首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results from batch sorption experiments on montmorillonite systems have demonstrated that bivalent transition metals compete with one another for sorption sites. For safety analysis studies of high level radioactive waste repositories with compacted bentonite near fields, the importance of competitive sorption on the migration of radionuclides needs to be evaluated. Under reducing conditions, the bentonite porewater chosen has a Fe(II) concentration of ∼5.3 × 10−5 M through saturation with siderite. The purpose of this paper is to assess the influence of such high Fe(II) concentrations on the transport of Ni(II) through compacted bentonite, Ni(II) was chosen as an example of a bivalent transition metal. The one-dimensional calculations were carried out at different Ni(II) equilibrium concentrations at the boundary (Ni(II)EQBM) with the reactive transport code MCOTAC incorporating the two site protolysis non electrostatic surface complexation/cation exchange sorption model, MCOTAC-sorb. At a Ni(II)EQBM level of 10−7 M without Fe(II) competition, the reactive transport calculations using a constant Kd approach and the MCOTAC-sorb calculation yielded the same breakthrough curves. At higher Ni(II)EQBM (10−5 M), the model calculations with MCOTAC-sorb indicated a breakthrough which was shifted to later times by a factor of ∼5 compared with the use of the constant Kd approach.When sorption competition was included in the calculations, the magnitude of the influence depended on the sorption characteristics of the two competing sorbates and their respective concentrations. At background Fe(II) concentrations of 5.3 × 10−5 M, and a Ni(II)EQBM level of 10−7 M, the Ni(II) breakthrough time was ∼15 times earlier than in the absence of competition. At such Fe(II) concentrations the Ni(II) breakthrough curves at all source concentrations less than 3.5 × 10−5 M (fixed by the NiCO3,S solubility limit) are the same i.e. Ni(II) exhibits linear (low) sorption.Competitive sorption effects can have significant influences on the transport of radionuclides through compacted bentonite i.e. reduce the migration rates. Since, for the case considered here, the Fe(II) concentration in the near field of a high-level radioactive waste repository may change in time and space, the transport of bivalent transition metal radionuclides can only be properly modelled using a multi-species reactive transport code which includes a sorption model.  相似文献   

2.
Strontium-90 is a beta emitting radionuclide produced during nuclear fission, and is a problem contaminant at many nuclear facilities. Transport of 90Sr in groundwaters is primarily controlled by sorption reactions with aquifer sediments. The extent of sorption is controlled by the geochemistry of the groundwater and sediment mineralogy. Here, batch sorption experiments were used to examine the sorption behaviour of 90Sr in sediment–water systems representative of the UK Sellafield nuclear site based on groundwater and contaminant fluid compositions. In experiments with low ionic strength groundwaters (<0.01 mol L−1), pH variation is the main control on sorption. The sorption edge for 90Sr was observed between pH 4 and 6 with maximum sorption occurring (Kd ∼ 103 L kg−1) at pH 6–8. At ionic strengths above 10 mmol L−1, and at pH values between 6 and 8, cation exchange processes reduced 90Sr uptake to the sediment. This exchange process explains the lower 90Sr sorption (Kd ∼ 40 L kg−1) in the presence of artificial Magnox tank liquor (IS = 29 mmol L−1). Strontium K-edge EXAFS spectra collected from sediments incubated with Sr2+ in either HCO3-buffered groundwater or artificial Magnox tank liquor, revealed a coordination environment of ∼9 O atoms at 2.58–2.61 Å after 10 days. This is equivalent to the Sr2+ hydration sphere for the aqueous ion and indicates that Sr occurs primarily in outer sphere sorption complexes. No change was observed in the Sr sorption environment with EXAFS analysis after 365 days incubation. Sequential extractions performed on sediments after 365 days also found that ∼80% of solid associated 90Sr was exchangeable with 1 M MgCl2 in all experiments. These results suggest that over long periods, 90Sr in contaminated sediments will remain primarily in weakly bound surface complexes. Therefore, if groundwater ionic strength increases (e.g. by saline intrusion related to sea level rise or by design during site remediation) then substantial remobilisation of 90Sr is to be expected.  相似文献   

3.
The adsorption of five toxic metallic cations, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II), onto montmorillonite was investigated as a function of pH and ionic strength and a two-site surface complexation model was used to predict the adsorption data. The results showed that in the lower pH range, 3∼6 for Cd, Cu, Ni and Zn, and 3∼4.5 for Pb, the adsorption was greatly affected by ionic strength, while in the higher pH range, the adsorption was not. In the lower pH range, the metallic cations were mainly bound through the formation of outer-sphere surface on the permanently charged basal surface sites (≡X), while in the higher pH range the adsorption occurred mainly on the variably charged edge sites (≡SOH) through the formation of inner-sphere surface complexes. Acid-base surface constants and metal binding constants for the two sites were optimized using FITEQL. The adsorption affinity of the five metallic cations to the permanently charged sites of montmorillonite was Pb > Cu > Ni ≈ Zn ≈ Cd, while that to the variable charged sites was Pb ? Cu > Zn > Cd > Ni.  相似文献   

4.
The sorption of Np(V) and Np(IV) onto kaolinite has been studied in the absence and presence of humic acid (HA) in a series of batch equilibrium experiments under different experimental conditions: [Np]0: 1.0 × 10-6 or 1.0 × 10-5 M, [HA]0: 0 or 50 mg/L, I: 0.01 or 0.1 M NaClO4, solid to liquid ratio: 4 g/L, pH: 6–11, anaerobic or aerobic conditions, without or with carbonate. The results showed that the Np(V) sorption onto kaolinite is affected by solution pH, ionic strength, Np concentration, presence of carbonate and HA. In the absence of carbonate, the Np(V) uptake increased with pH up to ∼96% at pH 11. HA further increased the Np(V) sorption between pH 6 and 9 but decreased the Np(V) sorption between pH 9 and 11. In the presence of carbonate, the Np(V) sorption increased with pH and reached a maximum of 54% between pH 8.5 and 9. At higher pH values, the Np(V) sorption decreased due to the presence of dissolved neptunyl carbonate species with a higher negative charge that were not sorbed onto the kaolinite surface which is negatively charged in this pH range. HA again decreased the Np(V) uptake in the near-neutral to alkaline pH range due to formation of aqueous neptunyl humate complexes. The decrease of the initial Np(V) concentration from 1.0 × 10−5 M to 1.0 × 10−6 M led to a shift of the Np(V) adsorption edge to lower pH values. A higher ionic strength increased the Np(V) uptake onto kaolinite in the presence of carbonate but had no effect on Np(V) uptake in the absence of carbonate.  相似文献   

5.
The adsorption of gentisic acid (GA) by hematite nano-particles was examined under static and dynamic conditions by conducting batch and column tests. To simulate natural sediments, the iron oxide was deposited on 10 μm quartz particles. The GA adsorption was described by a surface complexation model fitted to pH-adsorption curves with GA concentrations of 0.1-1 mM in a pH range of 3-10. The surface was described with one type of site (FeOH°), while gentisic acid at the surface was described by two surface complexes (FeLH2°, log Kint = 8.9 and FeLH, log Kint = −8.2). Modeling was conducted with PHREEQC-2 using the MINTEQ database. From a kinetic point of view, the intrinsic chemical reactions were likely to be the rate-limiting step of sorption (∼10−3 s−1) while external and internal mass transfer rates (∼102 s−1) were much faster. Under flow through conditions (column), adsorption of GA to hematite-coated sand was about 7-times lower than under turbulent mixing (batch). This difference could not be explained by chemical adsorption kinetics as shown by test calculations run with HYDRUS-1D software. Surface complexation model simulations however successfully described the data when the surface area was adjusted, suggesting that under flow conditions the accessibility to the reactive surface sites was reduced. The exact mechanism responsible for the increased mobility of GA could not be determined but some parameters suggested that decreased external mass transfer between solution and surface may play a significant role under flow through conditions.  相似文献   

6.
Diffuse CO2 efflux near the Ukinrek Maars, two small volcanic craters that formed in 1977 in a remote part of the Alaska Peninsula, was investigated using accumulation chamber measurements. High CO2 efflux, in many places exceeding 1000 g m−2 d−1, was found in conspicuous zones of plant damage or kill that cover 30,000–50,000 m2 in area. Total diffuse CO2 emission was estimated at 21–44 t d−1. Gas vents 3-km away at The Gas Rocks produce 0.5 t d−1 of CO2 that probably derives from the Ukinrek Maars basalt based on similar δ13C values (∼−6‰), 3He/4He ratios (5.9–7.2 RA), and CO2/3He ratios (1–2 × 109) in the two areas. A lower 3He/4He ratio (2.7 RA) and much higher CO2/3He ratio (9 × 1010) in gas from the nearest arc-front volcanic center (Mount Peulik/Ugashik) provide a useful comparison. The large diffuse CO2 emission at Ukinrek has important implications for magmatic degassing, subsurface gas transport, and local toxicity hazards. Gas–water–rock interactions play a major role in the location, magnitude and chemistry of the emissions.  相似文献   

7.
Partitioning of Ni in calcite, CaCO3, was evaluated with the aim of collecting data on partition and distribution coefficients and to enhance understanding about the interaction of Ni with the calcite surface and further incorporation into the bulk. This information will aid in the interpretation of geological processes for safety assessment of waste repositories and contamination of groundwater. Coprecipitation experiments were carried out by the constant addition method at 25 °C and pCO2 = 1 and 10−3.5 atm. Ni was moderately partitioned from solution into calcite. For dilute solid solutions (XNi < 0.001), Ni partition coefficients were estimated to be ∼1 and found to be weakly dependent on calcite precipitation rate in the range of 3-230 nmol m−2 s−1. Ni molar fraction in the solid is directly proportional to Ni concentration in the solution. The fit of the data to such a model is good evidence that Ni is taken up as a true solid solution, not simply by physical trapping.  相似文献   

8.
Diffusion parameters for HTO, 36Cl, and 125I were determined on Upper Toarcian argillite samples from the Tournemire Underground Research Laboratory (Aveyron, France) using the through diffusion technique. The direction of diffusion was parallel to the bedding plane. The purpose of the present study was 3-fold; it was intended (i) to confirm the I interaction with Upper Toarcian argillite and to verify the effects of initial I concentration on this affinity, as previously observed by means of radial diffusion experiments, (ii) to highlight any discrepancy between Cl and I diffusivity, and (iii) to investigate the effect of an increase of the ionic strength of the solution on the anionic tracers’ diffusive behaviour. The results show that the effective diffusion coefficient (De) and diffusion accessible porosity (εa) values obtained with an ionic strength (I.S.) synthetic pore water of 0.01 eq L−1 are: De = 2.35–2.50 × 10−11 m2 s−1 and εa = 12.0–15.0% for HTO, and De = 14.5–15.5 × 10−13 m2 s−1 and εa = 2.5–2.9% for 36Cl. Because of anionic exclusion effects, anions diffuse slower and exhibit smaller diffusion accessible porosities than HTO, taken as a water tracer. The associated effective diffusion coefficient (De) and rock capacity factor (α) obtained for 125I are: De = 7.00–8.60 × 10−13 m2 s−1 and α = 4.3–7.2%. Such values make it possible to calculate low 125I distribution ratios (0.0057 < RD < 0.0192 mL g−1) which confirm the trend indicating that the 125I rock capacity factor increases with the decrease of the initial I concentration. Additional through-diffusion experiments were carried out with a higher ionic strength synthetic pore water (I.S. = 0.11 eq L−1). No evolution of HTO diffusion parameters was observed. The anionic tracers’ effective diffusion coefficient increased by a factor of two but no clear evolution of their accessible porosity was observed. Such a paradox could be related to the particularly small mean pore size of the Upper Toarcian argillite of Tournemire. The most significant finding of this study is the large discrepancy (factor of two) between the values of the effective diffusion coefficient for 125I and 36Cl. Whatever the ionic strength of the synthetic solution used, 125I exhibited De values two times lower than those of 36Cl. A detailed explanation for this difference cannot be given at present even if a hypothesis based on ion-pairing or on steric-exclusion cannot be excluded. This makes questionable the assumption usually made for quantifying 125I sorption and postulating that 36Cl and 125I would diffuse in the same porosity. In other terms, at Tournemire, 125I sorption could be more pronounced than previously indicated.  相似文献   

9.
Sorption of the 14 rare earth elements (REE) by basaltic rock is investigated as a function of pH, ionic strength and aqueous REE concentrations. The rock sample, originating from a terrestrial basalt flow (Rio Grande do Sul State, Brazil), is composed of plagioclase, pyroxene and cryptocrystalline phases. Small amounts of clay minerals are present, due to rock weathering. Batch sorption experiments are carried out under controlled temperature conditions of 20 °C with the <125 μm fraction of the ground rock in solutions of 0.025 M and 0.5 M NaCl and at pH ranging from 2.7 to 8. All 14 REEs are investigated simultaneously with initial concentrations varying from 10−7 to 10−4 mol/L. Some experiments are repeated with only europium present to evaluate possible competitive effects between REE. Experimental results show the preferential retention of the heavy REEs at high ionic strength and circumneutral pH conditions. Moreover, results show that REE sorption increases strongly with decreasing ionic strength, indicating two types of sorption sites: exchange and specific sites. Sorption data are described by a Generalised Composite (GC) non-electrostatic model: two kinds of surface reactions are treated, i.e. cation exchange at >XNa sites, and surface complexation at >SOH sites. Total site density (>XNa + >SOH) is determined by measuring the cation exchange capacity (CEC = 52 μmol/m2). Specific concentrations of exchange sites and complexation sites are determined by fitting the Langmuir equation to sorption isotherms of REE and phosphate ions. Site densities of 22 ± 5 and 30 ± 5 μmol/m2 are obtained for [>XNa] and [>SOH], respectively. The entire set of REE experimental data is modeled using a single exchange constant (log Kex = 9.7) and a surface complexation constant that progressively increases from log K = −1.15 for La(III) to −0.4 for Lu(III).The model proves to be fairly robust in describing other aluminosilicate systems. Maintaining the same set of sorption constants and only adjusting the site densities, we obtain good agreement with the literature data on REE/kaolinite and REE/smectite sorption. The Generalised Composite non-electrostatic model appears as an easy and efficient tool for describing sorption by complex aluminosilicate mineral assemblages.  相似文献   

10.
In situ measurements of 60Fe-60Ni and 53Mn-53Cr isotopic systems with an ion microprobe have been carried out for sulfide assemblages from unequilibrated enstatite chondrites (UECs). Evidence for the initial presence of 60Fe has been observed in nine sulfide inclusions from three UECs: ALHA77295, MAC88136, and Qingzhen. The inferred initial (60Fe/56Fe) [(60Fe/56Fe)0] ratios show a large variation range, from ∼2 × 10−7 to ∼2 × 10−6. The sulfide inclusions with high Fe/Ni ratios yield (60Fe/56Fe)0 ratios of ∼(2-7) × 10−7, similar to most of the (60Fe/56Fe)0 values of troilite and pyroxene observed in unequilibrated ordinary chondrites (UOCs). Inclusions with high inferred (60Fe/56Fe)0 ratios (∼1-2 × 10−6) have low Fe/Ni ratios and the magnitude of the 60Ni excesses is similar in two MAC88136 assemblages in spite of a difference of a factor of two in their Fe/Ni ratios. The inferred high (60Fe/56Fe)0 ratios were probably the result of Fe-Ni re-distribution in the sulfides during later alteration processes.The 53Mn-53Cr system was measured in five of the sulfide assemblages that were examined for their 60Fe-60Ni systematics. The 53Mn-53Cr isochrons yielded variable initial (53Mn/55Mn) [(53Mn/55Mn)0] ratios from ∼(2-7) × 10−7. There is no obvious correlation between the (60Fe/56Fe)0 and (53Mn/55Mn)0 ratios. The variable 53Mn-53Cr isochrons probably also indicate later disturbance to the isotopic systems in these sulfides. Even though no chronological information can be extracted from the 60Fe-60Ni and 53Mn-53Cr systems in these UEC sulfides, our results indicate that 60Fe was present in the enstatite chondrite formation region of the early Solar System.  相似文献   

11.
Pyrite dissolution and interaction with Fe(II), Co(II), Eu(III) and U(VI) have been studied under anoxic conditions by solution chemistry and spectroscopic techniques. Aqueous data show a maximal cation uptake above pH 5.5. Iron (II) uptake can explain the non-stoichiometric [S]aq/[Fe]aq ratios often observed during dissolution experiments. Protonation data corrected for pyrite dissolution resulted in a proton site density of 9 ± 3 sites nm−2. Concentration isotherms for Eu(III) and U(VI) sorption on pyrite indicate two different behaviours which can be related to the contrasted redox properties of these elements. For Eu(III), sorption can be explained by the existence of a unique site with a saturation concentration of 1.25 × 10−6 mol g−1. In the U(VI) case, sorption seems to occur on two different sites with a total saturation concentration of 4.5 × 10−8 mol g−1. At lower concentration, uranium reduction occurs, limiting the concentration of dissolved uranium to the solubility of UO2(s).Scanning electron microscopy and micro-Raman spectrometry of U(VI)-sorbed pyrite indicate a heterogeneous distribution of U at the pyrite surface and a close association with oxidized S. X-ray photoelectron spectroscopy confirms the partial reduction of U and the formation of a hyperstoichiometric UO2+x(s). Our results are consistent with a chemistry of the pyrite surface governed not by Fe(II)-bound hydroxyl groups, but by S groups which can either sorb cations and protons, or sorb and reduce redox-sensitive elements such as U(VI).  相似文献   

12.
In solution thermodynamics, and more recently in surface chemistry, it is well established that relationships can be found between the free energies of formation of aqueous or surface metal complexes and thermodynamic properties of the metal ions or ligands. Such systematic dependencies are commonly termed linear free energy relationships (LFER). A 2 site protolysis non-electrostatic surface complexation and cation exchange (2SPNE SC/CE) model has been used to model “in house” and literature sorption edge data for eleven elements: Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) to provide surface complexation constants for the strong sites on montmorillonite. Modelling a further 4 sets of sorption isotherms for Ni(II), Zn(II), Eu(III) and U(VI) provided complexation constants for the weak sites. The protolysis constants and site capacities derived for the 2SPNE SC/CE model in previous work were fixed in all of the calculations. Cation exchange was modelled simultaneously to provide selectivity coefficients. Good correlations between the logarithms of strong SKx−1 and weak W1Kx−1 site binding constants on montmorillonite and the logarithm of the aqueous hydrolysis constants OHKx were found which could be described by the following equations: Strong (≡SSOH) sites:
SlogKX−1=8.1±0.3+(0.90±0.02)logOHKX  相似文献   

13.
79Se is a potentially mobile long-lived fission product, which may make a dominant contribution to the long-term radiation exposure resulting from deep geological disposal of radioactive waste. Its mobility is affected by sorption on minerals. Selenium sorption processes have been studied mainly by considering interaction with a single mineral surface. In the case of multi-component systems (e.g. soils), it is difficult to predict the radioelement behaviour only from the mineral constituents. This study contributes to the understanding of multi-component controls of Se concentrations towards predicting Se behaviour in soils after migration from a disposal site. This goal was approached by measuring selenite sorption on mono and multi-phase systems physically separated by dialysis membranes. To the best of the authors’ knowledge, very few studies have used dialysis membranes to study the sorption competition of selenite between several mineral phases. Other workers have used this method to study the sorption of pesticides on montmorillonite in the presence of dissolved organic matter. Indeed, this method allows measurement of individual Kd in a system composed of several mineral phases. Dialysis membranes allowed (i) determination of the competition of two mineral phases for selenite sorption (ii) and determination of the role of humic acids (HAs) on selenite sorption in oxidising conditions. Experimental results at pH 7.0 show an average Se(IV) sorption distribution coefficient (Kd) of approximately 125 and 9410 L kg−1 for bentonite and goethite, respectively. The average Kd for goethite decreases to 613 L kg−1 or 3215 L kg−1 in the presence of bentonite or HA, respectively. For bentonite, the average Kd decreases slightly in the presence of goethite (60 L kg−1) and remains unchanged in the presence of HA. The experimental data were successfully modelled with a surface complexation model using the PHREEQC geochemical code. The drastic decrease in Se(IV) sorption on goethite in a multi-phase system is attributed to competition with dissolved silica released by bentonite. As with Si the HA compete with Se for sorption sites on goethite.  相似文献   

14.
Proton binding constants for the edge and basal surface sites of kaolinite were determined by batch titration experiments at 25 °C in the presence of 0.1 M, 0.01 M and 0.001 M solutions of NaNO3 and in the pH range 3-9. By optimizing the results of the titration experiments, the ratio of the edge sites to the basal surface sites was found to be 6:1. The adsorption of Cd(II), Cu(II), Ni(II), Zn(II) and Pb(II) onto kaolinite suspensions was investigated using batch adsorption experiments and results suggested that in the lower pH range the metallic cations were bound through non-specific ion exchange reactions on the permanently charged basal surface sites (X). Adsorption on these sites was greatly affected by ionic strength. With increasing pH, the variable charged edge sites (SOH) became the major adsorption sites and inner-sphere specifically adsorbed monodentate complexes were believed to be formed. The effect of ionic strength on the extent of adsorption of the metals on the variable charged edge sites was much less than those on the permanently charged sites. Two binding constants, log K(X2Me) and log K(SOMe), were calculated by optimizing these constants in the computer program FITEQL. A model combining non-specific ion exchange reactions and inner-sphere specific surface complexations was developed to predict the adsorption of heavy metals onto kaolinite in the studied pH range. Linear free energy relationships were found between the edge site binding constants and the first hydrolysis constants of the metals.  相似文献   

15.
δ13C values of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate organic C (POC) together with δ18O and δ2H values of water, δ34S values of dissolved SO4, and major ion concentrations were measured in the Murray River and its tributaries between November 2005 and April 2007 to constrain the origins and behaviour of riverine C. δ13CDIC values in the Murray River vary between −9.5 and −4.7‰ with a range of <3‰ within any sampling round. δ13CDIC values of the tributaries are −11.0‰ to −5.1‰. DIC concentrations of the Murray River increase from ∼25 mg/L in the middle and upper reaches of the river to 45–55 mg/L in the lower reaches. However, the mass ratio of DIC as a proportion of the total dissolved solids (TDS) decreases from ∼0.6–0.7 in the headwaters to ∼0.2–0.3 in the lower reaches of the river, with similar downstream changes in DIC/Cl ratios. This precludes simple evaporative concentration of DIC and is interpreted as the river evading CO2; this interpretation is consistent with pCO2 values that are in the range 550–11,200 ppm volume (ppmv), which are far higher than those in equilibrium with the atmosphere (∼360 ppmv). The δ13CDIC values are similar to those that would be produced by the weathering of marine limestone (δ13C ∼ 0‰). However, the lack of marine limestones cropping out in the Murray–Darling Basin and the relatively uniform δ13CDIC values of the Murray River (even in upland reaches where the dominant rock types are metamorphosed silicates and granites) make this unlikely. Rather the high pCO2 values and δ13CDIC values are best explained by a combination of mineralisation of low δ13C organic C and evasion to the atmosphere. The rate of these two processes may attain near steady state and control both DIC concentrations and δ13C values.  相似文献   

16.
A synergistic experimental-computational approach was used to study the molecular-scale mechanisms of Ni sorption at varying loadings and at pH 6-8 on the biogenic hexagonal birnessite produced by Pseudomonas putida GB-1. We found that Ni is scavenged effectively by bacterial biomass-birnessite assemblages. At surface excess values below 0.18 mol Ni kg−1 sorbent (0.13 mol Ni mol−1 Mn), the biomass component of the sorbent did not interfere with Ni sorption on mineral sites. Extended X-ray absorption fine structure (EXAFS) spectra showed two dominant coordination environments: Ni bound as a triple-corner-sharing (Ni-TCS) complex at vacancy sites and Ni incorporated (Ni-inc) into the MnO2 sheet, with the latter form of Ni favored at high sorptive concentrations and decreased proton activity. In parallel to our spectral analysis, first-principles geometry optimizations based on density functional theory (DFT) were performed to investigate the structure of Ni surface complexes at vacancy sites. Excellent agreement was achieved between EXAFS- and DFT-derived structural parameters for Ni-TCS and Ni-inc. Reaction-path calculations revealed a pH-dependent energy barrier associated with the transition from Ni-TCS to Ni-inc. Our results are consistent with the rate-limited incorporation of Ni at vacancy sites in our sorption samples, but near-equilibrium state of Ni in birnessite phases found in nodule samples. This study thus provides direct and quantitative evidence of the factors governing the occurrence of Ni adsorption versus Ni incorporation in biogenic hexagonal birnessite, a key mineral in the terrestrial manganese cycle.  相似文献   

17.
In this study the physico-chemical, titration and sorption characteristics of Na-illite du Puy (Na-illite) have been measured and modelled. Samples of illite, collected in the region of le Puy-en-Velay, France, were purified and conditioned to the Na-form and physico-chemically characterised. Potentiometric titrations on suspensions of the Na-illite were carried out using a batch backtitration technique in 0.01, 0.1 and 0.5 M NaClO4 background electrolytes from pH∼3 to ∼11.5 in an inert atmosphere glove box. The supernatant solutions from each titration experiment in each series were analysed for K, Mg, Ca, Sr, Si, Al, Fe and Mn. The titration data were modelled in terms of the protolysis of two amphoteric edge sites (SW1OH and SW2OH) without an electrostatic term. Sorption edges (solid/liquid distribution ratios versus pH at trace sorbate concentrations and constant ionic strength) were determined for the transitions metals Ni(II) and Co(II), the lanthanide Eu(III), and the heavy metal Sn(IV) on Na-illite with NaClO4 as the background electrolyte under anoxic conditions (CO2 ? 2 ppm, O2 ? 2 ppm). The study thus encompasses a broad range of metals with different thermodynamic characteristics and with valence states ranging from II to IV. The results from the modelling of the titration data, in combination with a non electrostatic surface complexation and cation exchange sorption model were applied to quantitatively describe the uptake characteristics of the metals listed above on Na-illite. Since sorption edges were measured at trace concentrations, metal uptake was modelled as occurring on strong type sites (SSOH) only. This sorption model, the two site protolysis non electrostatic surface complexation and cation exchange model (2SPNE SC/CE model) had been previously developed and used to describe metal uptake on montmorillonite.  相似文献   

18.
Time-dependent sorption and desorption of Cd on calcite was studied over 210 days utilizing 109Cd as a tracer to distinguish between ‘labile’ and ‘non-labile’ forms of sorbed Cd. Stabilizing the calcite suspensions for 12 months under atmospheric PCO2 and controlled temperature was necessary to reliably follow Cd dynamics following initial sorption. Results revealed time-dependant Cd sorption and marked desorption hysteresis by calcite under environmentally relevant conditions. Data obtained were fitted to a first-order kinetic model and a concentric shell diffusion model. Both models described the progressive transfer of Cd2+ to a less reactive form within calcite and subsequent desorption of Cd subject to different initial contact times. The kinetic model provided a better fit to the combined sorption and desorption data (R2 = 0.992). It differentiates between two ‘pools’ of sorbed Cd2+ on calcite, ‘labile’ and ‘non-labile’, in which labile sorbed Cd is in immediate equilibrium with the free Cd2+ ion activity in solution whereas non-labile Cd is kinetically restricted. For the diffusion model (R2 = 0.959), the rate constants describing Cd dynamics in calcite produced a half-life for Cd desorption of ∼175 d, for release to a ‘zero-sink’ solution. Results from this study allow comment on the likely mechanisms occurring at the calcite surface following long-term Cd sorption.  相似文献   

19.
Adsorption of Cr(VI) on γ-alumina was investigated as a function of ionic strength (0.001, 0.01 and 0.1 M NaNO3), pH (4-10), Cr(VI) concentration (10−4 or 10−5 M with 5 g/L solid) and pCO2 (0, atmospheric, 2.5%). Cr(VI) sorption is significant at low pH and decreases with increasing pH, with 50% of the Cr(VI) adsorbed between pH ∼6.5 and 8. Adsorption varies little with ionic strength or pCO2 under most of the studied conditions. However, at low pH under high ionic strength and especially at high ionic strength and high pCO2, Cr(VI) sorption on γ-alumina is suppressed. The adsorption edge data were used to parameterize constant capacitance (CCM), diffuse double layer (DLM) and triple layer (TLM) surface complexation models. None of the models entirely captures the full range of observed adsorption dependence on ionic strength and sorbate/sorbent ratio. The best fits to the full dataset are produced by the CCM, mostly because it has ionic-strength dependent stability constants. The more sophisticated TLM, which requires the most fitting parameters, does not produce better fits than the simpler CCM or DLM approaches for the conditions tested in this study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号