. and is similar to its form below two small, unmined Mo deposits. Mining has not changed the character of the chemical processes responsible for Mo dispersion from the Climax site.A modified version of the WATEQF computer program (Plummeret al., 1976) predicts that Tenmile Creek is undersaturated with respect to ferrimolybdite. molybdenite, powellite, and ilsemannite. The Mo in the stream water occurs as the molybdate ion which can be adsorbed on amorphous Fe oxyhydroxides. These predictions are supported by the absence of Mo minerals in the sediment of Tenmile Creek.  相似文献   

17.
Methods for assessing natural background water quality of streams affected by historical mining are vigorously debated. An empirical method is proposed in which stream-specific estimation equations are generated from relationships between either pH or dissolved Cu concentration in stream water and the Fe/Cu concentration ratio in Fe-precipitates presently forming in the stream. The equations and Fe/Cu ratios for pre-mining deposits of alluvial ferricrete then were used to reconstruct estimated pre-mining longitudinal profiles for pH and dissolved Cu in three acidic streams in Montana, USA. Primary assumptions underlying the proposed method are that alluvial ferricretes and modern Fe-precipitates share a common origin, that the Cu content of Fe-precipitates remains constant during and after conversion to ferricrete, and that geochemical factors other than pH and dissolved Cu concentration play a lesser role in determining Fe/Cu ratios in Fe-precipitates. The method was evaluated by applying it in a fourth, naturally acidic stream unaffected by mining, where estimated pre-mining pH and Cu concentrations were similar to present-day values, and by demonstrating that inflows, particularly from unmined areas, had consistent effects on both the pre-mining and measured profiles of pH and Cu concentration. Using this method, it was estimated that mining has affected about 480 m of Daisy Creek, 1.8 km of Fisher Creek, and at least 1 km of Swift Gulch. Mean values of pH decreased by about 0.6 pH units to about 3.2 in Daisy Creek and by 1–1.5 pH units to about 3.5 in Fisher Creek. In Swift Gulch, mining appears to have decreased pH from about 5.5 to as low as 3.6. Dissolved Cu concentrations increased due to mining almost 40% in Daisy Creek to a mean of 11.7 mg/L and as much as 230% in Fisher Creek to 0.690 mg/L. Uncertainty in the fate of Cu during the conversion of Fe-precipitates to ferricrete translates to potential errors in pre-mining estimates of as much as 0.25 units for pH and 22% for dissolved Cu concentration. The method warrants further testing in other mined and unmined watersheds. Comparison of pre-mining water-quality estimates derived from the ferricrete and other methods in single watersheds would be particularly valuable. The method has potential for use in monitoring remedial efforts at mine sites with ferricrete deposits. A reasonable remediation objective might be realized when the downstream pattern of Fe/Cu ratios in modern streambed Fe-precipitates corresponds to the pattern in pre-mining alluvial ferricrete deposits along a stream valley.  相似文献   

18.
The Drenchwater shale-hosted Zn–Pb–Ag deposit and the immediate vicinity, on the northern flank of the Brooks Range in north-central Alaska, is an ideal example of a naturally low pH system. The two drainages, Drenchwater and False Wager Creeks, which bound the deposit, differ in their acidity and metal contents. Moderately acidic waters with elevated concentrations of metals (pH ? 4.3, Zn ? 1400 μg/L) in the Drenchwater Creek drainage basin are attributed to weathering of an exposed base-metal-rich massive sulfide occurrence. Stream sediment and water chemistry data collected from False Wager Creek suggest that an unexposed base-metal sulfide occurrence may account for the lower pH (2.7–3.1) and very metal-rich waters (up to 2600 μg/L Zn, ? 260 μg/L Cu and ?89 μg/L Tl) collected at least 2 km upstream of known mineralized exposures. These more acidic conditions produce jarosite, schwertmannite and Fe-hydroxides commonly associated with acid-mine drainage. The high metal concentrations in some water samples from both streams naturally exceed Alaska state regulatory limits for freshwater aquatic life, affirming the importance of establishing base-line conditions in the event of human land development. The studies at the Drenchwater deposit demonstrate that poor water quality can be generated through entirely natural weathering of base-metal occurrences, and, possibly unmineralized black shale.  相似文献   

19.
The first advisory to limit consumption of Florida Bay fish due to mercury was issued in 1995. Studies done by others in the late 1990s found elevated water column concentrations of both total Hg (THg) and methylmercury (MeHg) in creeks discharging from the Everglades, which had its own recognized mercury problem. To investigate the significance of allochthonous MeHg discharging from the upstream freshwater Everglades, we collected surface water and sediment along two transects from 2000 to 2002. Concentrations of THg and MeHg, ranging from 0.36 ng THg/L to 5.98 ng THg/L and from <0.02 ng MeHg/L to 1.79 ng MeHg/L, were elevated in the mangrove transition zone when compared both to upstream canals and the open waters of Florida Bay. Sediment concentrations ranged from 5.8 ng THg/g to 145.6 ng THg/g and from 0.05 ng MeHg/g to 5.4 ng MeHg/g, with MeHg as a percentage of THg occasionally elevated in the open bay. Methylation assays indicated that sediments from Florida Bay have the potential to methylate Hg. Assessment of mass loading suggests that canals delivering stormwater from the northern Everglades are not as large a source as direct atmospheric deposition and in situ methylation, especially within the mangrove transition zone.  相似文献   

20.
Investigated herein are water and sediment geochemistry, and metal attenuation processes associated with natural acid rock drainage originating from black shale formations in the Macmillan Pass area, Clear Lake prospect and Engineer Creek by the Dempster Highway in the Yukon Territory, Canada. The most metalliferous water having pH 3.0, 150 mg/L Zn, 39 mg/L Ni, 2.8 mg/L Cu and 9.1 mg/L As was found in a tributary stream of Engineer Creek with no known mineral deposits occurring in the vicinity. For all three study areas, the water and sediment geochemistry is significantly affected by the local lithology and prevailing metal attenuation processes. Despite their anomalous acidity and metal contents, the natural acid streams contribute only a small fraction of the contaminant loadings to the major water courses because of their low flows. Dilution, neutralization, sorption and co-precipitation are identified as the major mechanisms attenuating aqueous transport of potentially deleterious metals. However, microbial mediation in metal attenuation is also evident in low-flow systems. The wide variation of water and sediment geochemistry along a flow path renders the establishment of background metal values difficult. In assessing environmental impacts, it may be more practical to consider metal loadings on a watershed scale than to rely on a comparison with operationally defined background concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号